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Abstract
The hypergraph-of-entity is a joint representation model for terms, entities and
their relations, used as an indexing approach in entity-oriented search. In this
work, we characterize the structure of the hypergraph, from a microscopic and
macroscopic scale, as well as over time with an increasing number of documents.
We use a random walk based approach to estimate shortest distances and node
sampling to estimate clustering coefficients. We also propose the calculation of a
general mixed hypergraph density measure based on the corresponding bipartite
mixed graph. We analyze these statistics for the hypergraph-of-entity, finding
that hyperedge-based node degrees are distributed as a power law, while
node-based node degrees and hyperedge cardinalities are log-normally distributed.
We also find that most statistics tend to converge after an initial period of
accentuated growth in the number of documents. We then repeat the analysis
over three extensions — materialized through synonym, context, and tf_bin
hyperedges — in order to assess their structural impact in the hypergraph.
Finally, we focus on the application-specific aspects of the hypergraph-of-entity,
in the domain of information retrieval. We analyze the correlation between the
retrieval effectiveness and the structural features of the representation model,
proposing ranking and anomaly indicators, as useful guides for modifying or
extending the hypergraph-of-entity.

Keywords: Hypergraph-of-entity; Hypergraph analysis; Information retrieval;
Indexing; Combined data; Representation model; Characterization

1 Introduction
Complex networks have frequently been studied as graphs, but only recently has
attention been given to the study of complex networks as hypergraphs [1]. The
hypergraph-of-entity [2] is a hypergraph-based model used to represent combined
data [3, §2.1.3]. That is, it is a joint representation of corpora and knowledge bases,
integrating terms, entities and their relations. It attempts to solve, by design, the
issues of representing combined data through inverted indexes and quad indexes.
The hypergraph-of-entity, together with its random walk score [2, §4.2.2], is also an
attempt to generalize several tasks of entity-oriented search. This includes ad hoc
document retrieval and ad hoc entity retrieval, as well as the recommendation-alike
tasks of related entity finding and entity list completion. However, there is a tradeoff.
On one side, the random walk score acts as a general ranking function. On the other
side, it performs below traditional baselines like TF-IDF (term frequency × inverted
document frequency). Since ranking is particularly dependent on the structure of
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the hypergraph, a characterization is a fundamental step towards improving the
representation model and, with it, the retrieval performance.
Accordingly, our focus was on studying the structural features of the hypergraph.

This is a task that presents some challenges, both from a practical sense and from a
theoretical perspective. While there are many tools [4, 5] and formats [6, 7] for the
analysis and transfer of graphs, hypergraphs still lack clear frameworks to perform
these functions, making their analysis less trivial. Even formats like GraphML [7]
only support undirected hypergraphs. Furthermore, there is still an ongoing study
of several aspects of hypergraphs, some of which are trivial in graph theory. For ex-
ample, the adjacency matrix is a well-established representation of a graph, however
recent work is still focusing on defining an adjacency tensor for representing general
hypergraphs [8]. As a scientific community, we have been analyzing graphs since
1735 and, even now, innovative ideas in graph theory are still being researched [9].
However, the concept of hypergraph is much younger, dating from 1970 [10], and
thus there are still many open challenges and contribution opportunities.
In this work, which is an extended version of our previous characterization

work [11], we take a practical application of hypergraphs in the domain of infor-
mation retrieval, the hypergraph-of-entity, as an opportunity to establish a basic
framework for the analysis of hypergraphs. We expand on our previous work by
analyzing the impact of two extensions (synonymy, and contextual similarity), that
had previously been defined for this representation model [2], and we also introduce
and characterize a new extension, based on the idea of segmenting the document
into different sets of terms according to discretizations of term frequency (TF-bins,
or term frequency bins). The main contributions of this work are the following:
• Analysis of multiple versions of real-world hypergraph data structures being

developed for information retrieval;
• Proposal of a practical analysis framework for hypergraphs;
• Proposal of estimation approaches for the computation of shortest paths and

clustering coefficients in hypergraphs;
• Proposal of a computation approach for the density of general mixed hyper-

graphs based on a corresponding bipartite graph representation;
• Example of an application in the context of information retrieval, where struc-

tural features were measured over different hypergraph-based models and pre-
sented in context with the performance of each model.

The remainder of this document is organized as follows. In Section 2, we begin by
providing an overview on the analysis of the inverted index, knowledge bases and
hypergraphs, covering the three main aspects of the hypergraph-of-entity. In Sec-
tion 3.2, we describe our characterization approach, covering shortest distance esti-
mation with random walks and clustering coefficient estimation with node sampling,
as well as proposing a general mixed hypergraph density formula by establishing
a parallel with the corresponding bipartite mixed graph. In Section 5, we present
the results of a characterization experiment of the hypergraph-of-entity for a sub-
set of the INEX (INitiative for the Evaluation of XML Retrieval) 2009 Wikipedia
collection and, in Section 6, we explore the effect of including synonyms, contex-
tual similarity, or TF-bins in the structure of the hypergraph. In Section 7, we
assess the retrieval effectiveness of the representation model, analyzing the correla-
tions between the evaluation metrics and the structural features (Section 7.1), and
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proposing ranking and anomaly indicators based on our conclusions (Section 7.2).
Finally, in Section 8, we close with the conclusions and future work.

2 Reference work
The hypergraph-of-entity is a representation model for indexing combined data,
jointly modeling unstructured textual data from corpora and structured intercon-
nected data from knowledge bases. As such, before analyzing a hypergraph from
this model, we surveyed existing literature on inverted index analysis, as well as
knowledge base analysis. We then surveyed literature specifically on the analysis of
hypergraphs, particularly focusing on statistics like clustering coefficient, shortest
path lengths and density.

2.1 Analyzing inverted indexes
There are several models based on the inverted index that combine documents
and entities [12, 13] and that are comparable with the hypergraph-of-entity. There
has also been work that analyzed the inverted index, particularly regarding query
evaluation speed and space requirements [14, 15].
Voorhees [14] compared the efficiency of the inverted index with the top-down

cluster search. She analyzed the storage requirements of four test collections, mea-
suring the total number of documents and terms, as well as the average number
of terms per document. She then analyzed the disk usage per collection, measur-
ing the number of bytes for document vectors and the inverted index. Finally, she
measured CPU time in number of instructions and the I/O time in number of data
pages accessed at least once, also including the query time in seconds.
Zobel et al. [15] took a similar approach to compare the inverted index and signa-

ture files. First, they characterized two test collections, measuring size in megabytes,
number of records and distinct words, as well as the record length, and the number
of words, distinct words and distinct words without common terms per record. They
also analyzed disk space, memory requirements, ease of index construction, ease of
update, scalability and extensibility.
For the hypergraph-of-entity characterization, we do not focus on measuring effi-

ciency, but rather on studying the structure and size of the hypergraph.

2.2 Analyzing knowledge bases
Studies have been made to characterize the entities and triples in knowledge bases.
In particular, given the graph structure of RDF (resource description framework),
we are interested in understanding which statistics are relevant for instance to
discriminate between the typed nodes.
Halpin [16] took advantage of Microsoft’s Live.com query log to reissue entity

and concept queries over their FALCON-S semantic web search engine. They then
studied the results, characterizing their source, triple structure, RDF and OWL
(web ontology language) classes and properties, and the power-law distributions of
the number of URIs, both returned as results and as part of the triples linking to
the results. They focused mostly on measuring the frequency of different elements
or aggregations (e.g., top-10 domain names for the URIs, most common data types,
top vocabulary URIs).
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Ge et al. [17] defined an object link graph based on the graph induced by the
RDF graph, based on paths linking objects (or entities), as long as they are either
direct or established through blank nodes. They then studied this graph for the
Falcons Crawl 2008 and 2009 datasets (FC08 and FC09), which included URLs from
domains like bio2rdf.org or dbpedia.org. They characterized the object link graph
based on density, using the average degree as an indicator, as well as connectivity,
analyzing the largest connected component and the diameter. They repeated the
study for characterizing the structural evolution of the object link graph, as well its
domain-specific structures (according to URL domains). Comparing two snapshots
of the same data enabled them to find evidence of the scale-free nature of the
network. While the graph almost doubled in size from FC08 to FC09, the average
degree remained the same and the diameter actually decreased.
Fernandez et al. [18] focused on studying the structural features of RDF data, iden-

tifying redundancy through common structural patterns, proposing several specific
metrics for RDF graphs. In particular, they proposed several subject and object de-
grees, accounting for the number of links from/to a given subject/object (outdegree
and indegree), the number of links from a 〈subject, predicate〉 (partial outdegree)
and to a 〈predicate, object〉 (partial indegree), the number of distinct predicates from
a subject (labeled outdegree) and to an object (labeled indegree), and the number
of objects linked from a subject through a single predicate (direct outdegree), as
well as the number of subjects linking to an object through a single predicate (di-
rect indegree). They also measured predicate degree, outdegree and indegree. They
proposed common ratios to account for shared structural roles of subjects, predi-
cates and objects (e.g., subject-object ratio). Global metrics were also defined for
measuring the maximum and average outdegree of subject and object nodes for the
whole graph. Another analysis approach was focused on the predicate lists per sub-
ject, measuring the ratio of repeated lists and their degree, as well as the number
of lists per predicate. Finally, they also defined several statistics to measure typed
subjects and classes, based on the rdf:type predicate.
While we study a hypergraph that jointly represents terms, entities and their

relations, we focus on a similar characterization approach, that is more based on
structure and less based on measuring performance.

2.3 Analyzing hypergraphs
Hypergraphs [10] have been around since 1970. While this concept was introduced
by Claude Berge on this year, there had been other contributions surrounding the
topic, namely in extremal graph and set theory. Post-1970, the work by Erdös [19]
and Brown et al. [20] illustrates the intersection between extremal graph theory and
hypergraph theory, while, pre-1970, we can also find contributions like Sperner’s
theorem [21], in extremal set theory, or the Turán number [22, 23], in extremal
graph theory. Interestingly, hypergraphs have remained somewhat fringe in network
science, perhaps due to Paul Erdös resistance to the concept [10]:

At the Balatonfüred Conference (1969), P. Erdös and A. Hajnal asked us why
we would use hypergraphs for problems that can be also formulated in terms of
graphs. The answer is that by using hypergraphs, one deals with generalizations
of familiar concepts. Thus, hypergraphs can be used to simplify as well as to
generalize.

http://bio2rdf.org
http://dbpedia.org
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Although Erdös himself, who was interested in exploring the representation of
graphs using set intersections [24], also studied hypergraph problems, he avoided
this designation, only sparsely using it [20]:

By an r-graph we mean a fixed set of vertices together with a class of unordered
subsets of this fixed set, each subset containing exactly r elements and called
an r-tuple. In the language of Berge [10] this is a simple uniform hypergraph
of rank r.

Hypergraphs are data structures that can capture higher-order relations. As such,
they either present conceptually different or multiple counterparts to the equivalent
graph statistics. Take for instance the node degree. While graphs only have a node
degree, indegree and outdegree, hypergraphs can also have a hyperedge degree,
which is the number of nodes in a hyperedge [25]. The hyperedge degree also exists
for directed hyperedges, in the form of a tail degree and a head degree[1]. The tail
degree is based on the cardinality of the source node set and the head degree is based
on the cardinality of the target node set. In this work we will rely on the degree,
clustering coefficient, average path length, diameter and density to characterize the
hypergraph-of-entity.
Building on the work by Gallo et al. [26], who extended Dijkstra’s algorithm to

hypergraphs, and the work by Ausiello et al. [27], who tackled the same problem
using a dynamic approach, Gao et al. [28] have also proposed two algorithms for
computing shortest paths in hypergraphs. The first, HyperEdge-based Dynamic
Shortest Path (HE-DSP), like Gallo et al., proposed an extension to Dijkstra’s
algorithm. The second, Dimension Reduction Dynamic Shortest Path (DR-DSP),
relied on an induced graph with the same vertex set, adding weighted edges when a
hyperedge containing the two vertices exists in the corresponding hypergraph, while
selecting the minimum weight over all available hyperedges for the pair of vertices.
In this work, we focus on approximated computation approaches, which are use-

ful for large-scale hypergraphs. Ribeiro et al. [29] proposed the use of multiple
random walks to find shortest paths in power law networks. They found that ran-
dom walks had the ability to observe a large fraction of the network and that two
random walks, starting from different nodes, would intersect with a high proba-
bility. Glabowski et al. [30] contributed with a shortest path computation solution
based on ant colony optimization, clearly structuring it as pseudocode, while pro-
viding several configuration options. Parameters included the number of ants, the
influence of pheromones and other data in determining the next step, the speed
of evaporation of the pheromones, the initial, minimum and maximum pheromone
levels, the initial vertex and an optional end vertex. Li [31] studied the computa-
tion of shortest paths in electric networks based on random walk models and ant
colony optimization, proposing a current reinforced random walk model inspired
by the previous two. In this work, we also use a random walk based approach to
approximate shortest paths and estimate the average path length and diameter of
the graph.
Gallagher and Goldberg [32, Eq.4] provide a comprehensive review on clustering

coefficients for hypergraphs. The proposed approach for computing the clustering
[1]Tail and head is used in analogy to an arrow, not a list.
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coefficient in hypergraphs accounted for a pair of nodes, instead of a single node,
which is more frequent in graphs. Based on these two-node clustering coefficients,
the node cluster coefficient was then calculated. Two-node clustering coefficients
measured the fraction of common hyperedges between two nodes, through the in-
tersection of the incident hyperedge sets for the two nodes. It then provided differ-
ent kinds of normalization approaches, either based on the union, the maximum or
minimum cardinality, or the square root of the product of the cardinalities of the
hyperedge sets. The clustering coefficient for a node was then computed based on
the average two-node clustering coefficient for the node and its neighbors.
The codegree Turán density [33] γ(F) can be computed for a family F of k-uniform

hypergraphs, also known as k-graphs. It is calculated based on the codegree Turán
number co-ex(n,F) — the extremal number based on the codegree in a hypergraph,
instead of the degree in a graph — which takes as parameters the number of nodes
n and the family F of k-graphs. In turn, the codegree Turán number is calculated
based on the minimum number of nodes, taken from all sets of r−1 vertices of each
hypergraph Hn that, when united with an additional vertex, will form a hyperedge
from H. The codegree density for a family F of hypergraphs is then computed based
on lim supn→∞

co-ex(n,F)
n . Since this was the only concept of density we found as-

sociated with hypergraphs or, more specifically, a family of k-uniform hypergraphs,
we opted to propose our own density formulation (Section 3.2). Furthermore, the
hypergraph-of-entity is a single general mixed hypergraph. In other words, it is
not a family of hypergraphs, it contains hyperedges of multiple degrees (it’s not
k-uniform, but general) and it contains undirected and directed hyperedges (it’s
mixed). Accordingly, we propose a density calculation based on the counterpart bi-
partite graph of the hypergraph, where hyperedges are translated to bridge nodes.

3 Methodology
In this section, we introduce general concepts and definitions, formally provid-
ing mathematical support for this analysis. Next, we present the characterization
methodology and propose approaches to estimate shortest distances, clustering coef-
ficients and density. Finally, we describe the methodology for a practical application
of this analysis framework in the domain of information retrieval.

3.1 General concepts and definitions
We provide a mathematical framework, where we formalize several concepts and
definitions, including relevant classes of hypergraphs, as well as useful properties
and statistics, that we rely upon across this manuscript.

3.1.1 Classes of hypergraphs
In this section we formally define hypergraph, distinguishing between undirected,
directed and mixed, as well as uniform and general.

Definition 3.1 (Hypergraph) Let v be a vertex and V be a set of vertices such
that v ∈ V , with n = |V | being the number of vertices. Let E = EU ∪ED be the set
of all hyperedges, where EU represents the subset of undirected hyperedges eU ∈ EU

and ED the subset of directed hyperedges eD ∈ ED, with m = |EU | + |ED| = |E|
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being the total number of hyperedges. Let also a set eU ⊆ V be an undirected
hyperedge and a tuple of sets eD = (t, h) be a directed hyperedge formed by a tail
set t ⊆ V (source) and a head set h ⊆ V (target). A hypergraph is then a tuple
H = (V,E).

Definition 3.2 (Hypergraph direction) Under this notation, a hypergraph
H = (V,E) is said to be:

• Undirected, when E = EU or, equivalently, ED = ∅;
• Directed, when E = ED or, equivalently, EU = ∅;
• Mixed, when EU 6= ∅ ∧ ED 6= ∅.

Definition 3.3 (Hypergraph uniformity) A uniform or k-uniform hypergraph is
characterized by all of its hyperedges being defined over the same number k of
vertices. For an undirected hyperedge eU it means |eU | = k, while for a directed
hyperedge eD = (t, h) it means |t|+ |h| = k.

On the other hand, a non-uniform hypergraph is said to be a general hypergraph,
which contains hyperedges of diverse cardinalities.

* Please refer to Banerjee and Char [34] for more information on directed uniform hypergraphs.

Definition 3.4 (Hyperedge incidence) Let v ∈ V have the following sets of inci-
dent hyperedges:

• Ev = EUv
∪EDv

as the set of all incident hyperedges to v, ignoring direction;
• E−v = EUv

∪ E−Dv
as the set of all incoming hyperedges to v;

• E+
v = EUv

∪ E+
Dv

as the set of all outgoing hyperedges from v.

3.1.2 Hypergraph statistics
In this section, we formally describe the hypergraph statistics that we rely upon for
our analysis framework. In particular we describe the different degrees that can be
computed for a vertex, the cardinalities of hyperedges, the diameter and average
shortest path length, the clustering coefficient, and the density.

Definition 3.5 (Vertex-based vertex degree) Let dv(v) be the degree of a vertex
measured based on the number of adjacent vertices.

Vertex-based degree (ignoring direction) is given by:

dv(v) =
∑

eU∈EUv
|eU |+

∑
(t,h)∈EDv

(|t|+ |h|)

Vertex-based indegree is given by:

d−v (v) =
∑

eU∈EUv
|eU |+

∑
(t,h)∈E−

Dv

|t|

And vertex-based outdegree is given by:

d+v (v) =
∑

eU∈EUv
|eU |+

∑
(t,h)∈E+

Dv

|h|

Definition 3.6 (Hyperedge-based vertex degree) Let dh(v) be the degree of a
vertex measured based on the number of incident hyperedges.
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Hyperedge-based degree (ignoring direction) is given by:

dh(v) = |Ev|

Hyperedge-based indegree is given by:

d−h (v) = |E−v |

And hyperedge-based outdegree is given by:

d+h (v) = |E+
v |

Definition 3.7 (Hyperedge cardinality) Let c(e) be the cardinality of a hyper-
edge measured based on the number of nodes it contains. Let eU be an undirected
hyperedge and eD = (t, h) be a directed hyperedge.

Undirected hyperedge cardinality is given by:

c(eU ) = |eU |

Directed hyperedge cardinality is given by:

c(eD) = |t|+ |h|

In order to index hyperedges based on their number of nodes, we also use the
notation Ea

U to represent sets of undirected hyperedges of cardinality a = |eU |, as
well as Ea,b

D to represent sets of directed hyperedges with a tail of size a = |t| and
a head of size b = |h|.

Definition 3.8 (Diameter / avg. short. path len.) Let L be the set of shortest
path lengths between all pairs of connected nodes. Let `u,v ∈ L be the length of the
shortest path between nodes u and v from the vertex set V . For eUi , eUj ∈ EU and
eDi

, eDj
∈ ED, we define L as follows:

L =
{
`u,v : u ∈ eUi

∧ v ∈ eUj
∨ u ∈ t ∧ (t, ·) ∈ eDi

∧ v ∈ h ∧ (·, h) ∈ eDj

}
The diameter is then given by:

maxL

And the average shortest path length is given by:
1

|L|
∑

`i,j∈L

`i,j .

Definition 3.9 (Clustering coefficient) The clustering coefficient measures the
degree to which nodes tend to agglomerate in dense groups. We compute this metric
based on the following approach by Gallagher and Goldberg [32]. Let Ev = EUv ∪
EDv

be the set of incident hyperedges to v, ignoring direction. Let N(v) be the set
of all vertices adjacent to v (i.e., sharing a hyperedge, while ignoring direction).

The clustering coefficient cc(u, v) for a pair of nodes u and v is given by:

cc(u, v) =
|Eu ∩ Ev|
|Eu ∪ Ev|

The clustering coefficient cc(v) for a single node v is given by:
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cc(v) =
1

|N(v)|
∑

u∈N(v)

cc(u, v)

And the clustering coefficient cc(H) for the hypergraph is given by:

cc(H) =
1

|V |
∑
v∈V

cc(v)

Definition 3.10 (Density) We transform a hypergraph H = (V,E) into its cor-
responding bipartite graph GH = (V, E), using the density of GH as an indicator of
density for H.

The vertices V of GH are based on the vertices V and hyperedges E from H and
are given by:

V = V ∪ {ve : e ∈ E}

The edges E = EU∪ED of GH are established based on all pairs of vertices connected
by a hyperedge E = EU ∪ ED from H.

The undirected edges EU of GH are given by:

EU = {(u, ve), (ve, w) : e ∈ EU ∧ u ∈ e ∧ w ∈ e}

And the directed edges ED of GH are given by:

ED = {(u, ve), (ve, w) : e = (t, h) ∈ ED ∧ u ∈ t ∧ w ∈ h}

Density D(H), or simply D, is then given by:

D = D(GH) =
2|EU |+ |ED|
2|V| (|V| − 1)

3.2 Hypergraph characterization approach
Graphs can be characterized at a microscopic, mesoscopic and macroscopic scale.
The microscopic analysis is concerned with statistics at the node-level, such as the
degree or clustering coefficient. The mesoscopic analysis is concerned with statis-
tics and patterns at the subgraph-level, such as communities, network motifs or
graphlets. The macroscopic analysis is concerned with statistics at the graph-level,
such as average clustering coefficient or diameter. In this work, our analysis of the
hypergraph is focused on the microscopic and macroscopic scales. We compute sev-
eral statistics for the whole hypergraph, as well as for snapshot hypergraphs that
depict growth over time. Some of these statistics are new to hypergraphs, when
compared to traditional graphs. For instance, nodes in directed graphs have an
indegree and an outdegree. However, nodes in directed hypergraphs have four de-
grees, based on incoming and outgoing nodes, as well as on incoming and outgoing
hyperedges. While in graphs all edges are binary, leading to only one other node,
in hypergraphs hyperedges are n-ary, leading to multiple nodes, and thus different
degree statistics. While some authors use ‘degree’ to refer to node and hyperedge
degrees [35, §4][25, §Network Statistics in Hypergraphs], in this work we opted to
use the ‘degree’ designation when referring to nodes and the ‘cardinality’ desig-
nation when referring to hyperedges. This is to avoid any confusion for instance
between an “hyperedge-induced” node degree and a hyperedge cardinality.



Devezas and Nunes Page 10 of 39

We analyze the base model, as well as three models based on the synonyms,
contextual similarity and TF-bins extensions. For the full hypergraph of each of the
four models, we compute the following global statistics:

• Number of nodes, in total and per type;
• Number of hyperedges, in total, per direction, and per type;
• Average degree;
• Average clustering coefficient;
• Average path length;
• Diameter;
• Density.

We also plot the following distributions for the full hypergraph:

• Node degree distributions per node type:
– Node-based node degree;
– Hyperedge-based node degree.

• Hyperedge cardinality distributions per hyperedge type.

Then, we define a temporal analysis framework based on an increasing number of
documents (i.e., time passes as documents are added to the hypergraph-of-entity
index). We prepare several snapshots, with a different number of documents each,
for each of the four models. We then compute and plot the following statistics for
each snapshot, showing its evolution as the number of documents increases:

• Average node degree over time;
• Average hyperedge cardinality over time;
• Average diameter and average path length over time;
• Average clustering coefficient over time;
• Average density over time.
• Size over time:

– Number of nodes;
– Number of hyperedges;
– Space in disk;
– Space in memory.

Finally, we also measure the run time for several operations, in order to understand
the efficiency cost and the evolution of its behavior for an increasing number of
documents:

• Index creation time;
• Global statistics computation time;
• Node degrees computation time;
• Hyperedge cardinalities computation time.

In order to support large-scale hypergraphs, we compute the average path length,
diameter, clustering coefficient, and density using approximated strategies. We es-
timate shortest distances based on random walks, the clustering coefficient based
on node sampling, and the density based on a bipartite graph induced from the hy-
pergraph, although without the need to explicitly create this graph. The following
sections will detail these approaches.
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3.2.1 Estimating shortest distances with random walks
Ribeiro et al. [29] found that, in power law networks, there is a high probability
that two random walk paths, usually starting from different nodes, will intersect
and share a small fraction of nodes. We took advantage of this conclusion, adapting
it to a hypergraph, in order to compute a sample of shortest paths and their length,
used to estimate the average path length and diameter. We considered two (ordered)
sets S1 ⊂ V and S2 ⊂ V of nodes sampled uniformly at random, each of size
s = |S1| = |S2|. We then launched r random walks of length ` from each pair
of nodes Si

1 and Si
2. For a given pair of random walk paths, we iterated over the

nodes in the path starting from Si
1, until we found a node in common with the path

starting from Si
2. At that point, we merged the two paths based on the common

node, discarding the suffix of the first path and the prefix of the second path. We
computed the length of these paths, keeping only the minimum length over the r
repeats. As the number of iterations r increased, we progressively approximated
the shortest path for the pair of nodes. Despite the inherent estimation error, this
method can be used to study even large-scale hypergraphs — precision can be
controlled by tuning the number of sampled nodes and random walks, which will
eventually lead to convergence for large values. This approach enabled us to generate
a sample of approximated shortest path lengths, which could be used to compute
the estimated diameter (its maximum) and the estimated average path length (its
mean), in a scenario where high precision is not critical. This is true for instance for
a quick or initial analysis of a hypergraph. Given the repeated research iterations
over the hypergraph-of-entity and the multitude of tests carried over this model, a
quick estimation approach is ideal.

3.2.2 Estimating clustering coefficients with node sampling
In a graph, the clustering coefficient is usually computed for a single node and
averaged over the whole graph. As shown by Gallagher and Goldberg [32, §I.A.], in
hypergraphs the clustering coefficient is computed, at the most atomic level, for a
pair of nodes. The clustering coefficient for a node is then computed based on the
averaged two-node clustering coefficients between the node and each of its neighbors
(cf. Gallagher and Goldberg [32, Eq.4]). Three options were provided for calculating
the two-node clustering coefficient, one of them based on the Jaccard index between
the neighboring hyperedges of each node [32, Eq.1], which we use in this work.
While a global understanding of the clustering coefficient is useful for characterizing
overall local connectivity in the hypergraph, the existence of a random hypergraph
generation model, like the Watts–Strogatz model [36] for graphs, would provide
further interpretations at a mesoscale. We leave this open and instead focus on the
macroscale.
Continuing with the philosophy of large-scale hypergraph support in our analysis

framework, as opposed to computing the clustering coefficient for all nodes, we esti-
mated the clustering coefficients for a smaller sample S ⊆ V of nodes. Furthermore,
for each sampled node si ∈ S, we also sampled its neighbors NS(si) for computing
the two-node clustering coefficients. We then applied the described equations to
obtain the clustering coefficients for each node si and a global clustering coefficient
based on the overall average. For S = V ∧NS(si) = N(si), being NS the sampled
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neighbors and N the full set of neighbors, we would obtain the exact clustering
coefficient. Again, this approach offers two parameters that can be controlled as a
tradeoff between between efficiency and effectiveness.

3.2.3 Computing the density of general mixed hypergraphs
A general mixed hypergraph is general (or non-uniform) in the sense that its hyper-
edges can contain an arbitrary number of vertices, and it is mixed in the sense that
it can contain hyperedges that are either undirected and directed. We compute a
hypergraph’s density by analogy with its corresponding bipartite graph, which con-
tains all nodes from the hypergraph, along with connector nodes representing the
hyperedges.
Consider the hypergraph H = (V,E), with n = |V | nodes and m = |E| hyper-

edges. Also consider the set of all undirected hyperedges EU and directed hyperedges
ED, where E = EU ∪ED. Their subsets Ek

U and Ek1,k2

D should also be respectively
considered, where Ek

U is the subset of undirected hyperedges with k nodes and
Ek1,k2

D is the subset of directed hyperedges with k1 tail (source) nodes, k2 head
(target) nodes and k = k1 + k2 nodes, assuming the hypergraph only contains di-
rected hyperedges between disjoint tail and head sets. This means that the union of
EU = E1

U ∪E2
U ∪E3

U ∪ . . . and ED = E1,1
D ∪E

1,2
D ∪E

2,1
D ∪E

2,2
D ∪ . . . forms the set of all

hyperedges E. We use it as a way to distinguish between hyperedges with different
degrees. This is important because, depending on the degree k, the hyperedge will
contribute differently to the density, when considering the corresponding bipartite
graph. For instance, one undirected hyperedge with degree k = 4 will contribute
with four edges to the density. Accordingly, we derive the density of a general mixed
hypergraph as shown in Equation 1.

D =
2
∑

k k|Ek
U |+

∑
k1,k2

(k1 + k2)|Ek1,k2

D |
2(n+m)(n+m− 1)

(1)

In practice, this is nothing more than a comprehensive combination of the density
formulas for undirected and directed graphs. On one side, we consider the density of
a mixed graph that should result of the combination of an undirected simple graph
and a directed simple graph. That is, each pair of nodes can be connected, at most,
by an undirected edge and two directed edges of opposing directions. On the other
side, we use hypergraph notation to directly obtain the required statistics from the
corresponding mixed bipartite graph, thus calculating the analogous density for a
hypergraph.

3.3 Contextualizing through a practical application
In order to study the usefulness of the analysis framework that we propose, we
explore it in the context of an information retrieval application. In particular, our
use case is based on ad hoc document retrieval (leveraging entities). For this retrieval
task, given a keyword query, the goal is to retrieve and rank the documents that
best answer the information need of the user. As an entity-oriented search task,
the approach must take into account entities, mentioned in documents, and their
relations to improve retrieval performance. Evaluation is then done based on a
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set of topics (whose title is usually used as the keyword query), along with a set of
relevance judgments, containing relevance grades assigned by the judges on multiple
retrieved documents.
In this experiment, we attempt to identify individual properties of the hypergraph

that correlate with the retrieval performance scores that we compute. We identify
indicator properties that help us rank our models by effectiveness, as well as identify
models that might be low performers. Although this is also a contribution of this
work, we consider it to be secondary, compared to the analysis framework that we
propose.

4 Data modeling
In this section, we begin by presenting the test collection that we use to build
several hypergraphs based on the hypergraph-of-entity model. Then, we provide an
overview of the hypergraph-of-entity, describing the construction approach of the
hypergraphs that we study, and a description of the random walk score. Finally, we
present the motivation to characterize this unified model for entity-oriented search.

4.1 INEX 2009 Wikipedia collection
In this work, we characterize hypergraphs built based on different versions of the
hypergraph-of-entity model, relying upon the INEX 2009 Wikipedia collection [37].
We also explore an application in the domain of information retrieval, where as-
sessment is dependent on the topics and relevance judgments from the INEX 2010
Ad Hoc track. In this section, we describe this test collection, including the main
dataset and the subset prepared for the analysis and information retrieval applica-
tion, as well as the associated topics and relevance judgments, also known as qrels
(query relevance set).

Main dataset The INEX 2009 Wikipedia collection[2] is an XML version of articles
from the English Wikipedia, based on the dump from October 8, 2008, and incor-
porating semantic annotations from the 2008-w40-2 version of YAGO (Yet Another
Great Ontology)[3]. Like DBpedia[4], YAGO is a semantic knowledge base, con-
taining structured data from Wikipedia, WordNet and GeoNames. The INEX 2009
Wikipedia collection is provided in multiple tar.bz2 archives that contain nearly
2.7 million articles, requiring 50.7 GB of disk space when uncompressed and only
5.5 GB when compressed, and it relies on over 5,800 classes from YAGO, including
people, movies, and cites. Each XML document also contains links to other articles,
corresponding to the hyperlinks found in the Wikipedia dump. In total, there are
nearly 102 million XML elements in the collection. In order to build the hypergraph,
we rely on the text nodes of the <bdy> element, as well as on the <link> elements to
create semantic triples that capture the different entity names based on mentions.
The structure of the hypergraph will be further detailed in Section 4.2. For our
application to information retrieval (Section 7), we also rely on the qrels for the
INEX 2010 Ad Hoc track[5], in a study to determine possible correlations between
[2]https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/software/inex/
[3]https://yago-knowledge.org/
[4]https://wiki.dbpedia.org/
[5]https://inex.mmci.uni-saarland.de/data/documentcollection.html

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/software/inex/
https://yago-knowledge.org/
https://wiki.dbpedia.org/
https://inex.mmci.uni-saarland.de/data/documentcollection.html
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Table 1: Hypergraph-of-entity nodes and hyperedges for the base model and the
extensions.

Type Description Observation

Nodes

term Represents a single word
from the original docu-
ment.

In this work, the preprocessing pipeline includes: sentence seg-
mentation; lower case filtering; replacement of URL, time,
money and number expressions with a common placeholder,
each; stemming via porter stemmer.

entity Represents an entity
from the list of ex-
tracted entities and/or
provided triples.

For the INEX collection, each mention to an entity is modeled
through this type of node (we consider disambiguation to be a
part of the ranking).

Hyperedges (Base Model)

document Represents a document
through the set of all its
terms and entities.

Undirected hyperedge.

related_to Represents a semantic
relation between multi-
ple entities.

Undirected hyperedge. In this implementation, the relation is
derived from all triples in the collection, by grouping by subject.

contained_in Represents a relation
between a set of terms
and an entity.

Directed hyperedge. In this implementation, this relation exists
between terms that are a part of an entity name or mention and
the corresponding entity node.

Hyperedges (Extensions)

synonym Represents a relation of
synonymy between a set
of terms.

Undirected hyperedge. Present in the Synonyms model. The first
synset fromWordNet 3.0 is obtained for each noun term, missing
terms are added to the model and the hyperedge is created.

context Represents a relation of
contextual similarity be-
tween a set of terms.

Undirected hyperedge. Present in the Contextual similarity
model. This is computed based on the top similar terms ac-
cording to word2vec embeddings.

tf_bin Represents a sets of
terms within the same
term frequency interval,
for a given document.

Undirected hyperedge. Present in the TF-bins model. The num-
ber of TF-bins per document is a parameter that can be set
during indexing.

the effectiveness of ad hoc document retrieval (leveraging entities) and the proper-
ties of the hypergraphs. Provided relevance grades are binary (0 for irrelevant and
1 for relevant).

INEX 2009 10T-NL subset Due to the space and time complexity of the hyper-
graph-of-entity, we prepared a smaller subset of the INEX 2009Wikipedia collection,
that we could use to circumvent performance issues. In fact, characterizing the cor-
responding hypergraph-of-entity for a smaller subset will enable us to identify weak-
nesses in our model that could help us improve the scalability or retrieval effective-
ness of future versions. The subset was created based on a random sample of 10 top-
ics (‘10T’). In particular, the following topics were considered: 2010003, 2010014,
2010023, 2010032, 2010038, 2010040, 2010049, 2010057, 2010079, 2010096. We
then included only documents mentioned in the relevance judgments for the se-
lected topics, optionally considering linked documents (in this case, we did not
include linked documents — accordingly, ‘NL’ stands for “no linked”).

4.2 Hypergraph-of-entity representation and retrieval model
The hypergraph-of-entity [2] is a unified model for entity-oriented search. It provides
a joint representation for corpora and knowledge bases, through a general mixed
hypergraph, containing the types of nodes and hyperedges described in Table 1.
Ranked retrieval then relies on a universal ranking function, called the random
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walk score, that supports multiple entity-oriented search tasks, by simply controlling
the input (e.g., keyword or entity query) and output (e.g., documents or entities):
ad hoc document retrieval (leveraging entities), ad hoc entity retrieval, and entity
list completion.

4.2.1 Representation model
In this work, we explore multiple hypergraph-of-entity versions of the representation
model, including:
• Base model, with term and entity nodes, and document, related_to and con-
tained_in hyperedges;

• Synonyms model, extending the base model with synonym hyperedges;
• Contextual similarity model, extending the base model with context hyper-

edges;
• TF-bins models, extending the base model with tf_bin hyperedges, according

to the selected number of bins (we experiment with 2 to 10 TF-bins).
Each of the analyzed hypergraphs is built by indexing the INEX 2009 Wikipedia

collection, based on the text in the <bdy> element and semantic triples formed from
<link> elements, where the subject is the entity described by the current article and
the object is the entity described by the linked article. No predicates are considered,
as these are not a part of the model.
Synonyms are context-based. Our goal is for disambiguation of context to happen

naturally through the additional information provided by terms and entities grouped
through document hyperedges, as well as from the related_to hyperedges between
entities. A given synonym will be more frequently visited by a random walk, when
a higher number of paths from the query nodes (which establish context) also lead
the walker there.
Contextual similarity is defined for terms that are frequently surrounded by similar

sequences of terms, i.e., that are used in a similar context. In order to establish a
relation of contextual similarity, we rely on word2vec [38] to obtain a distributed
representation of words (i.e., a word embedding — a vector of latent features that
semantically represents a word). After obtaining the word embeddings, we simply
use a k-nearest neighbors approach to find the k most similar words based on cosine
similarity, ensuring a similarity above 0.5. The original term, as well as the k-nearest
neighbors are then grouped in a context hyperedge.
Term frequency bins (or TF-bins) are computed as follows. For each document,

we calculate the term frequency and, for a given number of bins n, we compute the
percentiles Pn = {100 x

n | x ∈ Z+ ∧ x ≤ n}, assigning them the weight w(x) = x
n .

So, for example, if we consider n = 4 bins, then we compute the percentiles P4 =

{25, 50, 75, 100}, resulting in four values of TF (term frequency). Let us for instance
consider the following term frequency for 10 documents: 1, 1, 1, 1, 2, 2, 2, 2, 2, 3. This
would result in the value 1 for the 25 percentile, 2 for the 50 and 75 percentiles,
and 3 for the 100 percentile. We would then form the TF intervals ]0, 1], ]1, 2],
]2, 2] and ]2, 3], with the interval ]2, 2] having no matches in Z+, thus making it
redundant. Per document, and for each non-empty interval, a weighted hyperedge
was then created to group terms with a similar term frequency (i.e., within the same
TF-bin). This can be used by the ranking function, to issue biased random walks,
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controlling the flow in a way that the walker will be driven towards documents with
a higher TF for the query terms.

4.2.2 Retrieval model
Ranked retrieval is done based on RWS (random walk score). A query can be formed
by any combination of the elements represented in the hypergraph, as can the results
that we score. Most commonly, we define the following three tasks:
• Ad hoc document retrieval, which takes a keyword query as input (mapped to

a set of term nodes) and ranks a set of documents, through their hyperedges,
as output;

• Ad hoc entity retrieval, which also takes a keyword query as input, but instead
ranks a set of entities, through their nodes, as output;

• Entity list completion, which takes an entity query as input (mapped to a set
of entity nodes) and ranks a set of entities, through their nodes, as output.

In this work, however, we only explore the task of ad hoc document retrieval, to
illustrate an practical application of our hypergraph analysis framework. Regardless
of the retrieval task, the random walk score always runs over the whole hypergraph,
scoring each node and hyperedge, based on multiple random walks launched from a
set of seed nodes that are either a direct or an expanded representation of the query.
The random walk score RWS(`, r,∆nf ,∆ef , exp.) is a universal ranking function
where, for each seed node, r random walks of length ` are launched. Each node
and hyperedge has a zero score by default, storing the number of visits by random
walkers. This is then normalized between zero and one, by dividing by the overall
maximum number of visits. The probability resulting from the normalization is then
multiplied by the probability of the seed node being a good representative of the
query — this is given by the fraction of query nodes linked to the seed node (always
one for a direct representation of the query) and the total number of neighbors of the
seed node [2, §4.2]. The parameters ∆nf and ∆ef are not used in the experiments
we present here and thus are set to zero. The exp. parameter determines whether
we use a direct or an expanded query representation — we set it to false, thus
disabling expansion and using the existing nodes for the terms in the query as a the
seed nodes.

4.3 Why characterize the hypergraph-of-entity?
While the hypergraph-of-entity is able to serve as a unified framework for entity-
oriented search, it is still severely outperformed by baselines like Lucene TF-IDF
and BM25 (cf. Table 6). As such, we rely on hypergraph analysis to gain further
insights on the structure, and to identify possible changes that could lead to a more
effective and efficient model. Briefly, the reasons to characterize the hypergraph-of-
entity are the following:
• It supports decision making in the design iterations over the retrieval model;
• Statistics like the average path length will help us tune the random walk score

length parameter, and the clustering coefficient will help us understand how
many repeated random walks to issue;

• Understanding the evolution of the hypergraph, as the number of documents
increases, also gives us insights on how to measure the impact of the pruning
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Table 2: Global statistics for the base model.
Statistic Value

Nodes 607,213
term 323,672
entity 283,541

Statistic Value

Hyperedges 253,154
Undirected 14,938

document 7,484
related_to 7,454

Directed 238,216
contained_in 238,216

Statistic Value

Avg. Degree 0.8338
Avg. Clustering Coefficient 0.1148
Avg. Path Length 8.3667
Diameter 17
Density 3.88e-06

(a) Based on connected nodes. (b) Based on connected hyperedges.

Figure 1: Node degree distributions for the base model (log-log scale).

that we apply to the model (e.g., removing redundancies, or retaining only
document keywords).

5 Analyzing the hypergraph-of-entity base model
We indexed a subset of the INEX 2009 Wikipedia collection [37] given by the 7,487

documents appearing in the relevance judgments of 10 random topics. We then
computed global statistics (macroscale), local statistics (microscale) and temporal
statistics. Temporal statistics were based on an increasingly larger number of docu-
ments, by creating several snapshots of the index, through a ‘limit’ parameter, until
all documents were considered.

Global statistics In Table 2, we present several global statistics about the hyper-
graph-of-entity, in particular the number of nodes and hyperedges, discriminated by
type, the average degree, the average clustering coefficient, the average path length,
the diameter and the density. The average clustering coefficient was computed based
on a sample of 5,000 nodes and a sample of 100,000 neighbors for each of those nodes.
The average path length and the diameter were computed based on a sample of
shortest distances between 30 random pairs of nodes and the intersections of 1,000

random walks of length 1,000 launched from each element of the pair. Finally, the
density was computed based on Equation 1. As we can see, for the 7,487 documents
the hypergraph contains 607,213 nodes and 253,154 hyperedges of different types,
an average degree lower than one (0.83) and a low clustering coefficient (0.11).
It is also extremely sparse, with a density of 3.9e−06. Its diameter is 17 and its
average path length is 8.4, almost double when compared to a social network like
Facebook [39].

Local statistics Figure 1 illustrates the node degree distributions. In Figure 0a,
the node degree is based on the number of connected nodes, with the distribution
approximating a log-normal behavior. In Figure 0b, the node degree is based on the
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Figure 2: Hyperedge
cardinality distribu-
tion based on the
total number of nodes
for the base model
(log-log scale).

(a) Based on connected nodes. (b) Based on connected hyperedges.

Figure 3: Average node degree over time for the base model.

number of connected hyperedges, with the distribution approximating a power law.
This shows the usefulness of considering both of the node degrees in the hypergraph-
of-entity, as they are able to provide different information.
Figure 2 illustrates the hyperedge cardinality distribution. For document hyper-

edges, cardinality is log-normally distributed, while for related_to hyperedges the
behavior is slightly different, with low cardinalities having a higher frequency than
they would in a log-normal distribution. Finally, the cardinality distribution of con-
tained_in hyperedges, while still heavy-tailed, presents an initial linear behavior,
followed by a power law behavior. The maximum cardinality for this type of hyper-
edge is also 16, which is a lot lower when compared to document hyperedges and
related_to hyperedges, which have cardinality 8,167 and 3,084, respectively. This is
explained by the fact that contained_in hyperedges establish a directed connection
between a set of terms and an entity that contains those terms, being limited by
the maximum number of words in an entity.

Temporal statistics In order to compute temporal statistics, we first gener-
ated 14 snapshots of the index based on a limit L of documents, for L ∈
{1, 2, 3, 4, 5, 10, 25, 50, 100, 1000, 2000, 3000, 5000, 8000}. Each snapshot was built
based on the natural order of the documents found within the tar.bz2 archives,
up to a limit L, while the archives were accessed in directory order (i.e., the same
as ls -U in Linux). This perfectly mimicked index growth, as documents were in-
crementally preprocessed and added to the hypergraph-of-entity.
Figure 3 illustrates the node-based and hyperedge-based average node degrees

over time (represented as the number of documents in the index at a given instant).
As we can see, both functions tend to converge, however this is clearer for the node-
based degree, reaching nearly 4,000 nodes, through only 9 hyperedges, on average.
Figure 4 illustrates the average undirected hyperedge cardinality over time, with a
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Figure 4: Average hyperedge cardinal-
ity over time for the base model.

Figure 5: Average estimated diameter
and average shortest path over time for
the base model.

Figure 6: Average estimated clustering
coefficient over time for the base model.

Figure 7: Average density over time for
the base model.

convergence behavior that approximates 300 nodes per hyperedge, after rising to
an average of 411.88 nodes for L = 25 documents.
Figure 5 illustrates the evolution of the average path length and the diameter

of the hypergraph over time. For a single document, these values reached 126.1

and 491, respectively, while, for just two documents, they immediately lowered
to 3.8 and 10. For higher values of L, both statistics increased slightly, reaching
7.2 and 15 for the maximum number of documents. Notice that these last values
are equivalent to those computed in Table 2 (8.4 and 17, respectively), despite
resulting in different amounts. This is due to the precision errors in our estimation
approach, resulting in a difference of 1.2 and 2, respectively, which is tolerable when
computation resources are limited. In Figure 6, we illustrate the evolution of the
clustering coefficient, which rapidly decreases from 0.59 to 0.11. The low average
path length and clustering coefficient point towards a weak community structure,
possibly due to the coverage of diverse topics. However, we would require a random
hypergraph generation model, like the Watts–Strogatz model [36] for graphs, in
order to properly interpret the statistics.
Figure 7 illustrates the evolution of the density over time. The density is con-

sistently low, starting from 1.37e−03 and progressively decreasing to 3.91e−06 as
the number of documents increases. This shows that the hypergraph-of-entity is
an extremely sparse representation, with limited connectivity, which might benefit
precision in a retrieval task.
Figure 8 displays the number of nodes (8a) and hyperedges (8b) created over time,

as the index grew. Both presented a sub-linear growth behavior, reaching 4,566

nodes and 803 hyperedges for 10 documents, 238,141 nodes and 89,348 hyperedges
for 2,000 documents, and 607,213 nodes and 253,154 for the whole collection of
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(a) Nodes. (b) Hyperedges.

Figure 8: Number of nodes and hyperedges over time for the base model.

(a) Disk. (b) Memory.

Figure 9: Required space for storing and loading the base model over time.

7,487 documents. The ratio of hyperedges per node evolved from 0.18, to 0.38, to
0.42, always staying below one. This means that the number of hyperedges increased
slower than the number of nodes. Moreover, we know that nodes represent terms
and entities, which will eventually converge to a finite vocabulary, further decreasing
index growth rate.
As shown in Figure 9, we also measured the space usage of the hypergraph, both in

disk (9a) and in memory (9b). In disk, the smallest snapshot required 43.8 KiB for
one document, while the largest snapshot required 181.9 MiB for the whole subset.
Average disk space over all snapshots was 37.5 MiB ± 58.9 MiB. In memory, for
our particular application[6], the smallest snapshot used 1.0 GiB for one document,
including the overhead of the data structures, and the largest snapshot used 2.3 GiB
for the whole subset. Average memory space over all snapshots was 1.3 GiB ± 461.1

MiB. Memory also grew faster for the first 1,000 documents, apparently leading to
an expected convergence, although we could not observe it for such a small subset.
Finally, Figure 10 illustrates the base model run times of the following operations

for an increasing number of documents: index creation (10a); the computation of the
global statistics (10b), also shown in Table 2; the computation of all node degrees
(10c); and the computation of all hyperedge cardinalities (10d). As we can see,
the most significant increase in run time happens around 1,000 documents, with
the exception of the global statistics computation, which shows an increased run
time for the first added documents. A possible reason for this anomaly is that this
is the first analysis operation that we run after creating the index, which might
influence the caching mechanisms of the system, thus reducing run time after the
first documents and then resuming regular behavior. Indexing time took 1m09s for

[6]We relied on the Grph Java library, available at http://www.i3s.unice.fr/~hogie/software/

index.php?name=grph, to represent the hypergraph in memory.

http://www.i3s.unice.fr/~hogie/software/index.php?name=grph
http://www.i3s.unice.fr/~hogie/software/index.php?name=grph


Devezas and Nunes Page 21 of 39

00:00:00

00:01:00

00:02:00

00:03:00

00:04:00

1 2 3 4 5 10 25 50 100 1K 2K 3K 5K 8K
Number of Documents

T
im

e 
(H

H
:M

M
:S

S
)

(a) Index creation.
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(b) Global statistics computation.
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(c) Node degrees computation.
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(d) Hyperedge cardinalities computation.

Figure 10: Base model run time statistics.

1,000 documents and 4m13s for a maximum of 8,000 documents. The computation
of global statistics took 17m26s for 1,000 documents and 41m18s for a maximum
of 8,000 documents. Node degrees were computed in 4m27s for 1,000 documents,
taking 20m55s at most, while hyperedge cardinalities were computed in only 19s

for 1,000 documents, taking 44s at most, making it the most efficient statistic to
compute.

6 Analyzing the structural impact of different index extensions
In this section, we extend our previous characterization work [11] by taking into con-
sideration the index extensions, applied over the hypergraph-of-entity base model,
as described by Devezas and Nunes [2, §4.1.2]. In Sections 6.1 and 6.2, we study
the structural impact of synonyms and context, respectively. In Section 6.3, we pro-
pose a new grouping of terms based on the discretization of the term frequency
(TF-bins), studying the structural impact of this index extension, while also con-
sidering different numbers of bins.

6.1 Synonyms
The base model for the hypergraph-of-entity establishes n-ary connections, both di-
rected and undirected, among nodes that represent terms and entities. Most visibly,
document hyperedges group all terms and entities mentioned in a document, a lot
like a bag of words and entities that integrates both unstructured and structured evi-
dence. This model can easily be extended with synonyms, that establish new bridges
between documents. In particular, we used the synsets fromWordNet 3.0 [40], based
on the first sense of each term in the hypergraph, and only considering its noun form.
Each synset was modeled as a synonym hyperedge. In this section, we characterize
the hypergraph-of-entity when using the synonyms extension. We repeat the anal-
ysis described in Section 5, but only cover results that show a different behavior
from the base model.
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Table 3: Global statistics for the synonyms model.
Statistic Value

Nodes 610,212
term 326,671
entity 283,541

Statistic Value

Hyperedges 263,804
Undirected 25,588

document 7,484
related_to 7,454
synonym 10,650

Directed 238,216
contained_in 238,216

Statistic Value

Avg. Degree 0.8646
Avg. Clustering Coefficient 0.1168
Avg. Path Length 7.5333
Diameter 17
Density 3.88e-06

Figure 11: Node degree distribution, based
on connected nodes, for the synonyms model
(log-log scale).

Figure 12: Synonym hyperedge
cardinality distribution (log-log
scale).

Table 3 shows the global statistics for the synonyms model. As we can see, the
number of terms increased from 323,672 (cf. Table 2) to 326,671. This means that
2,999 synonym terms that did not originally belong to the collection were added.
The number of undirected hyperedges increased significantly, with 10,650 new syn-
onymy relations. The average degree slightly increased, with the average clustering
coefficient and the density remaining stable. The diameter also remained at 17,
however the average path length decreased almost a unit, from 8.37 to 7.53, ap-
proximating nodes through the relation of synonymy. This is an indicator of the
usefulness of using synonyms to establish new bridges between documents. In fact,
we found 4,558 new paths created by this extension, resulting in 65.29 documents
linked on average per synonym. Besides global statistics, we also identified four
interesting changes or new characteristics when compared to the base model:
• Term node degree distribution;
• Synonym hyperedge cardinality distribution;
• Average hyperedge cardinality over time;
• Average estimated diameter and average path length over time.

Term node degree distribution Figure 11 illustrates the node-based node degree
distribution for entity and term nodes in the hypergraph-of-entity with the syn-
onyms extension. While the behavior for entity nodes is similar to the base model,
term nodes show a combination of a power law like behavior for the lower degrees,
with a log-linear behavior for the remaining degrees. This is due to the introduction
of synonyms from WordNet, which, as we can see in Figure 13, follow a distribution
close to a power law.

Synonym hyperedge cardinality distribution Figure 12 illustrates the distribution
of synonyms per hyperedge. As we can see, most synonym hyperedges either contain
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Figure 13: WordNet 3.0 noun synonyms distribution (log-log scale).

Figure 14: Average hyperedge cardi-
nality over time for the synonyms
model.

Figure 15: Average estimated diam-
eter and average shortest path over
time for the synonyms model.

two or three terms, while less than 100 hyperedges contain more than five synonyms.
Most synonymy relations are ternary and, while there is not enough data to conclude
it, the overall behavior approximates a power law.

Average hyperedge cardinality over time Consistent with the fact that most synsets
introduced as undirected hyperedges have a low cardinality (two or three elements),
the average hyperedge cardinality over time is overall lower than the base model.
This is visible when comparing Figure 14 with Figure 4. Additionally, the behavior
also changed from a fast growth and convergence behavior, in the base model, to a
consistent sub-linear growth behavior. While convergence is not immediately clear
in the synonyms model, the trend does point to such behavior.

Average estimated diameter and average path length over time With synonymy
relations, both the average path length and the diameter start at a lower value
than the base model, for only one document. Apart from the initial values, when
comparing Figure 15 with Figure 5, we find a similar behavior, although the average
path length decreases from 8.37, in the base model, to 7.53, in the synonyms model,
when comparing a representation of the whole collection (cf. Tables 2 and 3). Despite
the similar behavior, a unitary difference is quite significative in a network (e.g., in
a social network like Facebook, the average path length is 4.74 [41], while in the
original small-world study by Milgram [42, 43] the average path length was 6.2).

Temporal statistics of run times Finally, Figure 16 illustrates the synonyms model
run times of the following operations for an increasing number of documents: index
creation (16a); the computation of the global statistics (16b), also shown in Table 3;
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(d) Hyperedge cardinalities computation.

Figure 16: Synonyms model run time statistics.

the computation of all node degrees (16c); and the computation of all hyperedge
cardinalities (16d). As we can see, similarly to what happened for the base model,
the most significant increase in run time happens around 1,000 documents, with
the exception of the global statistics computation, which shows an increased run
time for the first added documents. We predict that the same caching mechanisms
described for the base model are responsible for this anomaly. In Figure 16c, we also
find a slight decrease in run time from 5,000 to 8,000 documents, which we do not
find significant, as it was perhaps due to temporary load on the virtual machine.
Indexing time took 1m13s for 1,000 documents and 4m22s for a maximum of 8,000

documents. The computation of global statistics took 17m07s for 1,000 documents
and 39m13s for a maximum of 8,000 documents. Node degrees were computed in
4m11s for 1,000 documents, taking 19m03s at most, while hyperedge cardinalities
were computed in only 20s for 1,000 documents, taking 44s at most, and maintaining
the top rank in the most efficient statistic to compute, when compared to the base
model.

6.2 Contextual similarity
Another way that we extended the base model was by using the contextual sim-
ilarity between terms, as established based on the k-nearest neighbors according
to word embeddings. For this particular analysis, word embeddings were obtained
through word2vec, trained on a larger subset of the INEX 2009 Wikipedia collec-
tion, built from the documents mentioned in the relevance judgments for all 52
topics. The extracted vectors were of size 100, using sliding windows of 5 words
to establish context, and ignoring words that appeared only once. Only the two
nearest neighbors, with a similarity above 0.5 were considered to build the similar-
ity graph. Contextual similarity hyperedges were then derived from this graph by
iterating over each term and building sets that included the original term as well
as incoming and outgoing terms.
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Table 4: Global statistics for the contextual similarity model.
Statistic Value

Nodes 697,068
term 413,527
entity 283,541

Statistic Value

Hyperedges 410,371
Undirected 172,155

document 7,484
related_to 7,454
context 157,217

Directed 238,216
contained_in 238,216

Statistic Value

Avg. Degree 1.1774
Avg. Clustering Coefficient 0.1423
Avg. Path Length 1.9333
Diameter 3
Density 2.75e-06

Figure 17: Node degree distribution, based on
connected nodes, for the context model (log-
log scale).

Figure 18: Context hyperedge
cardinality distribution (log-log
scale).

Table 4 shows the global statistics for the context model. As we can see, the
number of terms significantly increased from 323,672 (cf. Table 2) to 413,527. This
means that 89,855 contextually similar terms that did not originally belong to the
collection were added — they were however a part of the larger 52 topics collec-
tion, otherwise no new terms would have been added. The number of undirected
hyperedges also increased significantly, with 157,217 new context relations. The av-
erage degree also increased from 0.83 to 1.18, with the average clustering coefficient
remaining stable and the density decreasing from 3.88e−06 to 2.75e−06. The di-
ameter significantly decreased from 17 to 3, as did the average path length, which
decreased from 8.37 to 1.93, strongly approximating nodes through the relation of
contextual similarity. This is an indicator of the impact of using word embeddings
to establish new bridges between documents, although we need to assess whether
retrieval effectiveness will be affected by context as a kind of noise introduced in the
process rather than a good discriminative feature. We found 42,145 new paths cre-
ated by this extension, resulting in 23.03 documents linked on average per context.
Notice that, although synonyms established a lower number of bridges, they also
connected a higher number of documents on average (2.83× more than context).
Only by studying retrieval effectiveness we will be able to assess which characteris-
tic translates into a better performance in the model. Besides global statistics, we
also identified four interesting changes or new characteristics when compared to the
base model:

• Term node degree distribution;
• Context hyperedge cardinality distribution;
• Average hyperedge cardinality over time;
• Average estimated diameter and average path length over time;
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Figure 19: Average hyperedge car-
dinality over time for the context
model.

Figure 20: Average estimated diam-
eter and average shortest path over
time for the context model.

Term node degree distribution Figure 17 illustrates the node-based node degree
distribution for entity and term nodes in the hypergraph-of-entity with the context
extension. The behavior for entity nodes is similar to the base model and to the
synonyms model. However, like in the synonyms model, term nodes show a combi-
nation of a power law like behavior for the lower degrees, with a log-linear behavior
for the remaining degrees. Given the higher number of terms introduced through
contextual similarity, we also find a distribution plot that is visually denser.

Context hyperedge cardinality distribution Figure 18 illustrates the distribution of
terms per context hyperedge. As we can see, the behavior approximates a power
law, with only a few context hyperedges containing around 50 nodes and one of
them even reaching 156 nodes.

Average hyperedge cardinality over time Given the high number of introduced con-
text hyperedges, most of them with a low cardinality, the average hyperedge cardi-
nality was driven down, as we can see in Figure 19. In a similar way to the synonym
hyperedges, the behavior also changed from a fast growth and convergence behavior,
in the base model, to a consistent sub-linear growth behavior.

Average estimated diameter and average path length over time Perhaps one of
the most interesting results of this analysis is the impact of index extensions in
the diameter and average path length. This is particularly visible with the context
extension — the diameter decreased from 17, in the base and similarity models, to
only 3, in the context model. A similar behavior was identified for the average path
length that decreased from 8.33 in the base model and 7.53 in the synonyms model,
to only 1.93 in the context model. This behavior over time is seen in Figure 20,
where, contrary to the base and synonyms model, we can find shorter geodesics
immediately for a low number of documents. As an increasing part of the collection
is considered, the length of the geodesics increase. This might be correlated with an
increasing diversity of topics, thus being indicative of the discriminative power of
the context extension, an aspect that should be further investigated in the future.
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(d) Hyperedge cardinalities computation.

Figure 21: Contextual similarity model run time statistics.

Temporal statistics of run times Finally, Figure 21 illustrates the contextual sim-
ilarity model run times of the following operations for an increasing number of
documents: index creation (21a); the computation of the global statistics (21b),
also shown in Table 4; the computation of all node degrees (21c); and the computa-
tion of all hyperedge cardinalities (21d). As we can see, similarly to what happened
for the base model, the most significant increase in run time happens around 1,000

documents. When compared to the base model and the synonyms model, the global
statistics computation does not show an increased run time for the first added doc-
uments. This further supports the hypothesis of this being an anomaly that hap-
pened due to initial caching or load issue, particularly since the synonyms model
is quite similar, structurally, to the context model. Indexing time took 1m35s for
1,000 documents and 5m05s for a maximum of 8,000 documents. The computation
of global statistics took 5m44s for 1,000 documents and 24m20s for a maximum
of 8,000 documents. Node degrees were computed in 5m15s for 1,000 documents,
taking 24m37s at most, while hyperedge cardinalities were computed in only 24s

for 1,000 documents, taking 56s at most, making it the most efficient statistic to
compute, and maintaining the top rank in the most efficient statistic to compute,
when compared to the base model and the synonyms model.

6.3 Term frequency bins
In this section, we analyze the TF-bins extension, which is based on the discretiza-
tion of the term frequency per document. This way, term frequency can be added
to the hypergraph-of-entity, while having a low impact in scalability (i.e., we re-
main focused on forming groups of nodes to minimize the space complexity of the
representation model).
Table 5 shows the global statistics for the TF-bins model. As we can see, the

number of nodes is the same as the original model, also remaining unchanged with
the number of bins. The number of undirected hyperedges increased from 14,938
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Table 5: Global statistics for the TF-bins model (bins=2 and bins=10).
Statistic Bins

2 10
Nodes 607,213 607,213

term 323,672 323,672
entity 283,541 283,541

Statistic Bins
2 10

Hyperedges 268,100 281,642
Undirected 29,884 43,426

document 7,484 7,484
related_to 7,454 7,454
tf_bin 14,946 28,488

Directed 238,216 238,216
contained_in 238,216 238,216

Statistic Bins
2 10

Avg. Degree 0.8831 0.9277
Avg. Cl. Coef. 0.1021 0.1014
Avg. Path Len. 6.8333 6.9000
Diameter 13 14
Density 7.58e-06 7.86e-06

to 29,884 for two TF-bins, or to 43,426 with ten bins. The average degree slightly
increased from 0.83 to 0.88 for two TF-bins per document, and then to 0.93 for ten
TF-bins, with the average clustering coefficient remaining stable and the density
increasing from 3.88e−06 to 7.58e−06 for two TF-bins, and then again slightly to
7.86e−06 for ten TF-bins. The diameter decreased from 17 to 13 for two TF-bins,
and 14 for ten TF-bins, as did the average path length, which decreased from
8.37 to 6.83 and 6.90 for two and ten TF-bins, respectively. When considering two
TF-bins, we found 156,200 new paths created by this extension, resulting in 30.64

documents linked on average per TF-bin. When the number of bins increased to
ten, the number of new paths decreased to 153,979, but the average number of
documents linked per TF-bin increased to 37.99. Besides global statistics, we also
identified seven interesting changes or new characteristics when compared to the
base model:
• TF-bin hyperedge cardinality distribution per number of bins;
• Number of undirected hyperedges per number of bins;
• TF-bin hyperedges per number of bins;
• Diameter and average path length per number of bins;
• Average hyperedge cardinality over time per number of bins;
• Average density over time per number of bins.
• Average estimated diameter and average path length over time per number of

bins;
Notice that, contrary to the synonyms and context extensions, the TF-bins exten-
sion did not affect the behavior of term node degree distribution, since it does not
introduce external terms to the collection.

TF-bin hyperedge cardinality distribution Figure 22 illustrates the cardinality dis-
tribution of tf_bin hyperedges, for different numbers of bins. The behavior is similar
to the related_to hyperedges, however, as the number of bins increases, lower val-
ues of cardinality become more frequent and the behavior starts tending towards a
power law.

Number of hyperedges per number of bins As expected, in Figure 23a, we find a
growth in the number of undirected hyperedges, from 29,884, for two bins, to 43,426,
for ten bins. The same happens for the tf_bin hyperedges (Figure 23b), which are
responsible for propelling such growth. The amount of hyperedges generated by
increased TF-bins will eventually converge, since there is a limited number of terms
per document to segment. However, for this collection, it is clear that the number
of TF-bins can range from two to ten, while always generating new hyperedges,
increasing the granularity at which term frequency will contribute to the model.
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Figure 22: TF-bin hyperedge cardinality distribution (log-log scale).

(a) Undirected hyperedges. (b) TF-bin hyperedges.

Figure 23: Number of hyperedges, per number of bins, for the TF-bins model.

Diameter and average path length per number of bins As show in Figure 24, both
the diameter and the average path length, which correspond to the maximum and
average geodesic distances in the hypergraph, show a high variability with the num-
ber of bins. In particular, the diameter and average path length both reach their
maximum values of 18 and 8.30 when using 6 TF-bins. The minimum diameter
of 11 is reached when using 9 TF-bins, while the minimum average path length of
5.93 is reached when using 7 TF-bins. This suggests that the number of bins might
influence retrieval effectiveness, if varying the diameter and the average path length
also affects performance directly.

Average hyperedge cardinality over time Figure 26 shows the evolution of the av-
erage hyperedge cardinality for different numbers of bins. The behavior is similar
to the base model (cf. Figure 4), which is equivalent to having one TF-bin. As the
number of TF-bins increases, the overall average hyperedge cardinality decreases,
which is the expected behavior. This is less visible as the number of bins reaches
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(a) Diameter. (b) Average path length.

Figure 24: Geodesic-based metrics, per number of bins, for the TF-bins model.

Figure 25: Average hyperedge cardi-
nality over time, per number of bins,
for the TF-bins model.

Figure 26: Average density over time,
per number of bins, for the TF-bins
model.

a higher value, at which point the overall cardinality is less affected, showing a
progressively lower decreasing behavior. While the number of TF-bins affects this
characteristic of the hypergraph, the overall behavior is maintained.

Average density over time The average density shown in Figure 26 follows a similar
behavior to the base model (cf. Figure 7), regardless of the number of TF-bins.
However, there is a small variation for the interval of approximately 100 to 1,000

documents, after which it is once again reduced to the same value for the different
numbers of TF-bins. It is perhaps the diversity in term frequency introduced for
documents in this interval that promotes such a difference. This would explain
the creation of a higher number of tf_bin hyperedges, without empty TF intervals
(e.g., ]2, 2]).

Average estimated diameter and average shortest path over time Figure 27 shows
the evolution of the diameter and average path length, over an increasing number
of documents and TF-bins. Apart from both metrics reaching higher values for a
single document as well as for five TF-bins, the behavior is similar to the base model
(cf. Figure 5).

Temporal statistics of run times Finally, Figures 28 and 29 illustrate the TF-bins
model run times of the following operations for an increasing number of documents:



Devezas and Nunes Page 31 of 39

Figure 27: Average estimated diameter and average shortest path over time, per
number of bins, for the TF-bins model.
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(b) Global statistics computation.

Figure 28: TF-bins models run time statistics (part 1).

index creation (28a); the computation of the global statistics (28b), also shown
in Table 5; the computation of all node degrees (29a); and the computation of all
hyperedge cardinalities (29b). As we can see, similarly to what happened for the base
model and the synonyms model, the most significant increase in run time happens
around 1,000 documents, with the exception of the global statistics computation,
which shows an increased run time for the first added documents. Indexing time
took 1m11s for 1,000 documents and 4m27s for a maximum of 8,000 documents.
The computation of global statistics took 16m38s for 1,000 documents and 52m50s

for a maximum of 8,000 documents. Node degrees were computed in 3m54s for 1,000

documents, taking 32m23 at most, while hyperedge cardinalities were computed in
only 19s for 1,000 documents, taking 50s at most, making it the most efficient
statistic to compute, maintaining the top rank in the most efficient statistic to
compute, in line with the other studied models models.
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(b) Hyperedge cardinalities computation.

Figure 29: TF-bins models run time statistics (part 2).

Table 6: Evaluating the different models in the ad hoc document retrieval task.
Model MAP NDCG@10 P@10 MAP NDCG@10 P@10 MAP NDCG@10 P@10

Lucene TF-IDF 0.2160 0.2667 0.2800 0.2160 0.2667 0.2800 0.2160 0.2667 0.2800
Lucene BM25 0.3412 0.5479 0.4900 0.3412 0.5479 0.4900 0.3412 0.5479 0.4900

HGoE RWS ` = 1 ` = 2 ` = 3

Base model 0.0046 0.0799 0.0400 0.0039 0.0718 0.0400 0.0028 0.0576 0.0400
Synonyms 0.0013 0.0440 0.0200 0.0024 0.0799 0.0400 0.0023 0.0718 0.0400
Context 0.0000 0.0000 0.0000 0.0010 0.0220 0.0100 0.0010 0.0220 0.0100
TF-bins2 0.1082 0.2443 0.2100 0.1025 0.1730 0.2000 0.0918 0.1302 0.1400
TF-bins3 0.0911 0.2004 0.2200 0.0989 0.0954 0.1200 0.0868 0.0751 0.1000
TF-bins4 0.0957 0.1969 0.2000 0.1107 0.2007 0.1900 0.0928 0.1669 0.1700
TF-bins5 0.1049 0.2355 0.2400 0.1050 0.1364 0.1400 0.0954 0.1121 0.1400
TF-bins6 0.1057 0.2405 0.2600 0.1108 0.1906 0.2000 0.1022 0.1792 0.1900
TF-bins7 0.1000 0.2212 0.2500 0.1072 0.1255 0.1200 0.0939 0.0934 0.1000
TF-bins8 0.0894 0.2131 0.2100 0.1078 0.0988 0.1100 0.0966 0.0641 0.0800
TF-bins9 0.0954 0.1494 0.1500 0.1107 0.1402 0.1500 0.0958 0.1069 0.1200
TF-bins10 0.1062 0.2127 0.2200 0.1133 0.1436 0.1600 0.1079 0.1143 0.1300

7 An application to information retrieval
So far, we have analyzed the structural impact of different index extensions in
regards to the characteristics of the hypergraph. However, there is little value in
understanding the behavior of structural features without the context of its applica-
tion, which in this case is in the area of information retrieval [2]. Thus, we assess the
effectiveness of each model, with different extensions and parameter configurations,
through a classical information retrieval evaluation process, based on the 10 topic
subset of the INEX 2009 Wikipedia collection (INEX 2009 10T-NL).
We launched three evaluation runs per index configuration, i.e., for different ver-

sions of the HGoE (hypergraph-of-entity) representation model based on different
extensions. We relied on the RWS ranking function, experimenting with different
random walk lengths ` ∈ {1,2,3}, and a fixed configuration for the remaining param-
eters: r = 10,000, expansion disabled (i.e., without seed node selection [2, §4.2.1]),
and weights enabled (i.e., considering tf_bin hyperedge weights, the only available
weights in the indexes).
Table 6 shows the MAP (mean average precision), NDCG@p (normalized dis-

counted cumulative gain at a cutoff of p), and P@n (precision at a cutoff of n),
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Table 7: Comparing the global statistics for the different models.

Model Nodes Hyperedges Degree Cl.
Coef.

Avg.
Path Len. Diam. Density

Base model 607,213 253,154 0.8338 0.1148 8.3667 17 3.88e-06
Synonyms 610,212 263,804 0.8646 0.1168 7.5333 17 3.88e-06
Context 697,068 410,371 1.1774 0.1423 1.9333 3 2.75e-06
TF-bins2 607,213 268,100 0.8831 0.1021 6.8333 13 7.58e-06
TF-bins3 607,213 270,359 0.8905 0.1011 6.7667 13 7.65e-06
TF-bins4 607,213 272,649 0.8980 0.0999 7.0333 14 7.60e-06
TF-bins5 607,213 274,698 0.9048 0.0996 6.7000 16 7.73e-06
TF-bins6 607,213 276,615 0.9111 0.1029 8.3000 18 7.69e-06
TF-bins7 607,213 278,087 0.9159 0.1010 5.9333 14 7.82e-06
TF-bins8 607,213 279,356 0.9201 0.1034 6.6000 14 7.83e-06
TF-bins9 607,213 280,524 0.9240 0.0994 6.8667 11 7.84e-06
TF-bins10 607,213 281,642 0.9277 0.1014 6.9000 14 7.86e-06

computed for the relevance judgments provided by the INEX 2010 Ad Hoc track [44].
As we can see, by analyzing the maximum values per column (in bold), the TF-bin
models were able to obtain significantly better results overall, when compared to
the base model, the synonyms model, and the context model. None of the HGoE
models is yet able to outperform the baselines, although TF-bins are able to approx-
imate TF-IDF in regard to NDCG@10 and P@10. The hypergraph-based models
need to be reiterated over and improved. Herein lies the usefulness of computing
the properties of the hypergraph structures and analyzing the hypergraph-of-entity.
While there is no clear pattern of effectiveness correlated with the number of bins,
if we consider the NDCG@10 scores, the best model for ` = 1 is TF-bins2, the best
model for ` = 2 is TF-bins4, and the best model for ` = 3 is TF-bins6. This might
indicate that a higher number of bins works best with a longer random walk length.
However, there is no concordance to support this hypothesis when looking at the
MAP and P@10 metrics, thus further investigation is required.
In order to better understand whether there is a direct relation between any

of the computed structural features of the hypergraph and the effectiveness of the
retrieval model, we first summarize the structural features for each model in Table 7.
By comparing each feature with the evaluation metrics from Table 6, we are able to
find some indicators of (in)effectiveness in a graph-based retrieval model. According
to Table 6, context was the worst performing model, over all values of `. The context
model also has the highest average degree and clustering coefficient, as well as the
lowest average path length and diameter (cf. Table 7). This indicates that a higher
local connectivity and an overall lower distance between nodes might not beneficial
for retrieval effectiveness. We also observe that the TF-bin models, which have the
best performance, also have a lower clustering coefficient than the base, synonyms
and context models, ranging between 0.0994 and 0.1034.
We also studied the structural impact of each extension, through the relative

change to individual features, in comparison to the base model. Figure 30 shows
a heatmap based on the change percentages in regards to the base model, which,
by definition, has a 0% change over all features, in comparison to itself. As we
can see, the context model suffered the most evident overall change, with a −467%

change in diameter, and a −333% change in average path length. This model is of
particular interest, as it resulted in the worst retrieval performance, when compared
to the remaining models. Interestingly, this is also visible in its structural features.
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Figure 30: Relative change of structural features when compared to the base model.

The clustering coefficient for the context model also suffered a substantial increase
in relation to the base model, with a change of 19%, as did the degree, with a
change of 29%. When looking at the density for all models, there was no change
for the synonyms model, but there was a positive change, rounding 50% (in green),
for the TF-bins models, and there was a negative change of −41% for the context
model. The number of nodes suffered no change for the TF-bins models, but there
a slight increase for synonyms (as new terms from synsets were added), and a
more significative increase for the context model. The number of edges suffered a
consistently larger increase for TF-bins models, as the number of bins increased,
with the synonyms model showing a slight increase, and the context model once
again showing a more significative increase.

7.1 Correlating evaluation metrics and structural features
In Table 8 we further organize this approach, by comparing the evaluation results
of each metric with the values of each structural feature. By using Spearman’s rank
correlation coefficient (ρ), we can verify whether the retrieval model’s performance
ranking given by the evaluation metrics (our ground truth) can compare with the
ranking given by any of the structural features, as computed for each model. Let
us first follow up with the indicators we put forth in the manual comparison of the
two tables.
We proposed that a high average degree and clustering coefficient would result

in a low MAP, NDCG@10 and P@10, which does not necessarily mean that either
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Table 8: Spearman’s ρ between evaluation metrics and structural features.

Nodes Hyperedges Degree Cl.
Coef.

Avg.
Path Len. Diam. Density

` = 1
MAP -0.6504 0.0559 0.0559 -0.5245 0.0979 0.1000 0.5009
NDCG@10 -0.6504 -0.0350 -0.0350 -0.3636 -0.1119 0.2000 0.4308
P@10 -0.6527 0.1018 0.1018 -0.4667 -0.0982 0.3047 0.5800

` = 2
MAP -0.6516 0.4098 0.4098 -0.5464 0.2172 0.1449 0.8035
NDCG@10 -0.5913 0.0699 0.0699 -0.5804 0.2797 0.1036 0.4448
P@10 -0.6242 0.0035 0.0035 -0.5519 0.2882 0.0593 0.4049

` = 3
MAP -0.6504 0.4615 0.4615 -0.4685 0.0699 0.1965 0.8932
NDCG@10 -0.5322 -0.0280 -0.0280 -0.5524 0.3357 0.2000 0.3573
P@10 -0.6242 -0.0211 -0.0211 -0.6151 0.2707 0.1993 0.3873

feature is a good overall discriminator of model performance. In fact, the average
degree does not show correlation consistency among the different evaluation met-
rics and parameter configurations. On the other hand, the clustering coefficient is
negatively correlated with each evaluation metric over the different random walk
length parameter configurations, ranging between −0.61 and −0.36. This makes the
clustering coefficient a weak, but consistent indicator of the performance of graph-
based retrieval models (i.e., higher values of the clustering coefficient indicate a low
retrieval effectiveness). Absolute correlation is not particularly high, since retrieval
performance does not solely depend on the structure of the graph, but also on the
semantics of the representation model.
We also proposed that a low average path length and diameter would be indicative

of low model performance. While the average path length and diameter correlations
with the evaluation metrics are mostly positive, these are not sufficiently consistent
to be considered good global indicators of performance. There are, however, special
cases when the average path length serves as a slight indicator of performance,
namely for ` > 1 and for the top 10 results. For ` = 1, there is a slight negative
correlation that could be explained by the fact that this model only relies on the
immediate neighborhood within the hypergraph and does not depend on short paths
for connectivity. The diameter, on the other side, always shows a positive correlation
with the evaluation metrics, but its absolute value is overall low and inconsistent
for it to provide a good discriminative indicator of retrieval performance.
With a similar behavior to the clustering coefficient, but with an inverse sign,

the density was overlooked as a good indicator of model performance. In partic-
ular, the worst performing model (context model) also has the lowest density of
2.75e−06, followed by the base model and the synonyms model, tied at a density
of 3.88e−06, and then by the TF-bin models, with densities ranging from 7.58e−06

to 7.86e−06. While the density is a good discriminative of graph-based retrieval
models, its granularity is low, only properly distinguishing between models with an
obvious difference in performance.

7.2 Design rules for modifying or extending the hypergraph-of-entity
After the analysis of the impact of structural features in the performance of the
retrieval models, we reflect on the implications of our findings. We use these findings
to prepare a set of rules that serve as indicators or as a guide for the continued
redesign of the hypergraph-of-entity. In particular, the guidelines we propose should
be helpful in the process of comparing different versions based on modifications or
extensions to our model. We propose two classes of indicators:
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Table 9: Indicators of graph-based retrieval model performance.
Ranking indicators Anomaly indicators

Cl. Coef. Ascending order ∼ 50% correlated
with retrieval performance.

Degree Abnormally high values (> µ + 2σ)
indicate a low performing model.

Density Descending order ∼ 50% correlated
with retrieval performance.

Diameter Abnormally low values (< µ − 2σ)
indicate a low performing model.

Ranking indicators Structural features that can be used to rank different graph-
based models in regards to their predicted retrieval performance.

Anomaly indicators Structural features that cannot be used to rank graph-based
models based on retrieval performance, but can, however, be useful for iden-
tifying anomalous models with a high chance of a low performance.

Table 9 shows the identified ranking and anomaly indicators according to the
analysis carried at the beginning of this section. The clustering coefficient and the
density were both identified as ranking indicators with an approximate certainty
rate of 50%, based on an ascending and descending order, respectively. The degree
and diameter were identified as anomaly indicators, with the degree being used to
identify abnormally high values, for example larger than two standard deviations
(2σ) above the mean (µ), and the diameter being used to identify abnormally low
values, for example less than two standard deviations below the mean.

8 Conclusion
We characterized the hypergraph-of-entity representation model, based on the struc-
tural features of the hypergraph. We analyzed the node degree distributions, based
on nodes and hyperedges, and the hyperedge cardinality distributions, illustrating
their distinctive behavior. We also analyzed the temporal behavior, as documents
were added to the index, studying average node degree and hyperedge cardinality,
estimated average path length, diameter and clustering coefficient, as well as den-
sity and space usage requirements. We expanded on the characterization work by
analyzing different model extensions based on synonymy, contextual similarity, and
a new concept of TF-bins, and we also measured the run time of several operations
like indexing and the computation of properties. Our contributions included the ap-
plication of two strategies for the approximation of statistics based on the shortest
distance, as well as the clustering coefficient. We also proposed a simple approach
for computing the density of a general mixed hypergraph, based on an induced bi-
partite mixed graph. Finally, we focused on the application of this characterization
work, which, we proposed, should inform the design of graph-based representation
models for information retrieval. In particular, we studied the change in structural
features, when compared to the base model, as well as the correlations between re-
trieval effectiveness metrics (MAP, NDCG@10, P@10) and structural features (e.g.,
average degree, clustering coefficient). While structural features rarely presented a
higher than 50% absolute correlation with any of the evaluation metrics, we identi-
fied some of them as indicators useful for ranking the retrieval models according to
their effectiveness, or for identifying anomalies that lead to low effectiveness. More
importantly, we have provided an analysis framework for hypergraphs that can eas-
ily be implemented and applied to both small and large-scale hypergraphs. We have
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also provided a characterization based on this framework, illustrating the behavior
of several statistics, for instance showing that, while the degree distribution based
on hyperedges still follows a power law, like in real-world networks represented as
graphs, the degree distribution based on nodes instead approximates a log-normal
distribution. During the development of this work, we have also found that:
• Few attention has been given to hypergraph characterization in the real-world;
• The community is still lacking in tools to analyze hypergraphs:

– There is no de facto library for hypergraph analysis;
– Few file formats support hypergraphs, namely with directed hyperedges.

• Polyadism introduces additional complexity and calls for novel metrics that
take the information within collective relations into account.

Future work In the future, we would like to further explore the computation of den-
sity, since the bipartite-based density we proposed, although useful, only accounts
for hyperedges already in the hypergraph. We would also like to study the param-
eterization of the two estimation approaches we proposed, based on random walks
and node sampling. Despite their straightforward definition, these approaches also
require further evaluation, in order to understand what the expected error will be
for different configurations. Another open challenge is the definition of random hy-
pergraph generation model, which would be useful to improve characterization. Ad-
ditionally, several opportunities exist in the study of the hypergraph at a mesoscale,
be it identifying communities, network motifs or graphlet, or exploring unique pat-
terns to hypergraphs. It would also be interesting to include centrality metrics in
the correlation analysis, in order to understand for instance whether closeness or
betweenness might impact retrieval effectiveness in the hypergraph-of-entity, fur-
thermore considering multiple combinations of extensions, as opposed to a single
one, as we have done here. Finally, regarding the hypergraph-of-entity model, it
would also be useful to repeat the analysis we describe in this work based on ad-
ditional test collections, as to support or disprove the results we found. Perhaps
future TREC or CLEF tracks could provide relevance judgments for multiple tasks
in entity-oriented search, which would be useful to boost the study of generality in
information retrieval.
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