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Abstract. The hypergraph-of-entity is a joint representation model for
terms, entities and their relations, used as an indexing approach in entity-
oriented search. In this work, we characterize the structure of the hy-
pergraph, from a microscopic and macroscopic scale, as well as over
time with an increasing number of documents. We use a random walk
based approach to estimate shortest distances and node sampling to esti-
mate clustering coefficients. We also propose the calculation of a general
mixed hypergraph density based on the corresponding bipartite mixed
graph. We analyze these statistics for the hypergraph-of-entity, finding
that hyperedge-based node degrees are distributed as a power law, while
node-based node degrees and hyperedge cardinalities are log-normally
distributed. We also find that most statistics tend to converge after an
initial period of accentuated growth in the number of documents.

Keywords: hypergraph-of-entity combined data, indexing, representa-
tion model, hypergraph analysis, characterization

1 Introduction

Complex networks have frequently been studied as graphs, but only recently
has attention been given to the study of complex networks as hypergraphs [11].
The hypergraph-of-entity [10] is a hypergraph-based model used to represent
combined data [4, §2.1.3]. That is, it is a joint representation of corpora and
knowledge bases, integrating terms, entities and their relations. It attempts to
solve, by design, the issues of representing combined data through inverted in-
dexes and quad indexes. The hypergraph-of-entity, together with its random walk
score [10, §4.2.2], is also an attempt to generalize several tasks of entity-oriented
search. This includes ad hoc document retrieval and ad hoc entity retrieval, as
well as the recommendation-alike tasks of related entity finding and entity list
completion. However, there is a tradeoff. One one side, the random walk score
acts as a general ranking function. On the other side, it performs below tra-
ditional baselines like TF-IDF. Since ranking is particularly dependent on the
structure of the hypergraph, a characterization is a fundamental step towards
improving the representation model and, with it, the retrieval performance.
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Accordingly, our focus was on studying the structural properties of the
hypergraph. This is a task that presents some challenges, both from a prac-
tical sense and from a theoretical perspective. While there are many tools [9,5]
and formats [17,8] for the analysis and transfer of graphs, hypergraphs still lack
clear frameworks to perform these functions, making their analysis less trivial.
Even formats like GraphML [8] only support undirected hypergraphs. Further-
more, there is still an ongoing study of several aspects of hypergraphs, some
of which are trivial in graph theory. For example, the adjacency matrix is a
well-established representation of a graph, however recent work is still focusing
on defining an adjacency tensor for representing general hypergraphs [21]. As a
scientific community, we have been analyzing graphs since 1735 and, even now,
innovative ideas in graph theory are still being researched [1]. However, hyper-
graphs are much younger, dating from 1970 [6], and thus there are still many
open challenges and contribution opportunities.

In this work, we take a practical application of hypergraphs, the hypergraph-
of-entity, as an opportunity to establish a basic framework for the analysis of
hypergraphs. In Section 2, we begin by providing an overview on the analy-
sis of the inverted index, knowledge bases and hypergraphs, covering the three
main aspects of the hypergraph-of-entity. In Section 3, we describe our charac-
terization approach, covering shortest distance estimation with random walks
and clustering coefficient estimation with node sampling, as well as proposing
a general mixed hypergraph density formula by establishing a parallel with the
corresponding bipartite mixed graph. In Section 4, we present the results of
a characterization experiment of the hypergraph-of-entity for a subset of the
INEX 2009 Wikipedia collection and, in Section 5, we present the conclusions
and future work.

2 Reference Work

The hypergraph-of-entity is a representation model for indexing combined data,
jointly modeling unstructured textual data from corpora and structured inter-
connected data from knowledge bases. As such, before analyzing a hypergraph
from this model, we surveyed existing literature on inverted index analysis, as
well knowledge base analysis. We then surveyed literature specifically on the
analysis of hypergraphs, particularly focusing on statistics like the clustering
coefficient, the shortest path lengths and the density.

Analyzing Inverted Indexes There are several models based on the inverted index
that combine documents and entities [7,3] and that are comparable with the
hypergraph-of-entity. There has also been work that analyzed the inverted index,
particularly regarding query evaluation speed and space requirements [23,25].
Voorhees [23] compared the efficiency of the inverted index with the top-down
cluster search. She analyzed the storage requirements of four test collections,
measuring the total number of documents and terms, as well as the average
number of terms per document. She then analyzed the disk usage per collection,
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measuring the number of bytes for document vectors and the inverted index.
Finally, she measured CPU time in number of instructions and the I/O time in
number of data pages accessed at least once, also including the query time in
seconds.

Zobel et al. [25] took a similar approach to compare the inverted index and
signature files. First, they characterized two test collections, measuring size in
megabytes, number of records and distinct words, as well as the record length,
and the number of words, distinct words and distinct words without common
terms per record. They also analyzed disk space, memory requirements, ease of
index construction, ease of update, scalability and extensibility.

For the hypergraph-of-entity characterization, we do not focus on measuring
efficiency, but rather on studying the structure and size of the hypergraph.

Analyzing Knowledge Bases Studies have been made to characterize the enti-
ties and triples in knowledge bases. In particular, given RDF’s graph structure,
we are interested in understanding which statistics are relevant for instance to
discriminate between the typed nodes.

Halpin [16] took advantage of Microsoft’s Live.com query log to reissue en-
tity and concept queries over their FALCON-S semantic web search engine. They
then studied the results, characterizing their source, triple structure, RDF and
OWL classes and properties, and the power-law distributions of the number of
URIs, both returned as results and as part of the triples linking to the results.
They focused mostly on measuring the frequency of different elements or aggre-
gations (e.g., top-10 domain names for the URIs, most common data types, top
vocabulary URIs).

Ge et al. [14] defined an object link graph based on the graph induced by the
RDF graph, based on paths linking objects (or entities), as long as they are either
direct or established through blank nodes. They then studied this graph for the
Falcons Crawl 2008 and 2009 datasets (FC08 and FC09), which included URLs
from domains like bio2rdf.org or dbpedia.org. They characterized the object
link graph based on density, using the average degree as an indicator, as well
as connectivity, analyzing the largest connected component and the diameter.
They repeated the study for characterizing the structural evolution of the object
link graph, as well its domain-specific structures (according to URL domains).
Comparing two snapshots of the same data enabled them to find evidence of the
scale-free nature of the network. While the graph almost doubled in size from
FCO08 to FC09, the average degree remained the same and the diameter actually
decreased.

Fernandez et al. [12] focused on studying the structural features of RDF data,
identifying redundancy through common structural patterns, proposing several
specific metrics for RDF graphs. In particular, they proposed several subject and
object degrees, accounting for the number of links from /to a given subject/object
(outdegree and indegree), the number of links from a (subject, predicate) (partial
outdegree) and to a (predicate, object) (partial indegree), the number of distinct
predicates from a subject (labeled outdegree) and to an object (labeled indegree),
and the number of objects linked from a subject through a single predicate (direct
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outdegree), as well as the number of subjects linking to an object through a single
predicate (direct indegree). They also measured predicate degree, outdegree and
indegree. They proposed common ratios to account for shared structural roles of
subjects, predicates and objects (e.g., subject-object ratio). Global metrics were
also defined for measuring the maximum and average outdegree of subject and
object nodes for the whole graph. Another analysis approach was focused on the
predicate lists per subject, measuring the ratio of repeated lists and their degree,
as well as the number of lists per predicate. Finally, they also defined several
statistics to measure typed subjects and classes, based on the rdf:type predicate.

While we study a hypergraph that jointly represents terms, entities and their
relations, we focus on a similar characterization approach, that is more based on
structure and less based on measuring performance.

Analyzing Hypergraphs Hypergraphs [6] have been around since the 1970s and,
because they are able to capture higher-order relations, there are either concep-
tually different or multiple counterparts to the equivalent graph statistics. Take
for instance the node degree. While graphs only have a node degree, indegree
and outdegree, hypergraphs can also have a hyperedge degree, which is the num-
ber of nodes in a hyperedge [18]. The hyperedge degree also exists for directed
hyperedges, in the form of a tail degree and a head degree!. The tail degree is
based on the cardinality of the source node set and the head degree is based on
the cardinality of the target node set. In this work we will rely on the degree,
clustering coefficient, average path length, diameter and density to characterize
the hypergraph-of-entity.

Ribeiro et al. [22] proposed the use of multiple random walks to find shortest
paths in power law networks. They found that random walks had the ability to
observe a large fraction of the network and that two random walks, starting from
different nodes, would intersect with a high probability. Glabowski et al. [15] con-
tributed with a shortest path computation solution based on ant colony optimiza-
tion, clearly structuring it as pseudocode, while providing several configuration
options. Parameters included the number of ants, the influence of pheromones
and other data in determining the next step, the speed of evaporation of the
pheromones, the initial, minimum and maximum pheromone levels, the initial
vertex and an optional end vertex. Li [19] studied the computation of shortest
paths in electric networks based on random walk models and ant colony op-
timization, proposing a current reinforced random walk model inspired by the
previous two. In this work, we also use a random walk based approach to ap-
proximate shortest paths and estimate the average path length and diameter of
the graph.

Gallagher and Goldberg [13, Eq.4] provide a comprehensive review on clus-
tering coefficients for hypergraphs. The proposed approach for computing the
clustering coefficient in hypergraphs accounted for a pair of nodes, instead of a
single node, which is more frequent in graphs. Based on these two-node clus-
tering coefficients, the node cluster coefficient was then calculated. Two-node

! Tail and head is used in analogy to an arrow, not a list.
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clustering coefficients measured the fraction of common hyperedges between two
nodes, through the intersection of the incident hyperedge sets for the two nodes.
It then provided different kinds of normalization approaches, either based on the
union, the maximum or minimum cardinality, or the square root of the product
of the cardinalities of the hyperedge sets. The clustering coefficient for a node
was then computed based on the average two-node clustering coefficient for the
node and its neighbors.

The codegree Turan density [20] can be computed for a family F of k-uniform
hypergraphs, also known as k-graphs. It is calculated based on the codegree
Turan number (the extremal number), which takes as parameters the number of
nodes n and the family F of k-graphs. In turn, the codegree Turdn number is
calculated based on the minimum number of nodes, taken from all sets of r — 1
vertices of each hypergraph H that, when united with an additional vertex, will
form a hyperedge from H. The codegree density for a family F of hypergraphs is
then computed based on limsup,,_, ., %(n}—) Since this was the only concept
of density we found associated with hypergraphs or, more specifically, a family
of k-uniform hypergraphs, we opted to propose our own density formulation
(Section 3). The hypergraph-of-entity is a single general mixed hypergraph. In
other words, it is not a family of hypergraphs, it contains hyperedges of multiple
degrees (it’s not k-uniform, but general) and it contains undirected and directed
hyperedges (it’s mixed). Accordingly, we propose a density calculation based
on the counterpart bipartite graph of the hypergraph, where hyperedges are
translated to bridge nodes.

3 Characterization Approach

Graphs can be characterized at a microscopic, mesoscopic and macroscopic scale.
The microscopic analysis is concerned with statistics at the node-level, such
as the degree or clustering coefficient. The mesoscopic analysis is concerned
with statistics and patterns at the subgraph-level, such as communities, network
motifs or graphlets. The macroscopic analysis is concerned with statistics at
the graph-level, such as average clustering coefficient or diameter. In this work,
our analysis of the hypergraph is focused on the microscopic and macroscopic
scales. We compute several statistics for the whole hypergraph, as well as for
snapshot hypergraphs that depict growth over time. Some of these statistics are
new to hypergraphs, when compared to traditional graphs. For instance, nodes in
directed graphs have an indegree and an outdegree. However, nodes in directed
hypergraphs have four degrees, based on incoming and outgoing nodes, as well
as on incoming and outgoing hyperedges. While in graphs all edges are binary,
leading to only one other node, in hypergraphs hyperedges are n-ary, leading
to multiple nodes, and thus different degree statistics. While some authors use
‘degree’ to refer to node and hyperedge degrees [24, §4]|[18, §Network Statistics
in Hypergraphs|, in this work we opted to use the ‘degree’ designation when
referring to nodes and the ‘cardinality’ designation when referring to hyperedges.
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This is to avoid any confusion for instance between an “hyperedge-induced” node
degree and a hyperedge cardinality.

For the whole hypergraph, we compute node degree distributions based on
nodes and hyperedges, and hyperedge cardinality distributions. For snapshots,
we compute average node degrees and hyperedge cardinalities. For both, we
compute the estimated clustering coefficient, average path length and diameter,
as well as the density and space usage statistics.

Estimating Shortest Distances with Random Walks Ribeiro et al. [22] found that,
in power law networks, there is a high probability that two random walk paths,
usually starting from different nodes, will intersect and share a small fraction
of nodes. We took advantage of this conclusion, adapting it to a hypergraph, in
order to compute a sample of shortest paths and their length, used to estimate
the average path length and diameter. We considered two (ordered) sets S and
Ss of nodes sampled uniformly at random, each of size s = |S1| = |S2|. We then
launched 7 random walks of length ¢ from each pair of nodes S} and S%. For a
given pair of random walk paths, we iterated over the nodes in the path starting
from Si, until we found a node in common with the path starting from S&. At
that point, we merged the two paths based on the common node, discarding the
suffix of the first path and the prefix of second path. As the number of iterations
r increased, we progressively approximated the shortest path for the pair of
nodes. This enabled us to generate a sample of approximated shortest path
lengths, which could be used to compute the estimated diameter (its maximum)
and the estimated average path length (its mean).

Estimating Clustering Coefficients with Node Sampling In a graph, the clustering
coefficient is usually computed for a single node and averaged over the whole
graph. As shown by Gallagher and Goldberg [13, §I.A.], in hypergraphs the
clustering coefficient is computed, at the most atomic level, for a pair of nodes.
The clustering coefficient for a node is then computed based on the averaged
two-node clustering coefficients between the node and each of its neighbors (cf.
Gallagher and Goldberg [13, Eq.4]). Three options were provided for calculating
the two-node clustering coefficient, one of them based on the Jaccard index
between the neighboring hyperedges of each node [13, Eq.1], which we use in
this work.

As opposed to computing it for all nodes, we estimated the clustering co-
efficients for a smaller sample S of nodes. Furthermore, for each sampled node
s; € S, we also sampled its neighbors Ng(s;) for computing the two-node cluster-
ing coefficients. We then applied the described equations to obtain the clustering
coeflicients for each node s; and a global clustering coefficient based on the over-
all average.

Computing the Density of General Mixed Hypergraphs A general mixed hyper-
graph is general (or non-uniform) in the sense that its hyperedges can contain
an arbitrary number of vertices, and it is mixed in the sense that it can contain
hyperedges that are either undirected and directed. We compute a hypergraph’s
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density by analogy with its corresponding bipartite graph, which contains all
nodes from the hypergraph, along with connector nodes representing the hyper-
edges.

Consider the hypergraph H = (V,E), with n = |V| nodes and m = |E|
hyperedges. Also consider the set of all undirected hyperedges Fy and directed
hyperedges Ep, where E = EyUEp. Their subsets EF and Egl’kz should also be
respectively considered, where EF is the subset of undirected hyperedges with k
nodes and Eg’kg is the subset of directed hyperedges with k; tail (source) nodes,
k2 head (target) nodes and k = k;+ks nodes, assuming the hypergraph only con-
tains directed hyperedges between disjoint tail and head sets. This means that
the union of By = By UEZUES U...and Ep = E' UE°UER' UERU. ..
forms the set of all hyperedges E. We use it as a way to distinguish between
hyperedges with different degrees. This is important because, depending on the
degree k, the hyperedge will contribute differently to the density, when consid-
ering the corresponding bipartite graph. For instance, one undirected hyperedge
with degree k = 4 will contribute with four edges to the density. Accordingly,
we derive the density of a general mixed hypergraph as shown in Equation 1.

D— 23, kIEG| + Dk ke (R +k2)|E1131’k2| (1)
B 2(n+m)(n+m—1)

In practice, this is nothing more than a comprehensive combination of the density
formulas for undirected and directed graphs. On one side, we consider the density
of a mixed graph that should result of the combination of an undirected simple
graph and a directed simple graph. That is, each pair of nodes can be connected,
at most, by an undirected edge and two directed edges of opposing directions.
On the other side, we use hypergraph notation to directly obtain the required
statistics from the corresponding mixed bipartite graph, thus calculating the
analogous density for a hypergraph.

4 Analyzing the Hypergraph-of-Entity

We indexed a subset of the INEX 2009 Wikipedia collection given by the 7,487
documents appearing in the relevance judgments of 10 random topics. We then
computed global statistics (macroscale), local statistics (microscale) and tempo-
ral statistics. Temporal statistics were based on an increasingly larger number
of documents, by creating several snapshots of the index, through a ‘limit’ pa-
rameter, until all documents were considered.

Global Statistics In Table 1, we present several global statistics about the hyper-
graph-of-entity, in particular the number of nodes and hyperedges, discriminated
by type, the average degree, the average clustering coefficient, the average path
length, the diameter and the density. The average clustering coefficient was com-
puted based on a sample of 5,000 nodes and a sample of 100,000 neighbors for
each of those nodes. The average path length and the diameter were computed
based on a sample of shortest distances between 30 random pairs of nodes and
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Table 1: Global statistics

Statistic Value Statistic Value Statistic Value
Nodes 607,213 Hyperedges 253,154 Avg. Degree 0.8338
term 323,672 Undirected 14,938  Avg. Clustering Coefficient 0.1148
entity 283,541 document 7,484 Avg. Path Length 8.3667
related_ to 7,454 Diameter 17

Directed 238,216 Density 3.88e-06

contained_ in 238,216

entity term entity term
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(a) Based on connected nodes. (b) Based on connected hyperedges.

Fig. 1: Node degree distributions (log-log scale).

the intersections of 1,000 random walks of length 1,000 launched from each el-
ement of the pair. Finally, the density was computed based on Equation 1. As
we can see, for the 7,487 documents the hypergraph contains 607,213 nodes and
253,154 hyperedges of different types, an average degree lower than one (0.83)
and a low clustering coefficient (0.11). It is also extremely sparse, with a density
of 3.9e—06. Its diameter is 17 and its average path length is 8.4, almost double
when compared to a social network like Facebook [2].

Local Statistics Figure 1 illustrates the node degree distributions. In Figure 1a,
the node degree is based on the number of connected nodes, with the distribution
approximating a log-normal behavior. In Figure 1b, the node degree is based
on the number of connected hyperedges, with the distribution approximating a
power law. This shows the usefulness of considering both of the node degrees in
the hypergraph-of-entity, as they are able to provide different information.
Figure 2 illustrates the hyperedge cardinality distribution. For document hy-
peredges, cardinality is log-normally distributed, while for related_to hyperedges
the behavior is slightly different, with low cardinalities having a higher frequency
than they would in a log-normal distribution. Finally, the cardinality distribution
of contained_in hyperedges, while still heavy-tailed, presents an initial linear
behavior, followed by a power law behavior. The maximum cardinality for this
type of hyperedge is also 16, which is a lot lower when compared to document
hyperedges and related to hyperedges, which have cardinality 8,167 and 3,084,
respectively. This is explained by the fact that contained_in hyperedges estab-
lish a directed connection between a set of terms and an entity that contains
those terms, being limited by the maximum number of words in an entity.



Characterizing the Hypergraph-of-Entity 9

contained_in document related_to
16+05- Fig.2: Hyperedge car-
dinality based on the

1e+03-

total number of nodes
tes01- . m rf—\_ (log-log scale).

1 10 100 1000 100001 10 100 1000 100001 10 100 1000 1000¢
Overall Hyperedge Cardinality

Frequency

©

~

Avg. Node
All-Node Degree
3
8
Avg. Node
All-Hyperedge Degree
© o

0 2000 4000 6000 8000 0 2000 4000 6000 8000
Number of Documents Number of Documents

(a) Based on connected nodes. (b) Based on connected hyperedges.

Fig. 3: Average node degree over time.

Temporal Statistics In order to compute temporal statistics, we first gener-
ated 14 snapshots of the index based on a limit L of documents, for L €
{1,2,3,4,5,10, 25,50, 100, 1000, 2000, 3000, 5000, 8000}.

Figure 3 illustrates the node-based and hyperedge-based average node de-
grees over time (represented as the number of documents in the index at a
given instant). As we can see, both functions tend to converge, however this is
clearer for the node-based degree, reaching nearly 4,000 nodes, through only 9
hyperedges, on average. Figure 4 illustrates the average undirected hyperedge
cardinality over time, with a convergence behavior that approximates 300 nodes
per hyperedge, after rising to an average of 411.88 nodes for L = 25 documents.

Figure 5 illustrates the evolution of the average path length and the diameter
of the hypergraph over time. For a single document, these values reached 126.1
and 491, respectively, while, for just two documents, they immediately lowered
to 3.8 and 10. For higher values of L, both statistics increased slightly, reach-
ing 7.2 and 15 for the maximum number of documents. Notice that these last
values are equivalent to those computed in Table 1 (8.4 and 17, respectively),
despite resulting in different quantities. This is due to the precision errors in our
estimation approach, resulting in a difference of 1.2 and 2, respectively, which
is tolerable when computation resources are limited. In Figure 6, we illustrate
the evolution of the clustering coefficient, which rapidly decreases from 0.59
to 0.11. The low average path length and clustering coefficient point towards
a weak community structure, possibly due to the coverage of divergent topics.
However, we would require a random generation model for hypergraphs, like the
Watts—Strogatz model for graphs, in order to properly interpret the statistics.

Figure 7 illustrates the evolution of the density over time. The density is con-
sistently low, starting from 1.37e—03 and progressively decreasing to 3.91e—06
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coefficient over time.

as the number of documents increases. This shows that the hypergraph-of-entity
is an extremely sparse representation, with limited connectivity, which might
benefit precision in a retrieval task.

Finally, we also measured the space usage of the hypergraph, both in disk
and in memory. In disk, the smallest snapshot required 43.8 KiB for one doc-
ument, while the largest snapshot required 181.9 MiB for the whole subset.
Average disk space over all snapshots was 37.5 MiB + 58.9 MiB. In memory,
the smallest snapshot used 1.0 GiB for one document, including the overhead of
the data structures, and the largest snapshot used 2.3 GiB for the whole subset.
Average memory space over all snapshots was 1.3 GiB 4+ 461.1 MiB. Memory
also grew faster for the first 1,000 documents, apparently leading to an expected
convergence, although we could not observe it for such a small subset.

5 Conclusions

We have characterized the hypergraph-of-entity representation model, based on
the structural properties of the hypergraph. We analyzed the node degree dis-
tributions, based on nodes and hyperedges, and the hyperedge cardinality dis-
tributions, illustrating their distinctive behavior. We also analyzed the temporal
behavior, as documents were added to the index, studying average node degree
and hyperedge cardinality, estimated average path length, diameter and cluster-
ing coefficient, as well as density and space usage requirements. Our contribu-
tions go beyond the characterization of the hypergraph-of-entity, as we show an
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application of two approximation approaches for computing statistics based on
the shortest distance, as well as the clustering coefficient. We also proposed a
simple approach for computing the density of a general mixed hypergraph, based
on the corresponding bipartite mixed graph.

In the future, we would like to further explore the computation of density,
as the bipartite-based density we proposed, although useful, only accounts for
hyperedges already in the hypergraph. We would also like to study the parame-
terization of the two estimation approaches we proposed, based on random walks
and node sampling. Another open challenge in hypergraphs is the definition of
random generation model, which would be useful to improve characterization.
Finally, several opportunities also exist in the study of the hypergraph at a
mesoscale, be it identifying communities, network motifs or graphlet, or explor-
ing unique patterns to hypergraphs.

Acknowledgements

José Devezas is supported by research grant PD/BD/128160/2016, provided by
the Portuguese national funding agency for science, research and technology,
Fundagao para a Ciéncia e a Tecnologia (FCT), within the scope of Operational
Program Human Capital (POCH), supported by the European Social Fund and
by national funds from MCTES.

References

1. Aparicio, D., Ribeiro, P., Silva, F.: Graphlet-orbit transitions (got): A fingerprint
for temporal network comparison. PLoS One 13, ¢0205497 (October 2018)

2. Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of sepa-
ration. CoRR abs/1111.4570 (2011), http://arxiv.org/abs/1111.4570

3. Bast, H., Buchhold, B.: An Index for Efficient Semantic Full-text Search. In: Pro-
ceedings of the 22Nd ACM International Conference on Conference on Information
and Knowledge Management. pp. 369-378 (2013), http://doi.acm.org/10.1145/
2505515.2505689

4. Bast, H., Buchhold, B., Haussmann, E., et al.: Semantic search on text and knowl-
edge bases. Foundations and Trends® in Information Retrieval 10(2-3), 119-271
(2016)

5. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for explor-
ing and manipulating networks. In: Proceedings of the Third International Confer-
ence on Weblogs and Social Media, ICWSM 2009, San Jose, California, USA, May
17-20, 2009 (2009), http://aaai.org/ocs/index.php/ICWSM/09/paper/view /154

6. Berge, C.: Graphes et hypergraphes. Dunod: Paris (1970)

7. Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid
search: Effectively combining keywords and semantic searches. In: European Se-
mantic Web Conference. pp. 554-568. Springer (2008)

8. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: Graphml
progress report structural layer proposal. In: International Symposium on Graph
Drawing. pp. 501-512. Springer (2001)


http://arxiv.org/abs/1111.4570
http://doi.acm.org/10.1145/2505515.2505689
http://doi.acm.org/10.1145/2505515.2505689
http://aaai.org/ocs/index.php/ICWSM/09/paper/view/154

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

J. Devezas and S. Nunes

. Csardi, G., Nepusz, T., et al.: The igraph software package for complex network

research. InterJournal, Complex Systems 1695(5), 1-9 (2006)

Devezas, J., Nunes, S.: Hypergraph-of-entity: A unified representation model for
the retrieval of text and knowledge. Open Computer Science 9(1), 103-127 (Jun
2019), https://doi.org/10.1515/comp-2019-0006

Estrada, E., Rodriguez-Velazquez, J.A.: Complex networks as hypergraphs. arXiv
preprint physics/0505137 (2005)

Fernandez, J.D., Martinez-Prieto, M.A., de la Fuente Redondo, P., Gutiérrez, C.:
Characterizing rdf datasets. Journal of Information Science 1, 1-27 (2016)
Gallagher, S.R., Goldberg, D.S.: Clustering coefficients in protein interaction hy-
pernetworks. In: ACM Conference on Bioinformatics, Computational Biology and
Biomedical Informatics. ACM-BCB 2013, Washington, DC, USA, September 22-
25, 2013. p. 552 (2013), https://doi.org/10.1145/2506583.2506635

Ge, W., Chen, J., Hu, W., Qu, Y.: Object link structure in the semantic web. In:
The Semantic Web: Research and Applications, 7th Extended Semantic Web Con-
ference, ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings,
Part II. pp. 257-271 (2010), https://doi.org/10.1007/978-3-642-13489-0 18
Glabowski, M., Musznicki, B., Nowak, P., Zwierzykowski, P.: Shortest path prob-
lem solving based on ant colony optimization metaheuristic. Image Processing &
Communications 17(1-2), 7-17 (2012)

Halpin, H.: A query-driven characterization of linked data. In: Proceedings of the
WWW2009 Workshop on Linked Data on the Web, LDOW 2009, Madrid, Spain,
April 20, 2009. (2009), http://ceur-ws.org/Vol-538 /1dow2009 _paperl6.pdf
Himsolt, M.: GML: A portable graph file format. Tech. rep., Universitit Passau
(1997)

Klamt, S., Haus, U., Theis, F.J.: Hypergraphs and cellular networks. PLoS Com-
putational Biology 5(5) (2009), https://doi.org/10.1371/journal.pcbi.1000385

Li, D.: Shortest paths through a reinforced random walk. Tech. rep., University of
Uppsala (2011)

Mubayi, D., Zhao, Y.: Co-degree density of hypergraphs. J. Comb. Theory, Ser. A
114(6), 1118-1132 (2007), https://doi.org/10.1016/j.jcta.2006.11.006

Ouvrard, X., Goff, J.L., Marchand-Maillet, S.: Adjacency and tensor represen-
tation in general hypergraphs part 1: e-adjacency tensor uniformisation using ho-
mogeneous polynomials. CoRR abs/1712.08189 (2017), http://arxiv.org/abs/1712.
08189

Ribeiro, B.F., Basu, P., Towsley, D.: Multiple random walks to uncover short paths
in power law networks. In: 2012 Proceedings IEEE INFOCOM Workshops, Or-
lando, FL, USA, March 25-30, 2012. pp. 250-255 (2012), https://doi.org/10.1109/
INFCOMW.2012.6193500

Voorhees, E.M.: The efficiency of inverted index and cluster searches. In: SIGIR’86,
Proceedings of the 9th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Pisa, Italy, September 8-10, 1986. pp.
164-174 (1986), https://doi.org/10.1145/253168.253203

Yu, W., Sun, N.: Establishment and analysis of the supernetwork model for nan-
jing metro transportation system. Complexity 2018, 4860531:1-4860531:11 (2018),
https://doi.org/10.1155/2018 /4860531

Zobel, J., Moffat, A., Ramamohanarao, K.: Inverted files versus signature files for
text indexing. ACM Trans. Database Syst. 23(4), 453-490 (1998), http://doi.acm.
org/10.1145/296854.277632


https://doi.org/10.1515/comp-2019-0006
https://doi.org/10.1145/2506583.2506635
https://doi.org/10.1007/978-3-642-13489-0_18
http://ceur-ws.org/Vol-538/ldow2009_paper16.pdf
https://doi.org/10.1371/journal.pcbi.1000385
https://doi.org/10.1016/j.jcta.2006.11.006
http://arxiv.org/abs/1712.08189
http://arxiv.org/abs/1712.08189
https://doi.org/10.1109/INFCOMW.2012.6193500
https://doi.org/10.1109/INFCOMW.2012.6193500
https://doi.org/10.1145/253168.253203
https://doi.org/10.1155/2018/4860531
http://doi.acm.org/10.1145/296854.277632
http://doi.acm.org/10.1145/296854.277632

	Characterizing the Hypergraph-of-Entity Representation Model

