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Five Query Categories (Pound et al., 2010)

» Modern search engines are evolving beyond ad hoc 4
document retrieval.

» Nowadays, the information needs of the users can be

directly satisfied through entity-oriented search:

» By ranking the entities or attributes that better relate
to the query;

» As opposed to the documents that contain the best
matching terms.

» One of the challenges in entity-oriented search is efficient
query interpretation.

» T he task of semantic tagging is central to understanding
user intent.

Use Case: Entity-Oriented Search at the University of Porto
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N 1. Entity Query
» Directly find a specific entity.

2. Type Query

» RELATION QueryJ<

Figure 1: Segmented query, annotated with the most probable entity type and category for each query part, as well as
the overall query category.

» Find entities of a given type.

Department

3. Attribute Query
» Find values for an attribute of an entity or type.

ENTITY

4. Relation Query

» Discover how two or more entities or types are
connected.

5. Keyword Query

» For any traditional full-text query that doesn't fit the
other categories.

» Main goal: improving search at the University of Porto by taking
advantage of the untapped underlying linked data present in the current
information system.

» Some of the search tasks included:
» The discovery of the department for a particular staff member;

» Finding students enrolled in a specified group of courses.

» We first tackled this problem at a faculty level.

» And then extended our support to the fourteen schools of the University
of Porto.

» Our initial semantic tagging implementation was directly supported on
SPARQL queries over the Sesame triple store.

» This led to performance issues when scaling from faculty-centric entities
to university-centric entities.

» T he triple store grew from 546,760 to 2,594,511 statements.

» This translated into:
» 139.640 more students, associated with 193,650 additional enrollments;
» 1,166 more courses;
» 14 more academic years;

» 10 more faculties.

Probabilistic Semantic Tagging in Queries

» Semantic tagging in queries is the act of annotating queries with entity
types.

» It is essential for query interpretation and understanding.

» We segmented the query and annotated groups of sequential terms
(n-grams) with the most probable category (entity, attribute, type or
keyword), based on a set of matching candidate labels from the
knowledge base.

» We focused on the efficiency of two alternative methodologies for
candidate retrieval:

» One based on a Sesame triple store and SPARQL querying;
» And another one based on a Lucene index and keyword querying.

» The first step for query analysis was to build a collection of all n-grams
for n € [1, n] (Figure 2).

» We used n = 6 as the maximum n-gram size, given it provided a coverage
of 94.28% for the labels of our entities (Table 1).

» This was a good compromise between performance and accuracy.

» A higher number of n-grams would result in additional candidate
retrieval queries.

» Our first attempt at retrieving matching candidates was directly based
on the Sesame triple store.

» We first experimented with a knowledge base containing 546,760
statements.

» While this approach did not allow for sub-second query times, it
resulted in a reasonable query time of under 5 seconds.

» The SPARQL query we built returned four columns associated with
candidate entities: Label, URI, Class and Category. This was obtained
from the union of three sub-queries for entity, attribute and type
individuals.

» Candidate retrieval was done through filtering, using a case insensitive
regular expression that matched the n-grams generated from the search

query.

» As an alternative for better performance, we built a Lucene index
based on the triple store data, combining documents for entities,
attributes and types.

» Candidate retrieval was done by querying the index with each n-gram
generated from the search query.

» We used proximity search within n = 6 terms of distance (the same as
the n-gram size) and ensured that the query was parsed in-order.

» For each query, we returned the top-/V results.

September 5, 2016 - Conference and Labs of the Evaluation Forum (CLEF 2016)

Candidate Retrieval Strategies

Table 1: Label term count distribution.

Terms Freq. Coverage Terms Freq.| Coverage
22 1|100.0000% 7| 7690 98.5162%
14 1| 99.9994% 6 22260 94.2823%
12 2| 99.9989% 5| 48308| 82.0265%
11 23| 99.9978% 4| 65598 55.4295%
10 93| 99.9851% 3| 22089 19.3130%
9/ 402 99.9339% 21 12980 7.1514%
8| 2173 99.7126% 1 9/ 0.0050%
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Figure 2: Example collection of n-grams, for a maximum n-gram size of n = 4.

Evaluating Efficiency

» \We compared the performance of both candidate retrieval strategies by

measuring overall search time over a set of test queries.

» We synthetically generated 1,000 test queries with 3 to 8 terms from

random ontology individuals and 0 to 2 terms from a Portuguese
dictionary with over 400,000 words.

» We did a run based on the Sesame triple store strategy, that we

directly compared with a run based the Lucene index strategy for the

top- results.

» We picked A/ = 10 since it provided a near-optimal speedup, also

having a positive impact on the quality of the results for a small set of

manually tested queries.

» Tests were run on a laptop with a dual core Intel® Core™ i7-5600U,

16 GB of RAM and a 256 GB solid-state drive.

» As seen on Table 2, the Lucene index strategy was nearly 153 times
faster than the Sesame triple store strategy, for N = 10.

Table 2: Statistics for the query analysis time of the Sesame triple store and the

Lucene index strategies, using NV = 10 for the Lucene index.

Sesame triple store|Lucene index
Avg. 7.435765s 0.048580s
Std. +3.2068006s +0.019115s
Speedup 153.062268 (~ 153x faster)

Mann-Whitney U Test p-value =~ 0 < 0.01
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» The second step was to retrieve matching candidates for each n-gram.
» We did this with the Sesame triple store and the Lucene index.
» We also computed the number of candidates per class.

» This enabled us to calculate the probability of associating a given
candidate to an n-gram:

G

|G
where C is the set of candidates for n-gram x and type t, and C; is the
set of candidates for type t.

1

» T his probability is higher when the fraction of candidates is smaller, which
means that rarer labels will have priority over common labels, resulting in
better precision.

» Finally, in the last step, we selected the n-gram with the highest
probability, keeping only the longest n-gram in case of term overlap
between selected n-grams.

» Each candidate could be directly categorized into entity, attribute or
type, based on its knowledge base class.

» This information was used to classify the query, based on pre-made
templates that mapped a set of categories to a query class (e.g. a query
with an entity and an attribute was classified as an ATTRIBUTE Query).

» Increasing the parameter ' resulted in lower, but still positive,
speedup values.
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Figure 3: Efficiency evaluation of the overall search process. The same 1,000
synthetic queries were used in each run.

» Figure 3a shows a run time comparison between the Sesame strategy
(all matching results) and various A values of the Lucene strategy
(top-V results).

» T he index-based strategy outperforms the triple store strategy even
when retrieving the top A/ = 1 million matching candidates.

» Figure 3b illustrates the evolution of the speedup for growing values

of \.

» For N > 20, the speedup consistently decreased, nearly stabilizing at
4% faster.
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