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Entity-Oriented Search

I Modern search engines are evolving beyond ad hoc

document retrieval.

I Nowadays, the information needs of the users can be

directly satisfied through entity-oriented search:

I By ranking the entities or attributes that better relate

to the query;

I As opposed to the documents that contain the best

matching terms.

I One of the challenges in entity-oriented search is efficient

query interpretation.

I The task of semantic tagging is central to understanding

user intent.

Semantic Tagging in Queries

Query: informáticasérgio sobral nunesjosé

Staff Staff Department

ENTITY ENTITY ENTITY

RELATION Query

Figure 1: Segmented query, annotated with the most probable entity type and category for each query part, as well as
the overall query category.

Five Query Categories (Pound et al., 2010)

1. Entity Query

I Directly find a specific entity.

2. Type Query

I Find entities of a given type.

3. Attribute Query

I Find values for an attribute of an entity or type.

4. Relation Query

I Discover how two or more entities or types are

connected.

5. Keyword Query

I For any traditional full-text query that doesn’t fit the

other categories.

Use Case: Entity-Oriented Search at the University of Porto

I Main goal: improving search at the University of Porto by taking

advantage of the untapped underlying linked data present in the current

information system.

I Some of the search tasks included:

I The discovery of the department for a particular staff member;

I Finding students enrolled in a specified group of courses.

I We first tackled this problem at a faculty level.

I And then extended our support to the fourteen schools of the University

of Porto.

I Our initial semantic tagging implementation was directly supported on

SPARQL queries over the Sesame triple store.

I This led to performance issues when scaling from faculty-centric entities

to university-centric entities.

I The triple store grew from 546,760 to 2,594,511 statements.

I This translated into:

I 139,640 more students, associated with 193,650 additional enrollments;

I 1,166 more courses;

I 14 more academic years;

I 10 more faculties.

Probabilistic Semantic Tagging in Queries

I Semantic tagging in queries is the act of annotating queries with entity

types.

I It is essential for query interpretation and understanding.

I We segmented the query and annotated groups of sequential terms

(n-grams) with the most probable category (entity , attribute, type or

keyword), based on a set of matching candidate labels from the

knowledge base.

I We focused on the efficiency of two alternative methodologies for

candidate retrieval:

I One based on a Sesame triple store and SPARQL querying;

I And another one based on a Lucene index and keyword querying.

I The first step for query analysis was to build a collection of all n-grams

for n ∈ [1, n] (Figure 2).

I We used n = 6 as the maximum n-gram size, given it provided a coverage

of 94.28% for the labels of our entities (Table 1).

I This was a good compromise between performance and accuracy.

I A higher number of n-grams would result in additional candidate

retrieval queries.

Table 1: Label term count distribution.

Terms Freq. Coverage
22 1 100.0000%

14 1 99.9994%

12 2 99.9989%

11 23 99.9978%

10 93 99.9851%

9 402 99.9339%

8 2173 99.7126%

Terms Freq. Coverage
7 7690 98.5162%

6 22260 94.2823%
5 48308 82.0265%

4 65598 55.4295%

3 22089 19.3130%

2 12980 7.1514%

1 9 0.0050%
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Figure 2: Example collection of n-grams, for a maximum n-gram size of n = 4.

I The second step was to retrieve matching candidates for each n-gram.

I We did this with the Sesame triple store and the Lucene index.

I We also computed the number of candidates per class.

I This enabled us to calculate the probability of associating a given

candidate to an n-gram:

1− |C
x
t |
|Ct|

where C x
t is the set of candidates for n-gram x and type t, and Ct is the

set of candidates for type t.

I This probability is higher when the fraction of candidates is smaller, which

means that rarer labels will have priority over common labels, resulting in

better precision.

I Finally, in the last step, we selected the n-gram with the highest

probability, keeping only the longest n-gram in case of term overlap

between selected n-grams.

I Each candidate could be directly categorized into entity , attribute or

type, based on its knowledge base class.

I This information was used to classify the query, based on pre-made

templates that mapped a set of categories to a query class (e.g. a query

with an entity and an attribute was classified as an ATTRIBUTE Query).

Candidate Retrieval Strategies

I Our first attempt at retrieving matching candidates was directly based

on the Sesame triple store.

I We first experimented with a knowledge base containing 546,760

statements.

I While this approach did not allow for sub-second query times, it

resulted in a reasonable query time of under 5 seconds.

I The SPARQL query we built returned four columns associated with

candidate entities: Label, URI, Class and Category. This was obtained

from the union of three sub-queries for entity , attribute and type

individuals.

I Candidate retrieval was done through filtering, using a case insensitive

regular expression that matched the n-grams generated from the search

query.

I As an alternative for better performance, we built a Lucene index
based on the triple store data, combining documents for entities,

attributes and types.

I Candidate retrieval was done by querying the index with each n-gram

generated from the search query.

I We used proximity search within n = 6 terms of distance (the same as

the n-gram size) and ensured that the query was parsed in-order.

I For each query, we returned the top-N results.

Evaluating Efficiency

I We compared the performance of both candidate retrieval strategies by

measuring overall search time over a set of test queries.

I We synthetically generated 1,000 test queries with 3 to 8 terms from

random ontology individuals and 0 to 2 terms from a Portuguese

dictionary with over 400,000 words.

I We did a run based on the Sesame triple store strategy, that we

directly compared with a run based the Lucene index strategy for the

top-N results.

I We picked N = 10 since it provided a near-optimal speedup, also

having a positive impact on the quality of the results for a small set of

manually tested queries.

I Tests were run on a laptop with a dual core Intel® CoreTM i7-5600U,

16 GB of RAM and a 256 GB solid-state drive.

I As seen on Table 2, the Lucene index strategy was nearly 153 times

faster than the Sesame triple store strategy, for N = 10.

Table 2: Statistics for the query analysis time of the Sesame triple store and the
Lucene index strategies, using N = 10 for the Lucene index.

Sesame triple store Lucene index

Avg. 7.435765s 0.048580s

Std. ±3.206806s ±0.019115s

Speedup 153.062268 (∼ 153× faster)

Mann-Whitney U Test p-value ≈ 0� 0.01

I Increasing the parameter N resulted in lower, but still positive,

speedup values.
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(a) Run times for the Sesame and
Lucene strategies (log scale for the
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(b) Speedup for different values of N
(log scale for the x-axis).

Figure 3: Efficiency evaluation of the overall search process. The same 1,000
synthetic queries were used in each run.

I Figure 3a shows a run time comparison between the Sesame strategy

(all matching results) and various N values of the Lucene strategy

(top-N results).

I The index-based strategy outperforms the triple store strategy even

when retrieving the top N = 1 million matching candidates.

I Figure 3b illustrates the evolution of the speedup for growing values

of N .

I For N > 20, the speedup consistently decreased, nearly stabilizing at

4× faster.
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