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Abstract:Modern search is heavily powered by knowledge
bases, but users still query using keywords or natural lan-
guage. As search becomes increasingly dependent on the
integration of text and knowledge, novel approaches for
a unified representation of combined data present the op-
portunity to unlock new ranking strategies. We have pre-
viously proposed the graph-of-entity as a purely graph-
based representation and retrieval model, however this
model would scale poorly. We tackle the scalability issue
by adapting the model so that it can be represented as
a hypergraph. This enables a significant reduction of the
number of (hyper)edges, in regard to the number of nodes,
while nearly capturing the same amount of information.
Moreover, such a higher-order data structure, presents the
ability to capture richer types of relations, including n-
ary connections such as synonymy, or subsumption. We
present the hypergraph-of-entity as the next step in the
graph-of-entity model, where we explore a ranking ap-
proach based on biased random walks. We evaluate the
approaches using a subset of the INEX 2009Wikipedia Col-
lection. While performance is still below the state of the
art, we were, in part, able to achieve a MAP score similar
to TF-IDF and greatly improve indexing efficiency over the
graph-of-entity.

Keywords: semantic search, hypergraph-based models,
collection-based representation, text and knowledge uni-
fication

1 Introduction
Entity-oriented and semantic search are centered around
the integration of unstructured data, in the form of text,
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and structured data, in the form of knowledge. We have
frequently used data structures like graphs as a represen-
tation that promotes the integrationof heterogeneousdata.
Hypergraphs take it even further, by providing a more ex-
pressive data structure that can, at the same time, cap-
ture both the relations and the intersections of nodes. We
propose that hypergraphs should be used as an alterna-
tive data structure for indexing, not only because of their
expressiveness — a document might be modeled as a hy-
peredge with terms and entities, potentially subsuming
other relations between entities —, but also because they
have the potential to scale better than a graph-based ap-
proach — in particular, relations like synonymy or co-
occurrence can be modeled with only one hyperedge as
opposed to creating a complete subgraph for all synonyms
or co-occurring nodes. It is also clearer, from a semantics
perspective, to model synonymy or co-occurrence as a sin-
gle hyperedge. Even visually, a hypergraph can, through
transparency, provide further insights regarding intersec-
tions and subsumptions [1, Figures 2 and 5].

Let us for instance assume a labeled hyperedge, re-
lated_to, which connects four entities mentioned in a doc-
ument entitled “Cat”: Carnivora,Mammal, Felidae and Pet.
In subsumption theory, this hyperedgewould represent an
extension of Carnivora,Mammal and Felidae, a set of enti-
ties that could be a part of a hyperedge present for instance
in a document entitled “Lion”. While a lion is not a pet, it
is still related to cat through the remaining three entities,
so this information is useful for retrieval.While such exam-
ple illustrates the potential of a hypergraph-based model,
it only just scratches the surface. Using a hypergraph we
can represent n-ary relations — linking more than two
nodes (undirected hyperedge) or two sets of nodes (di-
rected hyperedge) —, but also hierarchical relations (hy-
peredges contained within other hyperedges) and any par-
tial combination of the two. This means we can, for in-
stance, model synonyms as an undirected hyperedge (e.g,
{result, consequence, e�ect, outcome}) and even intro-
duce hypernyms/hyponyms as directed hyperedges (e.g.,
{cat, lion} → {feline}).

To sustain our argument, let us consider an alterna-
tive approach based on a tree, which is a type of directed
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graph, to represent hierarchical relations.With a basic tree
we lose the ability to simultaneously represent hierarchi-
cal and n-ary relations. We argue that a bipartite graph
or an edge-labeled mixed graph would allow for the rep-
resentation of both n-ary and hierarchical relations, but,
while conceptually it would contain the same information
as the hypergraph, it would also be harder to read and use.
We wouldn’t be able, for instance, to naturally identify in-
tersections or subsumptions. Independently of whether or
not we translate the hypergraph to an equivalent graph,
at the very least the theoretical modeling power of the hy-
pergraph is clear. Nonetheless, in practice there are also
some advantages to using hypergraphs over graphs, for in-
stance the fact that a single hyperedge can store all syn-
onyms at once, requiring a single step to retrieve the syn-
onyms for a single term — O(|V|) for term nodes V. Con-
versely, the same operation on a graph would require as
many steps as the number of synonyms for a single term
— O(|V| + |E|) = O(bd), assuming a breadth-first search ap-
proach for term nodes V and synonym edges E or, equiva-
lently, for outdegree b (the branching factor of the graph)
and distance d (where d would be the same as the graph
diameter).

Another advantage of hypergraphs includes the at-
tempt to more closely model the human cognitive process.
When we think, we inherently relate, generalize, particu-
larize or overlap concepts. Most of us also translate natu-
ral language (sequences of terms) into concepts (entities),
supporting the thought process on language.What we pro-
pose to dowith thehypergraph-of-entity is to attempt tode-
velop a kind of cognitive search engine (or at least the foun-
dation for one). The way the (hyper)graph is traversed, in-
cluding the selection of the point of origin, determines the
kind of process over the “brain” of the engine. As a result,
generalization becomes possible. With only slight adjust-
ments to the search process, we can add support for multi-
ple tasks from entity-oriented search. This includes ad hoc
document and entity retrieval — the point of origin might
be term nodes from a keyword query —, as well as related
entity finding and entity list completion — the point of ori-
gin might be one or several example entity nodes; both
tasks can also be considered a type of recommendation [2].
In order to avoid a combinatorial explosion while still tak-
ing advantage of structural features, we propose that we
model each process using random walks over the hyper-
graph — each step is based on the random selection of an
incident hyperedge and the subsequent random selection
of one of its nodes. In this work, we focus on the task of ad
hoc document retrieval, a process that we implement by
modeling documents as hyperedges of terms and entities,
and ranking document hyperedges through randomwalks.

If we instead ranked entity nodes using the same strategy,
we would have generalized the problem to ad hoc entity
retrieval.

In Section 2, we clearly present the challenges and
opportunities leading to this work, in particular distin-
guishing between considerations that impact the future
of the model and the actual work presented in this pa-
per. In Section 3, we present relevant work in entity-
oriented and semantic search, as well as graph-based
and hypergraph-based approaches. In Section 4, we de-
scribe the hypergraph-of-entity representation and re-
trieval model, introducing the basemodel, as well as three
optional index features that can be combined as desired
to extend the base model: synonyms, context and weights.
We also describe the ranking approach, based on seed
node selection and randomwalks. In Section 5, we present
the test collection used for evaluating the ad hoc docu-
ment retrieval performance, followingwith a study of rank
stability, given our nondeterministic ranking approach,
and the performance assessment for six models combin-
ing different index features of the hypergraph-of-entity. Fi-
nally, in Section 6, we conclude with some final remarks
and directions for future work.

2 Problem statement
When answering a user’s information need, entity-
oriented search reconciles results from unstructured,
semi-structured and structured data. This problem is
frequently approached by establishing separate tasks,
where the information need is solved as a combination
of different subsystems. While each subsystem can use
information from the other subsystems, they usually have
their own central representation and retrieval model.
For example, the inverted index is one of the main rep-
resentation models in ad hoc document retrieval. And
while structured information can be integrated into the
inverted index to improve retrieval effectiveness, the rich
and complex relations from knowledge bases are seldom
transposed to the inverted index in an effective manner.
For instance, related entities can be represented as text
through a description or a profile. This way they can then
be indexed in a field of the inverted index and contribute
to the ranking function as any other field would. Another
approach is to separately query the inverted index and
the knowledge base and somehow combine document
and entity weights. So, the approach is to either combine
the output of two models or to translate one type of data
to fit a chosen model and always work in that domain.
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Both approaches represent a missed opportunity to cross-
reference units of information from unstructured and
structured sources. A similar case can be made for knowl-
edge bases where indexes over triples can be queried
through SPARQL, sometimes taking advantage of full-text
search to filter fields. There is clearly an opportunity for a
joint representation model, with ranking approaches that
are generalizable to different units of information, and
even to different tasks over those units. In this work, we
focus on developing the groundwork for such a model.

2.1 Tackled problems

Although there is already work where unstructured and
structured data are combined, models have been overly
centered on one or the other type of data, frequently con-
sidering one of them as the external signal. It is in this lack
of a balanced middle ground that we find the opportunity
for a contribution. Our hypothesis is that, by proposing a
representation and retrieval model where text and knowl-
edge are seamlessly considered, we will be able to:
1. Jointly represent terms, entities and their relations in

a single index;
2. Propose a generalized ranking function for multiple

entity-oriented search tasks;
3. Improveoverall retrieval effectiveness through theuni-

fication of information sources.

In the following sections, we further detail how we tackle
items 1 and 2, proposing thehypergraphas the central data
structure for representation, along with a general ranking
strategy over that data structure.

2.1.1 Joint representation model

Graphs are a proven data structure for modeling heteroge-
neous data. They have been used to index text documents,
as the underlying abstraction of hypertext and for the rep-
resentation of knowledge bases. Their ubiquity across the
relevant areas of entity-oriented search led us to propose a
graph-based representation and retrieval model that com-
bines terms, entities and their relations. In particular, we
propose to use a weighted mixed hypergraph, since it can
simultaneously and clearly express:
1. Undirected n-ary relations (e.g., bag-of-words, sen-

tence, synonymy, context similarity);
2. Directed n-ary relations (e.g., a set of terms pointing to

an entity, or a set of entities belonging to a category);
3. Hierarchical relations (e.g., subsumption);

4. Ontological relations (e.g., “Donald Duck” is both a
duck and a character in a comic book);

5. Intersections (i.e., overlap is naturally captured by hy-
peredges and their shared nodes);

6. Uncertainty (e.g., knowing that there is 80% certainty
that a set of termsare contextually similar canbe trans-
lated into a weight in the respective context hyper-
edge);

7. User preference (e.g., a user rating “Back to theFuture”
with 5 stars can be translated into a higher weight for
the corresponding entity node).

Moreover, hypergraphs enable us to decrease the number
of (hyper)edges in relation to the number of nodes, by pri-
oritizing n-ary relations over binary relations. This is an
advantage in reducing the complexity and improving re-
trieval efficiency.

In this work, we propose a hypergraph-based repre-
sentation model, called hypergraph-of-entity, for the joint
indexing of terms, entities and their relations. We explore
most of the items that we previously listed, for expressing
different relations in our model. In particular, we do not
explore hierarchical relations, and we capture entity co-
occurrence rather than explicit ontological relations, in-
troducing uncertainty only on the weighted version of the
model. This is further detailed in Section 4.1.

2.1.2 Generalized ranking function

Regarding the retrieval model, we propose a generalized
ranking function over the hypergraph-of-entity. One of our
ongoing goals is to design a function that can be used inde-
pendently of the unity of information, as well as for multi-
ple different tasks. We suggest this should be done by con-
trolling:
– Input and output, e.g.:

– Input term nodes to output a ranking of document
hyperedges;

– Input entity nodes to output a ranking of other en-
tity nodes.

– Parameter configuration, e.g.:
– Longer traversals will be more exploratory;
– Shorter traversals will bemore precise or on-topic.

In particular, the approach we propose is based on:
1. Finding a representation for the query in the hyper-

graph-of-entity;
2. Ranking nodes and hyperedges based on traversals

around those representations;
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3. Collecting only the relevant nodes or hyperedges to
present to the user.

In this work, we propose a generalized ranking function,
which, at this stage, we only evaluate for the ad hoc doc-
ument retrieval task. The model, however, is designed to
easily support tasks like ad hoc entity retrieval, related
entity finding or entity list completion, which we plan to
assess in the future. The following section further details
each retrieval task and presents material to support our
vision for unification over (hyper)graph-based data struc-
tures.

3 Reference work
In this section, we introduce entity-oriented and seman-
tic search. We first cover query-dependent and query-
independent evidence, from classical models to entity-
orientedmodels.We then present an overview on themain
retrieval tasks in entity-oriented search, that are the focus
of the generalized model we propose in this work. Next,
we discuss the opportunity for unified models, also com-
menting on theneed for combineddatawith associated rel-
evance judgments over multiple tasks. Finally, we present
graph-based and hypergraph-based models and their ap-
plications in information retrieval and the representation
of documents. We close the section with a discussion on
the usefulness of hypergraphs to model cognitive func-
tions in the brain, which we associate with a generalized
model for entity-oriented search.

3.1 Entity-oriented and semantic search

Entity-oriented and semantic search branches into mul-
tiple tasks, where each task takes one or multiple types
of queries — unstructured, semi-structured, structured
— and returns one or several types of results — docu-
ments, entities (based on relevance, relatedness, etc.). For
instance, semantic information can be used to improve
ad hoc document retrieval, (where queries are keywords
and results are documents, but knowledge is used to in-
form retrieval), or it can be used for entity list comple-
tion (where queries can be keywords or a selection of en-
tities, either way representing example entities, and re-
sults are entities). With over 80% of queries mentioning
entities [3], entity-oriented search has become a relevant
problem within information retrieval. While the inverted
index has remained central in tackling this challenge, in

the last few years there has also been work in graph-based
approaches for information retrieval [4, 5], and a growing
exploration of unified models [6, 7].

Hybrid collections containing text, entities and their
relations are essential to the study of joint representa-
tionmodels, in particularwhenaccompaniedby relevance
judgments for multiple tasks. These hybrid collections are
also called combined data. Bast et al. [8, Definition 2.3]
have defined combined data based on two principles: link
— text annotated with (or linked to) entities from a knowl-
edge base (e.g., through named entity recognition and dis-
ambiguation, or based on hyperlinks); and mult — com-
bined knowledge bases with different naming schemes
(e.g., through automatic ontology matching, or based on
a manually curated high-level ontology).

In this work, we define a joint representation model
that works for combined data. Moreover, we use it as an
index data structure for entity-oriented search, designed
to support multiple tasks in this domain. The approach
we propose eliminates the need for multiple models or
even the need to change the model depending on the task.
We focus on assessing ad hoc document retrieval, propos-
ing a hypergraph-based model to extend text-based re-
trieval with information from entities and their relations.
In order to assess effectiveness, we take advantage of the
INEX 2009 Wikipedia Collection [9], which includes semi-
structured data from Wikipedia (text from Wikipedia ar-
ticles, annotated with links to related Wikipedia articles,
which we use as a knowledge base).

3.1.1 Query-dependent and query-independent
evidence

The goal of search engines is to help users solve their infor-
mation needs, which are usually expressed as keyword or
natural language queries. Documents or entities are then
weighted according to the query and a list of ranked re-
sults is provided to the user. Many of the classic weighting
functions used in traditional search engines can also be
applied to entity-oriented search.

While in search engines the relevance of a document is
definitely query-dependent, query-independent evidence
can still be used to better discriminate documents. No-
table query-dependent approaches include TF-IDF [10, 11],
BM25 [12], language models [13] or divergence from ran-
domness [14]. In Section 3.1.2 we show an example of how
the task of adhoc entity retrieval canbemapped to the task
of ad hoc document retrieval, as a way to reuse these ex-
isting ranking functions. Query-independent approaches,
on the other hand, include document priors like document
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length, number of incoming links or URL depth [15, 16],
as well as the well-known PageRank algorithm [17], along
with social signals based on the number of likes, shares
or bookmarks in different social media platforms [18], or
even based on specific Facebook emotions [19]. Otherwork
has also used documents as indicators of expertise [20],
slightly reversing the roles (i.e., documents as entity pri-
ors; see also Fang and Si [21]). Additionally, there has been
work showing that closely linked documents usually cover
similar topics [22]. This is also know as the cluster hypoth-
esis, which has been shown to be true for web-based col-
lections [23]. It is a necessary condition to be able tomodel
relevance using proximity-based traversals over graphs or
hypergraphs. The work we describe here takes advantage
of links in semi-structured data fromWikipedia, modeling
the collection as a hypergraph, and retrieval as short ran-
dom walks in that hypergraph.

One of the approaches for ranking over (hyper)graphs
is to use random walks based strategies. PageRank is an
example of a query-independent feature that can model
the influence of a page in the web graph. Over time, sev-
eral PageRank variants have been proposed and, in par-
ticular for entity-oriented search, there are some interest-
ing applications worth mentioning. These include ReCon-
Rank [24], ObjectRank [25], PopRank [26], HubRank [27]
andDatasetRank [28]. Overall, these algorithms aimat pro-
viding better link analysis for the semantic web, by inte-
grating information from the web graph (or some other
context-establishing element like “dataset”) with informa-
tion from a knowledge graph (links between objects or
entities, usually with different weights for different types
of relations). The work we present here shares some of
the ideas introduced by these approaches, but proposes
a hypergraph-based model, where context is established
by hyperedges and ranking is done through simulated ran-
dom walks.

3.1.2 Retrieval tasks

In order to propose a generalizedmodel,wemust first iden-
tify the commonalities between the elements we are at-
tempting to model. In entity-oriented search, this means
identifying which elements we should represent, which
elements should be used to query and which elements
should be ranked and retrieved. In this section, we pro-
vide anoverviewon the retrieval tasks fromentity-oriented
search, in particular describing some of the representation
and retrieval models used to tackle each task.

Ad hoc document retrieval
It is frequent for modern search engines to return a rich
assortment of results, including documents, entity lists
and information cards, direct answers, etc. Ad hoc docu-
ment retrieval has, however, remained a central task in
the area, improving its effectiveness through semantics.
Entities and their relations can be harnessed to improve
the traditional process of document retrieval by further-
ing informing retrieval. Raviv et al. [29] have proposed
such a method, where they have enhanced document re-
trieval using entity-based language models. Interestingly,
their model accounted for the uncertainty that is inher-
ent to entity linking, which we are also interested in ex-
ploring as part of the general ranking approach over the
hypergraph-of-entity. They also explored the balance be-
tween term-based and entity-based information. In partic-
ular, they experimented with cluster-based document re-
trieval, while testing several combinations of term-based
and entity-based language models to induce clusters, as
well as document-query similarities.

Ad hoc entity retrieval
Ad hoc entity retrieval is one of the fundamental tasks
in entity-oriented search. It consists of taking a keyword
query, potentially containing natural language segments,
and transforming it into a ranked list of entities — some-
times also called objects or “things” [30]. The challenge
is combining associated textual passages with underlying
knowledge that accompanies the mentioned entities, not
only to improve effectiveness, but also to provide novel
ways of harnessing all available information. This is fre-
quently achieved through virtual documents [3], learning
to rank [31–33] or the integration of signals separately ob-
tained from an inverted index and a triplestore [34]. Our
hypothesis is that we are missing out on the opportunity
to follow the leads across the boundaries of text, through
the space of knowledge and back, as needed, by using sep-
arate models that only coalesce during ranking.

Related entity finding
Another central task in entity-oriented search is related en-
tity finding. Given a source entity, a target type and the na-
ture of the relation (e.g., [ bands like Slayer ], where the
source entity is given by Slayer, the target type by bands
and the relation by like), find other entities of the given tar-
get type that respect the specified relation (e.g., Anthrax,
Metallica and Kreator are all bands that share a common
genre or are like Slayer). Cao et al. [35] proposed a bipartite
graph based method for related entity finding, built from
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the co-occurrence of entities in unstructured and struc-
tured lists. They first identified candidate entities of the
given target type, calculating an initial relevance score. At
that point, some relatedbut unpopular entitieswould rank
lower than expected. In order to solve this issue, they used
the bipartite graph containing two disjoint sets, one for
candidate entities (initially scored) and another one for
the instances where candidate entities occurred (the lists).
This means that, whenever a candidate entity occurred in
a given instance, the respective nodes would be linked. In
order to compute the final relevance score, they used a pro-
cess analogous to heat diffusion over the graph, in order
to propagate the initial relevance scores until convergence.
This process relied on the idea that entities similar to rele-
vant entities are also relevant (according to the cluster hy-
pothesis for entity-oriented search [36]). This resulted in
the boosting of unpopular but related entities using list
co-occurrence as an indicator of similarity. This is an inter-
esting approach, regarding what we propose in this work,
for two reasons: first, there is a relation between bipartite
graphs and hypergraphs, since an instance node could be
represented as a hyperedge of candidate entity nodes in-
stead; secondly, the authors propose an alternate method
to random walks for propagating weights over the graph
(heat diffusion).

Entity list completion
Another important task in entity-oriented search is entity
list completion. This task is similar to related entity find-
ing, but also takes into consideration a given set of ex-
ample entities that serve as relevance feedback. The goal
is to rank and retrieve other similar entities (e.g., given
Slayer as the source entity,bands as the target type and like
as the relation, as well as Anthrax, Sepultura and Metal-
lica as the examples, the list could be completed with
entities like Kreator, Megadeth and Lamb of God, which
are thrash metal bands like the source and example en-
tities). Bron et al. [37] compared text-based and structure-
based approaches for entity list completion, finding that
both approaches were effective, despite returning differ-
ent results. This led them to experiment with linear com-
binations of both approaches, as well as a method that
switched between either approach depending on the pre-
dicted effectiveness (using example entities as relevance
judgment). Their experiments have shown that combin-
ing text and knowledge outperformed either one of the ap-
proaches when independently used. One question that re-
mains is whether highly hybrid methodologies, that indis-
criminately take advantage of either terms or entities and
their relations, are able to perform better.

Fang and Si [21] have proposed two unified probabilis-
ticmodels for related entity finding, one ofwhich they also
applied to entity list completion (ELC). While, for this sec-
ond task, they ignored the example entities provided in the
topics, they were still able to reach the best performance,
according to MAP, for the ELC task in TREC 2010 Entity
track. Both models considered probabilistic components
for candidate entity type, expected entity type and type
matching. Model A contained probabilistic components
for entity relevance, as well as for source and target en-
tity co-occurrence, while Model B contained a probabilis-
tic component for entity relevancewithout considering the
source entity, aswell as an entity prior component. The dif-
ference was in Model B ignoring the source entity. Experi-
ments, however, showed a better performance forModel A,
when compared to Model B, supporting the importance of
the source entity in the modeling process. The good over-
all performance of such a holistic probability framework
illustrates the importance of a unified model that is able
to capture the complex relations between the units of in-
formation.

3.1.3 Why a unified model?

Pound et al. [38] have proposed five query categories for
entity-oriented search— entity query, type query, attribute
query, relation query, and other keyword query. These, in
many cases, can be mapped into specific tasks of entity-
oriented search. For instance, an entity query could be
solved through ad hoc entity retrieval, while a type or re-
lation query might be solved through related entity find-
ing or entity list completion. Devezas et al. [39] have also
shown that it is possible to use a graph to implementmulti-
ple recommendation tasks that are not unlike some of the
tasks we have presented in this section. This adds to the
evidence that a joint representation and retrieval model
might be viable and generalization might be possible.

Furthermore, when using combined data for multiple
different retrieval tasks, the question of generalization in
information retrieval intensifies. Is it possible to devise a
representationmodel that is capable of integrating hetero-
geneous information (or, more simply, text, entities and
their relations), as well as an associated retrieval model
that is able to, with the configuration of some parame-
ters (or through sequential output), return each of the el-
ements of the expected rich results? We already know that
learning to rank [31, 33] is a good method to integrate fea-
tures from potentially heterogeneous data, but we would
need to train a model for each of the tasks (e.g., one to
predict document relevance based on the query, and an-
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other one to predict related entities based on one or sev-
eral of thementioned entities). Training separatemodels is
completely acceptable and itmight even improvemodular-
ity from an engineering perspective, however the question
of generalization remains. Is it possible? Moreover, if it is
possible, what type of gain or unpredicted consequences
would arise from such a unified model? Will it result in im-
proved retrieval effectiveness or decreased performance?
We explore this idea, beginning with the proposal of a
generalizedhypergraph-basedmodel, designed to support
entity-oriented search tasks, such as ad hoc document re-
trieval when enhanced with structured knowledge.

3.1.4 Test collections

We built our evaluation framework on top of the INEX
2009Wikipedia Collection [9]. This collection,which is fur-
ther described in Section 5.1, provides a way to assess the
performance of ad hoc document retrieval, through the
INEX Ad Hoc track [40]. It also provides relevance judg-
ments from INEXXMLEntity Ranking track [41], which can
be used for assessing entity ranking, as well as entity list
completion, in our future experiments. There are, however,
other test collections that can be considered for the eval-
uation of generalized retrieval models in entity-oriented
search. These include ClueWeb09¹ with relevance judg-
ments fromTRECWeb track [42] andTRECEntity track [43];
Sindice-2011 Dataset [44] with relevance judgments from
TREC Entity track; and TREC Washington Post Corpus²
with relevance judgments from TREC Common Core track³
and TREC News track⁴. However, for the reasons we enu-
merate next, we didn’t use any of these collections for eval-
uation. ClueWeb09 is a large collection, with web-scale
challenges that are out of the scope of this work. Despite
its recognizable relevance in early entity-oriented search
research, Sindice-2011 Dataset is no longer easily available
(we could not find it on the web). Furthermore, no asso-
ciated relevance judgments for ad hoc document retrieval
were found. TREC Washington Post Corpus is a fairly re-
cent dataset, which had not yet been released at the time
of preparing our experimental framework. However, it is
an appropriate and easily available test collection that we
will consider in the future.

1 http://lemurproject.org/clueweb09/
2 https://trec.nist.gov/data/wapost/
3 https://trec-core.github.io/2018/
4 http://trec-news.org/

3.2 Graph-based models

Graphs are particularly good for integrating data and,
while they are inherently used to model knowledge (e.g.,
through ontologies), they can also be used to represent
text [4, 5, 45, 46] and their relations [4, 5, 45, 47, 48].

Blanco and Lioma [4] have proposed a graph of terms
able to capture context by linking co-occurring terms
within a window of size N, using either undirected edges,
or directed edges to express grammatical constraints.
Rousseau and Vazirgiannis [5] have also explored this
idea by proposing that directed edges should instead be
used to link each term at the beginning of the window
to its following terms within that window, thus captur-
ing term dependency instead of grammatical constraints.
Both approaches defined a graph of terms based on co-
occurrence, but they did not include any entity-based in-
formation. More recently, Zhu et al. [49] proposed a natu-
ral language interface to a graph-based bibliographic in-
formation retrieval system. Through named entity recogni-
tion and dependency parsing, they were able to generate
a graph query that was capable of correctly interpreting 39
out of 40 natural language queries of varied complexities.
Despite some domain-dependent limitations, introduced
for higher performance, they presented an interesting re-
sult: graphs have the potential to significantly aid in query
interpretation, thus improving overall retrieval effective-
ness.

On the other side of the spectrum, focusing on knowl-
edge instead of text, Blanco et al. [50] have explored the
problems of effectiveness and efficiency for ad hoc entity
retrieval over RDFdata. Their ranking approachwas based
on BM25F, experimenting with three representation mod-
els: (i) an horizontal index, where fields token, property
and subject respectively stored terms, RDF properties and
terms from the subject URI; (ii) a vertical index, where
each field represented a separate RDF property contain-
ing terms from the respective literals; and (iii) a reduced
version of the vertical index where fields represented im-
portant, neutral and unimportant values according to their
weight. While this approach enabled search over a knowl-
edge base and, to some degree, integrated text and knowl-
edge, it still missed on the opportunity to capture the im-
plicit relations thatwe so naturally use as part of our cogni-
tiveprocess.Wecaneasily derivenewknowledge from text,
alternating between potentially incomplete fragments of
text and knowledge and following themas leads to our des-
tination.

In this work, not only we attempt to integrate text and
knowledge in a single representationmodel, butwe refrain
from prematurely moving into the inverted index based
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on the extraction of features from the (hyper)graph-based
representation. Despite obvious efficiency issues, we are,
at this stage, purely focused on exploring the potential of
the (hyper)graph as the sole data structure behind the re-
trieval process. Hypergraphs, in particular, have the poten-
tial to take even further what graphs already provide by
modelingnot only binary relations, but also n-ary andhier-
archical relations, while capturing intersections between
groups of nodes.

3.3 Hypergraph-based models

While hypergraphs have been previously used in informa-
tion retrieval, they still don’t play a major role in well-
known tasks, despite their potential. The most notable
work we found was the query hypergraph proposed by
Bendersky and Croft [51], where vertices represent con-
cepts from the query, and edges represent the dependen-
cies between subsets of those vertices. Based on the idea
of a factor graph (a bipartite graph or a kind of hyper-
graph), they proposed a ranking function to obtain a rel-
evance score of a document given a query, based on local
and global factors, which worked as hyperedge weights.
Their hypergraph was able to represent higher-order term
dependencies, therefore modeling dependencies between
termdependencies,whichneither theMarkov randomfield
model or the linear discriminant model were able to do,
despite similarities within the ranking functions. They de-
fined two types of hyperedges: local, between individual
concepts and the document, and global, between the en-
tire set of concepts and the document. Their methodical
approach can be regarded as a fundamental step in sup-
porting hypergraph-based work in information retrieval.
In this work, we explore multiple types of relations be-
tween concepts, however our concepts consist not only of
terms, but also of entities, and we mention weights as op-
posed to factors.

Hypergraphs have also been recently used for summa-
rization [52], as an XML alternative for the semi-structured
representation of text as a graph [53] or to model folk-
sonomies, promoting the serendipitous discovery of new
content [54]. Even in 1981, in the area of social network
analysis, Seidman [55] had noticed the inability of anthro-
pologists and sociologists to study social networks based
only on dyadic relationships, proposing hypergraphs as a
way of better modeling non-dyadic relationships, such as
group membership. Moreover, hypergraphs have already
been particularly useful in music recommendation [6, 56–
58] through unified approaches for modeling heteroge-
neous data or through the use of random walks.

In his last lecture, von Neumann [59] discussed how
the brain can be viewed as a computing machine, thus re-
inforcing the relevance for cooperation between computer
science and neuroscience. Interestingly, there is evidence
in cognitive science of the relevance of hypergraphs in
modeling functional connectivity in the brain [60–63], as
well as learning and memory [64]. In particular, the work
by Gu et al. [63] in neuroscience has led to three hyperedge
archetypes — stars, bridges and clusters —, two of which
we also use in this work — clusters of terms and entities
as documents, and bridges established by synonyms and
context. Hypergraphs have also been proposed as a model
for the creation of artificial general intelligence [65], which
would be fundamental for a cognitive search engine. As-
suming that we would be able to effectively represent text
and knowledge using a hypergraph, thenwemight be able
to take advantage of both set theory, using metrics like the
Jaccard index to measure similarities, or random walks in
hypergraphs [66], where we might use hyperedge weights,
but also node weights to control the traversal. These are
ideas that we explore in this work, aiming at understand-
ing if hypergraphs have the potential to improve retrieval
effectiveness, assuming text and knowledge as heteroge-
neous but strongly related data, that power the process of
entity-oriented search.

We have seen that graphs can be used to represent
both unstructured text (e.g., graph-of-word) and struc-
tured knowledge (e.g., DBpedia). Hypergraphs cango even
further, capturing for instance synonyms as a single hyper-
edge. In previous work [67], we have already explored the
unification of terms, entities and their relations as a graph,
proposing the graph-of-entity as a representation model
for entity-oriented search. In our experiments, we encoun-
tered both indexing and retrieval challenges, in particu-
lar regarding efficiency.With the hypergraph-basedmodel
we describe here, some of those issues were mitigated. In
particular, it was possible to greatly reduce the number
of edges in the original graph-of-entity. With only slight
modifications, we were able to group a larger number of
related nodes through hyperedges. This is yet another ad-
vantage of hypergraph-based representations, that is fur-
ther detailed in Section 5.4.1.

4 Hypergraph-of-entity
Ad hoc document retrieval is traditionally a text retrieval
task. Semantic search, however, frequently takes advan-
tage of annotated collections, where entities are recog-
nized and linked to external knowledge bases to improve
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Wikipedia Article for "Semantic search" 

Text Block
Corresponding to the traditional structure
of a text document as indexed in an
inverted index, such as Apache Lucene.

Knowledge Block
A set of triples with information associated
with the document. There can be
redundancy among different documents.
Information can be automatically extracted
from the text or hyperlinks in the
document, linked to external knowledge
bases, etc.

doc_id: 11246715

Semantic search seeks to improve search accuracy by
understanding the searcher's intent and the contextual meaning of
terms as they appear in the searchable dataspace, whether on the
Web or within a closed system, to generate more relevant results.
[...]

(Semantic search, related_to, Search Engine Technology)
(Semantic search, related_to, Intention)
(Semantic search, related_to, Contextual (language use))
(Semantic search, related_to, World Wide Web)
[...]

Unique Identifier

Figure 1: Extended document definition for combined data. Example based on the Wikipedia article about “Semantic search”.

document retrieval. In this work, we assume that, like en-
tity annotations, relevant relations are also a part of the
annotated document, extending it. Given a document con-
taining a text block of unstructured data, as well as a
knowledge block of structured information (i.e., entities
and relations that are relevant to the document), our goal
is to propose a joint representation model able to provide
seamless integration, aswell as support for entity-oriented
search tasks, from ad hoc document retrieval to related
entity finding. A regular document usually contains multi-
ple text fields (e.g., title, content, etc.), which corresponds
to the text block in the extended document. However, we
also include a knowledge block, in the form of triples,
that are usually available as structured data in the orig-
inal document. The knowledge block can be directly ex-
tracted from a semi-structured document (e.g., building
triples based on links to other documents), but it might
also be obtained from an information extraction pipeline.
There is no restriction about the source of the knowledge
block, except that it should represent a set of triples re-
lated to the document. For example, the triples might rep-
resent co-occurring entities in a sentence or paragraph, or
statements obtained from a dependency parser, or they
could represent external knowledge about identified enti-
ties, from an external knowledge base.

Figure 1 illustrates such an extended document based
on the Wikipedia article for “Semantic search”, and it in-
cludes a unique identifier, the text block describing the en-
tity, and the knowledge block containing triples based on
hyperlinks (i.e., using Wikipedia as the knowledge base).
We propose that a hypergraph would be the ideal data
structure to represent a collection of extended documents,
effectively capturing the dependencies and higher-order

dependencies between terms and entities in relation to the
documents. Take for example a document hyperedge cre-
ated to associate all the elements within a document, in-
cluding its terms and entities. Through higher-order de-
pendencies we are, for instance, able to capture subsump-
tion, where documents subsume (i.e., are more general
than) relations between entities — we might interpret it as
“document d1 explains the relations between entities e1,
e2 and e3”. The hypergraph-based model, detailed in Sec-
tion 4.1, is able to capture multiple levels of information
about the text, the entities and their relations, providing
a more unified and insightful view over all available infor-
mation. Although in this contribution we do not explicitly
assess the impact of subsumption or hierarchical relations,
but only of n-ary relations based on synonymy and con-
text, we do highlight the ability for the model to capture
such complex relations. Moreover, regarding ranking, doc-
ument relevance scoring is based on biased randomwalks
over the hypergraph, departing from a set of term and en-
tity nodes that represent the query. This is a ranking ap-
proach that closely depends on the structure of the hyper-
graph, making it easier to track the impact that changes to
the representation have in retrieval performance. The re-
trieval model is detailed in Section 4.2.

4.1 Representation

In this section, we introduce the variations of the hyper-
graph-of-entity representation model. This includes the
base model, as well as multiple extensions based on syn-
onyms, context and weights.
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Figure 2: Hypergraph-of-entity base model, representing the first
sentence of the Wikipedia article for “Semantic Search”.

4.1.1 Base model

The hypergraph-of-entity is, in many ways, a simplifica-
tion of the graph-of-entity [67]. In the graph-of-entity, the
sequence of terms in a document was captured through
term–term edges with a doc_id attribute, while in the
hypergraph-of-entity we discarded term dependency in or-
der to be able to model the terms within a document as a
single hyperedge. This model is analogous to the bag-of-
words, in the sense that term dependency is not captured
by hyperedges (sets of nodes). Besides this major differ-
ence (one hyperedge per document), there are three other
notable differences between the hypergraph-of-entity and
the graph-of-entity: (i) each document hyperedge also con-
tains nodes for entities mentioned within the document;
(ii) sets of entities can be linked through a related_to hy-
peredge; and (iii) sets of terms can be related to an entity
through a contained_in hyperedge. We use a mixed hyper-
graph to represent a collection of documents. This means
that hyperedges can be directed — from a set of terms to
an entity (contained_in) — or undirected — sets of terms
and entities (document), and sets of related entities (re-
lated_to).

In undirected hypergraphs, a set of nodes is a hyper-
edge. In directed hypergraphs, a hyperedge (or hyperarc)
contains two sets of nodes — the set of source nodes is
called tail, while the set of target nodes is called head. In
the hypergraph-of-entity, we always have tail sets with car-
dinality one (for directed contained_in hyperedges) — this
characteristic might be useful for defining a tensor repre-
sentation of the hypergraph. Figure 2 provides a basic illus-

tration of this model, without capturing hyperedge direc-
tion. In the figure, pink nodes represent terms and green
nodes represent entities. All term and entity nodes are
linked by a yellow undirected hyperedge that represents
the document as the set of its terms and entities. Entity
nodes are linked by green undirected hyperedges, when
the entities are related (e.g., through a property in an on-
tology). Sets of term nodes are linked to an entity by a pink
directed hyperedge, whenever the terms are a good repre-
sentation of the entity (e.g., through substring matching).

In particular, Figure 2 represents a single document
based on the first sentence of the “Semantic Search”
Wikipedia article:

Semantic search seeks to improve search [Search Engine Technol-
ogy] accuracy by understanding the searcher’s intent [Intention]
and the contextual [Contextual (language use)] meaning of terms
as they appear in the searchable dataspace, whether on the Web
[World Wide Web] or within a closed system, to generate more
relevant results.

Underlined terms within the text block represent links to
other Wikipedia entities (shown in square brackets). This
establishes the knowledge block, already depicted in Fig-
ure 1. Each term obtained from the tokenization of the text
block is represented only once within a document hyper-
edge, regardless of its frequency within that document.
The same happens when multiple links to the same entity
are found — the entity is always represented by the same,
uniquenode.A similar structure is found in thedocuments
of INEX 2009Wikipedia Collection, which we use to evalu-
ate our model (cf. Section 5).

In order tobetter visualize thedifferencesbetween this
representation and the graph-of-entity, we recommend
comparing Figure 2 with the right side of Fig. 1 from De-
vezas and Nunes [68], which indexes the same document
we illustrate here. For that particular instance of the graph-
of-entity, we had 22 term nodes and 5 entity nodes (the
same number as the hypergraph-of-entity), but we also
had32 edges as opposed to only7hyperedges in themodel
we propose here. Such a significant edge reduction was
in part possible because of the loss of term dependen-
cies, when switching to the hypergraph-of-entity from the
graph-of-entity.

4.1.2 Extensions

We provide three types of extensions to the base model
— synonyms, context and weights —, which we can com-
bine and reorder in any way we want. Extending the base
model with synonymy and contextual relations provides a
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kind of “organic” query expansion. We usually depend on
query expansion to retrieve previously unreachable doc-
uments that did not match the user’s vocabulary. With
the hypergraph-of-entity, this becomes an inherent part
of the ranking process, as it simply requires the addition
of new hyperedges linking to related terms. On the other
hand, introducing node weights enables term and entity
boosting, and introducing hyperedge weights enables doc-
ument boosting and the assignment of certainty to the in-
formation represented by the hyperedge, thus constricting
the flowof randomwalks and directing thewalker through
the most probable paths. In this section, we provide fur-
ther details on how synonyms, context and weights were
obtained and added to the hypergraph-of-entity.

4.1.2.1 Synonyms
We used WordNet 3.0, through JWI, the MIT Java Wordnet
Interface⁵, to obtain the synset for the first sense of each
term (i.e., the sense that is more frequently used), assum-
ing that the term is a noun. We integrated synonyms into
the hypergraph-of-entity by adding missing term nodes
(i.e., that were not originally a part of the collection’s vo-
cabulary) and linking all terms from the synset using a syn-
onym hyperedge. For example, if a document contained
the term “results”, we would search WordNet as follows:

$ wn results -synsn

Synonyms/Hypernyms (Ordered by Estimated Frequency) of
noun result

4 senses of result

Sense 1
consequence, effect, outcome, result, event, issue, upshot

=> phenomenon

Sense 2
solution, answer, result, resolution, solvent

=> statement

Sense 3
result, resultant, final result, outcome, termination

=> ending, conclusion, finish

Sense 4
resultant role, result

=> semantic role, participant role

5 https://projects.csail.mit.edu/jwi/

Figure 3:Word2Vec SimNet: “musician” ego network, with a depth
of three. Nodes size is proportional to the betweenness centrality
and colors identify clusters of densely connected terms.

For this particular case, we would obtain four senses. We
would then take the synonyms (i.e., the synset) from Sense
1 and link all the terms using a synonym hyperedge con-
sisting of the following set of terms: “results” (the orig-
inal term), “consequence”, “effect”, “outcome”, “result”,
“event”, “issue” and “upshot”. At the same time, we stored
information about the number of senses for each term, as
it is useful to compute the weight of the synonym hyper-
edges.

4.1.2.2 Context
Two terms were considered contextually similar whenever
they were frequently surrounded by similar terms. We
used word2vec [69] word embeddings to establish context,
based on the implementation provided by Gensim⁶. The
model can either be trained with the same collection that
is being indexed, or use an external text collection that
might be more relevant to impose context within the given
domain. Several hyperparameters can be tuned to control
word2vec.We extractedword embeddings of size 100, con-
sidering moving windows with 5 words and discarding
words with a frequency below 2 in the collection. Once we
extracted the embeddings for all terms in the collection,
we used the cosine similarity to find the k-nearest neigh-
bors, with k = 2, building a similarity network where an
edge was created between a term and each of its nearest

6 https://radimrehurek.com/gensim/models/word2vec.html
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Figure 4: Hypergraph-of-entity model partial view, showing some of
the new synonym (red) and context (blue) hyperedges. Term nodes
from the original document are displayed with a stronger border
stroke.

neighbors, but only when the similarity was above a given
threshold (we used 0.5). Throughout this article, we call
this the Word2Vec SimNet. Figure 3 shows the neighbor-
hood of “musician” (its context), up to amaximumof three
nodes in distance, in the Word2Vec SimNet for the INEX
2009 subset (see Section 5.1). Aswe can see, even if a query
for “guitarist” or “bassist” is issued, documents contain-
ing only “musician” can also be considered, although ex-
panding from “guitarist” should result in a higher weight
to documents containing “musician” than expanding from
“bassist”, since “musician” is adjacent to “guitarist”, but
“bassist” can only reach “musician” through “guitarist”.
This is the kind of rationale that a graph-based design
supports, simultaneously allowing for a better explana-
tion and the promotion of transparency.We integrated this
graph-based information into the hypergraph by creating
an undirected context hyperedge, linking each term to all
of its contextually adjacent terms. Were the user to require
an explanation as to why a particular ranking was pro-
vided for a given query, we would be able to list the paths
traversed from the seed nodes representing the query. We
could either do it exhaustively (i.e., list all paths), or based
on descriptive statistics, like the number of paths leading
to ranked nodes, along with a few examples. Either way,
graph-based or hypergraph-based models are easily trace-
able.

Figure 4 illustrates the hypergraph-of-entity revision,
showing only synonym and context hyperedges, both ex-
amples of n-ary relations between multiple term nodes.
We also added any missing term nodes that were external
to the document, but present in the list of synonyms or
contextually similar terms (in the figure, we only included

some of the original terms to illustrate the different pat-
terns). All nodes within blue context hyperedges were al-
ready a natural part of the hypergraph (i.e., contained in
the original collection), since word2vec was trained with
the same collection. However, synonyms might be exter-
nal to the collection, therefore resulting in the addition
of new term nodes that are not a part of any document.
As we have seen before, both synonyms and contextually
similar terms establish bridges betweenpotentially discon-
nected, but related, documents, increasing the chances of
improving recall over the base model. In the figure, nodes
that are a part of the document are visually identified by
a stronger border. Most of the document term nodes are
not synonyms or contextually similar to one another. How-
ever, the terms “semantic” and “contextual” are both con-
nected, since “contextual” is one of the top-2 most similar
terms to “semantic”, according to their word embeddings.
Other interesting subhypergraphs include for instance the
neighborhood of term “results”, that contains appropriate
synonyms like “consequence”, “result” (the singular) or
“effect”, but also less clear synonyms like “issue” or “up-
shot”; contextually, however, we are able to reach both
“outcome” and “outcomes”, with “outcome” already cov-
ered by the synonyms (but not its plural), an indicator that
relevant related terms might only be reachable through
context.

4.1.2.3 Weights
By default, all nodes and hyperedges were unweighted. As
another extension to the index, we assigned probabilis-
tic weights to nodes and hyperedges. We did this for two
main reasons. First, not all terms or entities (our nodes)
are equally relevant, from a query-independent perspec-
tive; the same happens for related entities, contextual
terms, or synonyms that depend on word sense (our hy-
peredges). Secondly, assigning weights might serve as a
base for pruning in the future, which we predict might im-
prove overall performance. Regarding effectiveness, con-
stricting available paths is a way of increasing focus in the
model and thus of guiding random walks. Regarding effi-
ciency, a lower number of nodes andhyperedges result in a
lesser amount of used memory, but also in a faster conver-
gence of randomwalk visit probability, thus requiring less
CPU cycles to reach an optimal result. On the other side,
the non-uniform random selection of a node or hyperedge
during random walks is more expensive than selecting an
incident node or hyperedge uniformly at random, which
means this requires experimentation.

The aim of the weights assigned to nodes and hyper-
edges was to provide discriminative power, thus requir-
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Table 1: Hypergraph-of-entity weighting functions.

(a) Nodes.

Node Weight Description

term 2S
(︁
α N−ntnt

)︁
− 1 We used a variation of the IDF, with a tunable α < 1 parameter to

control how fast the function decreases.
- S is the sigmoid function
- N is the number of documents in the collection
- nt is the number of documents where a given term t occurs.
- We used α = N−0.75.

entity Same as term. In the future, we will experiment with different values of α for
terms and entities, in particular alternative exponents to −0.75.

(b) Hyperedges.

Hyperedge Weight Description

document 0.5 Linking a term or entity simply through document co-occurrence
is weak, so we use a constant weight lower than one.

related_to 1
|E|

∑︀
v∈E

|{u∈F|F∈E\{E}∧v∈F}|
|E| For each entity within the hyperedge, we calculate the fraction

of reachable other entities and average all results.
- E is the set of all related_to hyperedges.
- E ∈ E is the specific related_to hyperedge, for which we are
calculating the weight.

contained_in 1
|terms| We want links with fewer terms to be more frequently followed,

since certainty that any term within the hyperedge leads to the
entity is higher.

synonym 1
|senses| The higher the number of possible senses, the less certain we

are about the hyperedge, since we use the first (and most prob-
able) sense according to WordNet.

context 1
|terms|

∑︀
i
sim(termk ,termi)×minsim

minsim A context is only as good as the average of all similarities be-
tween the original termk and all other termi. We normalize the
weight taking into account the threshold used to create the
Word2Vec SimNet.

ing uniform distributions with well dispersed values. In
this work, we provide an initial approach to weighting in
the hypergraph. Table 1 provides an overview of the prob-
abilistic weighting functions that we propose, based on
the characteristics of each individual node and hyperedge
type. For this first experiment with a weighted version of
the hypergraph-of-entity, we selected weighting functions
thatwe could compute exclusively using information inter-
nal to the model. In an attempt to ensure the generaliza-
tion of the model, we also restricted the weights to proba-
bilities, in order to facilitate the eventual integration of ele-

ments fromprobabilistic information retrieval or language
models in the future.

In particular, for the weighting of terms and entities,
we used the probabilistic IDF [70], but replaced the log
function with the sigmoid function, to ensure that IDF
would always range between zero and one. In the sigmoid
IDF we provide a parameter α that controls the function’s
decrease speed. Wemanually experimented with multiple
values for α, finding that the behavior would significantly
change for collections of a different dimension. We, there-
fore, introduced a dependence on a fraction of the collec-
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Figure 5: Selecting α for sigmoid IDF, when compared to the proba-
bilistic IDF.

tion size N. Figure 5 illustrates the behavior of the proba-
bilistic IDF when compared to sigmoid IDF for base N and
exponents −0.5, −0.75 and −1. As we can see, using an ex-
ponent of −1 results in IDF values always being above 0.5
and a slow decrease behavior. On the other hand, using an
exponent of −0.5will result in a fast decrease with a large
fraction of the collectionwith an IDF closer to zero. Finally,
using −0.75 results in a decrease speed that is closer to the
behavior of the probabilistic IDF assigning a more diverse
range of values to different documents in the collection.
While we did not specifically tune α to the best approxi-
mation to the probabilistic IDF, the value that we selected
provides a good enough discriminative power.

4.2 Retrieval

We propose a ranking function, based on random walks,
that strongly captures the structural features of the
hypergraph-of-entity. We compare this function with two
baselines from a traditional Lucene⁷ inverted index: TF-
IDF and BM25 (with default parameters k1 = 1.2 and
b = 0.75). Both during indexing and querying, text is pre-
processed using an analyzer similar to Lucene’s Standard-
Analyzer, with two main differences: (i) stopwords are se-
lected based on the language-detector library, using the
corresponding dictionaries for the detected language as
providedbyPostgreSQL9.6, insteadof thedefault set of En-
glish stopwords; (ii) tokens with a length inferior to 3 char-
acters are discarded. The ranking function we propose,
Random Walk Score, requires the preselection of a set of
seed nodes that represent the query. In this section, we de-

7 https://lucene.apache.org/

scribe the seed node selection process, and the Random
Walk Score computation approach.

4.2.1 Seed node selection

The seed node selection process can be seen as part of
the “organic” process that enables a kind of stochastic se-
mantic tagging of query parts, akin to named entity recog-
nition in queries. Thus, the first step in calculating the
Random Walk Score is to map a keyword query to nodes
in the hypergraph-of-entity. This process is similar to the
graph-of-entity [67], that is, we tokenize the query into un-
igrams, mapping them to the corresponding term node (if
no match exists, the unigram is simply ignored). The term
nodes are then expanded to adjacent entity nodes (the
seed nodes), which replace them, unless no adjacent en-
tity node exists, resulting in the term node becoming its
own seed node. A confidence weight is then calculated for
each seed node, measuring the certainty of the node rep-
resenting the query. See Devezas et al. [67, Section 3.2, Re-
trieval] for further details.

Ambiguity is not dealt with during seed node selec-
tion, but instead during ranking. During seed node selec-
tion, we attempt to reach the whole universe of possibili-
ties (i.e., we find the most complete set of candidate enti-
ties that might represent the query). During ranking, how-
ever, we rely on the overall relations, naturally stored in
the hypergraph, for disambiguation. It is not infrequent to
do entity linking based on a graph of entities (and some-
times mentions) and their relations [71–73]. What we do
here is to use basic substringmatching to find a large num-
ber of candidates (many times we can have over 1,000
candidate nodes per query). Then, during ranking, while
capturing the structure of the hypergraph based on ran-
domwalks, each candidate will be visited for a given num-
ber of times, depending on the link density of the neigh-
borhood of each seed node. Seed nodes act as an open
representation of the query. Ambiguity is then solved by
cross-referencing all available information through paths
in the graph that depart from the seed nodes. Since we
also include synonyms in the hypergraph, we aren’t even
required to considermultipleword senses, as these are nat-
urally solved based on the knowledge of themodel. This is
why we simply use substring matching. Although such a
naive approach to term-entity linking can be improved, we
argue that, basedon thedescribed strategy, this is only one
step towards entity linking. Moreover, based on the cited
literature, this is a step that makes sense for our model,
wherewe already capture links between entities and terms
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(i.e., mentions), which might even be weighted with differ-
ent degrees of certainty.

4.2.2 RandomWalk Score (RWS)

In random walks, steps can be chosen uniformly at ran-
dom, but we can also establish a bias throughweighted hy-
peredges (which we can also do for graphs) and weighted
nodes (used for a random, non-uniform selection of nodes
within a hyperedge). We can also vary the length of the
walk ℓ ∈ {ℓ1, ℓ2, . . . , ℓn}, as well as the number of re-
peats (or iterations) r ∈ {r1, r2, . . . , rm}. In particular,
we experimented with the configurations given by ℓ × r ∈
{(ℓ1, r1), (ℓ1, r2), . . . , (ℓn , rm)}. The goal was to measure
the impact of increasing the walk length, the number of
repeats, or both. The length ℓ constricts or liberates the
random walker to wander closer or further apart from the
concepts that best represent the query (the seed nodes),
while the repeats r improve the certainty of the computed
ranking. For evaluation, we used ℓ ∈ {2, 3, 4} and r ∈
{102, 103}.

For each seed node, we launched a number r of ran-
domwalks of length ℓ, storing the number of visits to each
hyperedge. Per seed node, we then normalized the num-
ber of visits by dividing by the maximum and then mul-
tiplying by the seed node confidence weight. These indi-
vidual scores were then summed for each hyperedge, ob-
taining a final document hyperedge score. Random walks
respected hyperedge direction, as well as node and hy-
peredge weights, which introduced bias. In practice, this
means that wemodeled ad hoc document retrieval as a hy-
peredge ranking problem using biased random walks for
ranking. It also means that a similar strategy can be ap-
plied to ad hoc entity retrieval by modeling this task as a
node ranking problem instead. This demonstrates how the
hypergraph-of-entity is a generalizablemodel that is easily
extensible to other entity-oriented search tasks.

5 Evaluation
We experimented with multiple variations of the
hypergraph-of-entity, resulting in six different mod-
els: (i) the base model; (ii) the base model extended with
synonym undirected hyperedges; (iii) the base model
extended with undirected context hyperedges based
on word embedding similarities; (iv) the base model
extended with synonyms and then context; (v) the base
model extended with context and then synonyms; and

(vi) the base model extended with synonyms, context
and node and hyperedge weights. Table 2 provides an
overview of the tested models, showing which nodes and
hyperedges were enabled for each model. In particular, it
is relevant to notice that the integration order of synonyms
and context matters — if we introduce synonyms and only
then context, the term vocabulary might increase and
word embeddings will also be computed for the synonym
terms; on the other hand, if we introduce context and
only then synonyms, the opposite might happen, given
the word embeddings model has been trained with an
external collection whose term vocabulary does not
coincide with that from the original collection (this is not
the case in the experiments we present here).

In the remainder of this section, we present the INEX
2009 subset we used for evaluation (Section 5.1), we char-
acterize an instance of the hypergraph-of-entity, with all
the extensions, including synonyms, context and weights
(Section 5.2), we study rank stability, since Random Walk
Score is not deterministic (Section 5.3) and, finally, we as-
sess the performance of the hypergraph-of-entity repre-
sentation and retrieval model, measuring effectiveness, as
well as indexing and querying efficiency (Section 5.4).

5.1 INEX 2009 Wikipedia collection

Schenkel et al. [9] have provided an XML collection
of Wikipedia articles, annotated with over 5,800 entity
classes from the YAGO ontology. The INEX 2009Wikipedia
Collection contains over 2.6 million articles and requires
50.7 GB of disk space, for storage, when uncompressed.
The INEX Ad Hoc Track also provided 115 topics from the
2009 occurrence, with 50,725 individual relevance judg-
ments [74], and 107 topics from the 2010 occurrence, with
39,031 individual relevance judgments [40]. Each individ-
ual relevance judgment contains the query identifier, the
document identifier, the number of relevant characters,
the offset of the best entry point (usually the first relevant
passage) and offset–length pairs for the relevant passages.

For the INEX 2009 and 2010AdHoc tracks, both topics
and relevance judgments were produced by participants.
In 2010, only a fraction of the topics (52 out of 107) had
associated relevance judgments. Furthermore, only 7 top-
ics were judged by more than one individual, with the re-
maining topics being judged by a single individual. De-
spite the reduced number of judges per topic, it is impor-
tant to notice that individual passages (not documents)
were the main object of judgement. This means that every
considered document was explored in detail, which was
somewhat transposed to the relevance judgments, since
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Table 2: Hypergraph-of-entity model overview. Superscript numbers beside the check marks indicate the integration order of a node or
hyperedge in the model.

(a)Model nodes. Term nodes can be created based on the document, as well as expanded with synonyms external to the collection and
contextually similar terms based on any corpus.

Model term entity
Doc. Syn. Cont.

Base Model X X
Syns X
Context X
Syns+Context (1) (2)

Context+Syns (2) (1)

Syns+Context+Weights (1) (2)

(b)Model hyperedges. Each hyperedge is depicted with either a tuple of sets (directed) or a single set (undirected). Elements that can be
repeated are displayed with a subscript and elements that only appear once have no subscript. We use t to represent term nodes and e to
represent entity nodes.

Model document contained_in related_to synonym context weight
{tn , em} ({tn}, {e}) {em} {tn} {tn}

Base Model X X X
Syns X X
Context X X
Syns+Context (1) (2) X
Context+Syns (2) (1) X
Syns+Context+Weights (1) (2)

we know exactly which passages led each judge to assign
relevance to the document.

Due to the lack of memory for indexing the complete
INEX 2009 Wikipedia Collection with the hypergraph-of-
entity, which was supported on the serialization of in-
memory data structures, we were forced to lower the scale
to a smaller subset of the INEX 2009 collection. Accord-
ingly, we prepared a sampling method, based on the top-
ics used for relevance assessment in the INEX 2010 Ad
Hoc Track. In order to create the subset, we selected all
the 52 topics with relevance judgments, filtering out docu-
ments thatwere notmentioned in the relevance judgments
and obtaining a collection of 37,788 documents. While
this limits comparison with existing approaches based
on the same collection, it still enables us to position the
hypergraph-of-entity in regard to Lucene TF-IDF and BM25
baselines.

5.2 Hypergraph characterization

In this section, we characterize the hypergraph-of-entity
representation for the INEX 2009 subset, indexed using

the base model, with undirected document hyperedges,
alongwith synonym, context andweight extensions.Webe-
gin by providing overall statistics regarding the number of
nodes and hyperedges in the graph. We then analyze the
connectivity power of synonym and context hyperedges,
that is, their ability to establish new paths between doc-
uments. We finish by providing an overview of the weight
distributions for different types of nodes and hyperedges.

Regarding disk space, the base model (the smallest in-
dex) required a total of 654MB for a collection of 203MB
(compressed). Out of the 654 MB, 540 MB were used to
store the hypergraph, 100MB to store node metadata and
15MB to store hyperedgemetadata. On the other hand, the
basemodel extendedwith synonyms, context andweights
(the largest index) required a total of 715MB of space, out
of which 582 MB were used to store the hypergraph, 102
MB to store nodemetadata,19MB to store hyperedgemeta-
data,8MB to store nodeweights and4.5MB to store hyper-
edge weights.

Table 3 shows thenumber of nodes andhyperedges for
each type, also discriminating against direction. Aswe can
see, the total number of hyperedges is significantly lower
(almost half) than the number of nodes. This is the op-
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Table 3: Number of nodes and hyperedges of the largest index.

(a) Nodes.

Node Count

term 1,126,685
entity 905,163
Total 2,031,848

(b) Hyperedges.

Hyperedge Count

contained_in 784,672
Total directed 784,672
document 37,775
related_to 37,608
synonym 13,749
context 268,505
Total undirected 357,637
Total 1,142,309

posite behavior that we had found in the graph-of-entity,
which didn’t even include synonyms or contextual infor-
mation. Most of the nodes in the hypergraph are used to
represent terms, closely followed by entities. Most of the
hyperedges are directed, specifically used to link terms
and entities. Out of the undirected hyperedges, most are
used to establish context — we might consider increasing
the acceptance threshold for contextually similar terms,
when building the word2vec similarity network, in order
to lower the number of context hyperedges.

Relations of synonymy and contextual similarity were
responsible for establishing new connections between
documents, which in turn had the potential to improve
recall over the base model. We analyzed the base model
with synonyms and we found that synonyms established
6,968 new paths between documents, with 219.90 docu-
ments linked on average per synonym,with each synonym
ranging between 1 and 12,839 linked documents. We did
a similar analysis for the base model with context and we
found that contextual similarity established 125,333 new
paths between documents, with 53.71 documents linked
on average through contextual similarity, ranging from 1
to29,333 linkeddocuments. The significantlyhighernum-
ber of new paths introduced by context, when compared
to synonyms, might be explained by the fact that, despite
only considering noun synonyms, potentially every word
was a candidate for context extraction. On the other hand,
we notice that, on average, context established a smaller

(a) Nodes.

entity term
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(b) Hyperedges.
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Figure 6: Hypergraph-of-entity weight distributions for INEX 2009.

number of links between documents than synonyms, de-
spite the higher number of paths between each linked doc-
ument.

Figure 6 illustrates the distribution of node and hy-
peredge weights. As we can see, the selected weights are
generally left skewed, showing a long left tail with most
of the values within a range of 0.95 and 1.00 (note that
we used a bin width of 0.05). This is less evident for con-
tained_in hyperedges and does not happen for document
hyperedges (not shown in the figure), since their weight
is constant (0.5). Both contained_in and synonym hyper-
edge weight distributions have multiple missing ranges
of values. This means that, granularity-wise these weight-
ing functions are not ideal, regarding their discriminative
power. In fact, this is also true for the remainingweighting
functions.

5.3 Studying rank stability

While methods based on random walks usually converge
to a limiting distribution, there is still a nondeterminis-
tic nature to this retrieval approach. This means that the

Unauthenticated
Download Date | 7/10/19 4:30 PM



120 | José Devezas and Sérgio Nunes

Table 4:Measuring the stability of RandomWalk Score using
Kendall’s coeflcient of concordance (W), for different parameter
configurations.

(a) INEX 2009 subset
(52 topics; 37,788 documents).

ℓ r W

2 10 0.8719
2 50 0.8465
2 100 0.8450
3 10 0.8572
3 50 0.8312
3 100 0.8327
4 10 0.8439
4 50 0.8196
4 100 0.8224

(b) INEX 2009 smaller subset
(3 topics; 2,234 documents).

ℓ r W W′

2 100 0.7670 0.8386
2 1000 0.7646 0.9428
2 10000 0.9020 0.9857
3 100 0.7356 0.8733
3 1000 0.7881 0.9617
3 10000 0.9124 0.9901
4 100 0.7144 0.8957
4 1000 0.8178 0.9698
4 10000 0.9203 0.9930

probability distribution of visiting a set of nodes, given a
departing set of seed nodes, where random walkers start
from, will eventually reach similar values for repeated ex-
periments, given a sufficiently large number of iterations
r. Measuring the performance of the Random Walk Score
only makes sense when in context with a rank stability
analysis, through the measurement of rank convergence,
for different runs with the same topic and parameter con-
figuration.

We measured rank stability based on the Kendall’s co-
efficient of concordance (Kendall’s W) using fixed configu-
rations of the RandomWalk Score as the ranking function.
We repeated the samequerymultiple times, for a given con-
figuration of ℓ and r, and then normalized each ranking
list to ensure that they all contained the same set of doc-
uments. Missing documents were added to the end of the
list, sorted by doc_id to ensure consistency in the calcula-
tion of Kendall’sW, for equivalent rankings, with the same
set of missing documents.

Table 4a summarizes the results for ℓ ∈ {2, 3, 4} and
r ∈ {10, 50, 100}, using the geometric mean⁸ over 100
repeats for each of the 52 topics of the INEX 2009 subset.
For such low values of r, we did not find a significant dif-
ference in concordance, beyond a slight indication that a
higher walk length ℓ tends to lower the concordance W.
This is expected, since the longer the length of the walk,
the higher the number of available path choices. More im-
portantly, we found that, even for low values of r, we al-
ready achieve a concordance of over 80%. Nonaggregated

8 We used the geometric mean, since it is less sensitive to outliers
and always smaller than the arithmetic mean, thus providing a more
conservative result. However, for this particular case, the difference
between arithmetic and geometric means was negligible.

values for Kendall’sW, for each topic andparameter config-
uration, ranged from 0.7547 to 0.9521, with the first quar-
tile already reaching0.8030. Standard deviationswere un-
der 0.0521, showing stability over different topics. In or-
der to better understand the behavior of concordance for
higher values of r, we also replicated the experiment for
the smaller subset with r ∈ {100, 1000, 10000}. Results,
shown in Table 4b, illustrate the overall effect of increas-
ing r — higher values of r result in a higher concordance.
Even for low values of r, the results given by the Ran-
dom Walk Score are already considerably stable, which
increases trust that a performance assessment should re-
main fairly unchanged for different runs with the same pa-
rameter configuration. Both tables show the concordance
coefficient for r = 100, which is lower for the smaller sub-
set. Given the geometric mean was calculated over only
three topics, the influence of a single topic was quite im-
pactful. In particular, we found that topic 2010023 ([ re

tirement age ]) resulted in a much lower concordance co-
efficient, ranging from 0.4544 to 0.7905. Further analy-
sis of the remaining two topics showed that their concor-
dance coefficients were in fact higher than the geometric
mean depicts, ranging from 0.8189 to 0.9936. These val-
ues were also more in agreement with the experiment for
the larger subset, as we can see from the geometric mean
W ′, calculated after removing topic 2010023. Based on
the limited but consistent evidence of this analysis, where
an incremental behavior of concordance was found for in-
creasing values of r, we chose r = 103 as a good compro-
mise that should provide an evaluation reliability of ap-
proximately 95%.

5.4 Assessing model performance

In the previous section, we have measured the stability of
a ranking approach based on random walks. In this sec-
tion, we will understand how similar parameter configura-
tions affect the performance of the retrievalmodel.Wewill
then compare the graph-of-entity with the hypergraph-of-
entity, regarding effectiveness and efficiency, but also illus-
trate the difference in number of nodes and edges, partic-
ularly regarding the node-edge ratio.

In order to evaluate retrieval over the hypergraph-of-
entity, we used the title of each topic from the INEX 2010
Ad Hoc Track as a search query. We then assessed effec-
tiveness based onwhether or not retrieved documents con-
tained relevant passages, according to the provided rele-
vance judgments. In order to measure efficiency, we also
collected indexing and search times, as to understand the
cost of using such a hypergraph-based representation, as
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well as different parameter configurations for the Random
Walk Score.

We tested each of the variations presented in Table 2,
assessing the effectiveness of the Random Walks Score,
using a combination of parameter configurations based
on low walk lengths and high walk repeats, according to
the intuition that closer nodes to the seeds (and there-
fore to the query) lead tomore relevant documents/entities
and that a higher number of repeats leads to convergence
and therefore trustworthy results. We obtained the best
hypergraph-of-entity MAP for the base model extended
with synonyms, contextually similar terms and weights,
with ℓ = 2 and r = 103 (cf. Table 5a) — we verified that
increasing values of r suggested an increasing andplateau-
ing performance. None of the hypergraph-of-entity vari-
ations were able to surpass the Lucene baselines, reach-
ing MAP values between 0.0811 and 0.0884, when com-
pared to 0.1689 for TF-IDF and 0.3269 for BM25. The
best hypergraph-of-entity model according to GMAP, MAP
and precision was “Syns+Context+Weights”, however the
“Base Model” without extensions was able to reach the
best results for NDCG@10 and P@10. We carried a Stu-
dent’s t-test for the 28 pairs of models, comparing average
precisions for MAP and individual P@10 values per topic,
using a p-value of 0.05. Results showed that the difference
inMAP, aswell as P@10,was statistically significant for TF-
IDF and BM25, as well as for any Lucene baseline and any
hypergraph-of-entity model, but not among different ver-
sions of our model.

The introduction of weights shows the flexibility of
the model, in the sense that it is able to easily support
the boosting of terms and entities, as well as the boost-
ing of documents and other relations, in order to assign,
for instance, a degree of certainty to each piece of in-
formation. Experiments also showed that the higher the
walk length ℓ, the worse the retrieval effectiveness. This is,
by design, the expected behavior, since the further apart
nodes are from the seednodes (which represent the query),
the less related to the query they are and thus the less
relevant they are. The best recall for the hypergraph-of-
entity was obtained for “Context+Syns” (0.8148), which
was close to the baselines (0.8476 for TF-IDF and 0.8598
for BM25). The Geometric Mean Average Precision (GMAP)
was included in Table 5a because it is less affected by out-
liers thanMAP, thus providing additional insight. Through
the comparison of GMAP and MAP, it becomes evident
that a small number of topics are driving MAP up for the
hypergraph-of-entity, despite many individual topics re-
sulting in a low average precision — in some cases achiev-
ing values as low as zero (e.g., for topic 2010006 on the
best “Context” model).

In Table 5b, we find the indexing and search times for
the runs with the best MAP per variation. The hypergraph-
of-entity took 2.9 times longer to index than Lucene, when
comparing “Syns” with “Lucene”, as well as between
18.8 times longer to query (best case scenario, for the
“Syns” model with ℓ = 2 and r = 102 and Lucene TF-
IDF) and 1127 times longer to query (worst case scenario
for “Syns+Context+Weights” with ℓ = 4 and r = 103 and
Lucene BM25 with k1 = 1.2 and b = 0.75). Given the
notable difference in efficiency between the weighed and
non-weighted versions, it might be a good compromise to
use the “Base Model” with ℓ = 2 and r = 103, which is the
most effective model when considering the top 10. Overall,
search time was shown to range roughly between 9 and
23 minutes for l = 4 and r = 103 runs, with MAP scores
between 0.06 and 0.08 and a coefficient of concordance
around 0.82. However, if we consider l = 2 and a lower
value r = 102, search time will drop to a range roughly
between 22 seconds and 1 minute, with MAP scores of
roughly 0.06 and a coefficient of concordance dropping
to around 0.77. This means that we can achieve compara-
ble effectiveness, while significantly increasing efficiency,
despite compromising the concordance ofmultiple similar
runs with the same parameter configuration (i.e., the rank-
ing function won’t converge).

5.4.1 Comparing graph-of-entity and
hypergraph-of-entity

In order to better understand the differences in perfor-
mance between the graph-of-entity and the hypergraph-of-
entity, we were required to further reduce the size of the
test collection. In particular, we used a smaller subset of
the INEX 2009 Wikipedia Collection, so that we were able
to generate the graph-of-entity in a timely manner. Sam-
pling was based on a selection of 10 topics uniformly at
random, filtering out documents that were not mentioned
in the relevance judgments and obtaining a collection of
7,487 documents (80% smaller than the subset based on
52 topics).

Table 6 compares the effectiveness and efficiency of
graph-of-entity and hypergraph-of-entity, using Lucene as
a baseline. For the graph-of-entity, we used the Entity
Weight (EW) as the ranking function. For the hypergraph-
of-entity, we used the base model (i.e., without synonyms,
context or weights) and the Random Walk Score (RWS)
as the ranking function. As we can see in Table 6a,
hypergraph-of-entity is overall more effective than graph-
of-entity, exceptwhen considering themacro averagedpre-
cision (Prec.). As shown in Table 6b, hypergraph-of-entity
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Table 5: Best overall parameter configuration according to the mean average precision.

(a) Effectiveness (highest values for Lucene and Hypergraph-of-Entity in bold; differences in MAP are not statistically significant, except
between the Lucene baselines and the hypergraph-of-entity indexes).

Index Ranking GMAP MAP Prec. Rec. NDCG@10 P@10

Lucene TF-IDF 0.1345 0.1689 0.0650 0.8476 0.2291 0.2346
BM25 0.2740 0.3269 0.0647 0.8598 0.5607 0.5250

Hypergraph-of-Entity: Random Walk Score (ℓ = 2, r = 103)

Base Model RWS 0.0285 0.0864 0.0219 0.8003 0.1413 0.1269
Syns RWS 0.0281 0.0840 0.0225 0.8099 0.1301 0.1231
Context RWS 0.0134 0.0811 0.0220 0.8027 0.1218 0.1192
Syns+Context RWS 0.0299 0.0837 0.0236 0.8069 0.1310 0.1231
Context+Syns RWS 0.0296 0.0814 0.0242 0.8148 0.1256 0.1250
Syns+Context+Weights RWS 0.0313 0.0884 0.0274 0.8059 0.1256 0.1154

(b) Eflciency (lowest times for Lucene and Hypergraph-of-Entity in bold).

Index Ranking Indexing Time Search Time
Avg./Doc Total Avg./Query Total

Lucene TF-IDF 2.16ms 1m 21s 382ms 1s 148ms 59s 698ms
BM25 1s 220ms 1m 03s 461ms

Hypergraph-of-Entity: Random Walk Score (ℓ = 2, r = 103)

Base Model RWS 6.52ms 4m 05s 612ms 3m 22s 826ms 2h 55m 47s
Syns RWS 6.22ms 3m 54s 587ms 3m 31s 038ms 3h 02m 54s
Context RWS 6.35ms 3m 59s 446ms 3m 35s 623ms 3h 06m 52s
Syns+Context RWS 6.29ms 3m 57s 264ms 3m 33s 000ms 3h 04m 36s
Context+Syns RWS 6.33ms 3m 58s 659ms 3m 36s 487ms 3h 07m 37s
Syns+Context+Weights RWS 6.52ms 4m 05s 984ms 10m 55s 590ms 9h 28m 11s

is also considerably more efficient than graph-of-entity,
taking only 53s 992ms to index when compared to 1h 38m
for graph-of-entity. When analyzing search time for the
hypergraph-of-entity, we can see that there is a trade-off
between effectiveness and efficiency that canbe controlled
through parameter r. For higher values, like r = 104,
we reach a MAP score of 0.1689 but search time is a lot
higher than the graph-of-entity (13m 4s when compared
to 21s 557ms). On the other hand, for lower values, like
r = 101 or even r = 102, where we reach MAP scores
of 0.0485 and 0.1118 respectively, search time is lower
than the graph-of-entity (943ms and 11s 134ms when com-
pared to 21s 557ms). Additionally, by lowering the value
of r, we also lower the rank stability, but even for r ∈
{10, 50, 100} we were able to achieve coefficients of con-
cordance of around 0.85 (cf. Table 4a), which might be
an acceptable compromise efficiency-wise. The gain in in-
dexing speed is particularly influenced by the growth in
number of (hyper)edges when compared to the number of

nodes. While the graph-of-entity has 10 times more edges
than nodes, the hypergraph-of-entity has 2.4 times less
edges than nodes.We also carried a Student’s t-test for the
21 pairs of models, comparing average precisions for MAP
and individual P@10 values per topic, using a p-value of
0.05. Results showed that the difference inMAPwas statis-
tically significant for TF-IDF and BM25, for BM25 and any
hypergraph-of-entity model (except for r = 10), and for
graph-of-entity and the Lucene baselines. When consider-
ing P@10, behavior was similar, except for TF-IDF and any
hypergraph-of-entity model, where the difference in P@10
was not statistically significant.

6 Conclusion
We have proposed a unified representation model for the
representation and retrieval of text and knowledge, assess-
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Table 6: Graph-of-entity (GoE) vs hypergraph-of-entity (HGoE) with ℓ = 2.

(a) Effectiveness (highest values for Lucene and graph-based models in bold).

Index Ranking GMAP MAP Prec. Rec. NDCG@10 P@10

Lucene TF-IDF 0.1540 0.1710 0.1389 0.8007 0.2671 0.2800
BM25 0.2802 0.2963 0.1396 0.8241 0.5549 0.5000

GoE EW 0.0003 0.0399 0.1771 0.2233 0.1480 0.1500

HGoE
RWS(r = 101) 0.0000 0.0485 0.0734 0.3085 0.1229 0.1200
RWS(r = 102) 0.0546 0.1118 0.0342 0.7554 0.1474 0.1500
RWS(r = 103) 0.1017 0.1492 0.0199 0.9122 0.2074 0.2200
RWS(r = 104) 0.1224 0.1689 0.0167 0.9922 0.1699 0.1700

(b) Eflciency (lowest times for Lucene and graph-based models in bold).

Index Ranking Indexing Time
(Total)

Search Time
(Avg./Query) Nodes Edges

Lucene TF-IDF
27s 769ms

209ms N/A N/ABM25 316ms

GoE EW 1h 38m 21s 557ms 981,647 9,942,647

HGoE
RWS(r = 101)

53s 922ms

943ms

607,213 253,154RWS(r = 102) 11s 134ms
RWS(r = 103) 1m 17s 540ms
RWS(r = 104) 13m 04s 057ms

ing it in regard to the task of ad hoc document retrieval.We
have provided a comprehensive survey of entity-oriented
and semantic retrieval tasks, proposing a joint representa-
tion for text and knowledge, capable of supporting multi-
ple retrieval tasks, without the need to change the model.
We have used the hypergraph data structure as an alter-
native solution for capturing higher-order dependencies
in documents, entities and their relations. We presented
and assessed the performance of a base model, as well
as multiple combinable extensions, using synonyms pro-
vided by WordNet, context provided by word2vec word
embeddings similarity, and node and hyperedge weight-
ing functions. We proposed the Random Walk Score as
a method for relevance scoring and as a retrieval model
that closely depends on the structure of the hypergraph,
thus providing the flexibility to change and improve the
representation model without the need to repeatedly re-
vise the ranking function. Finally, we evaluated several
aspects of the model, characterizing the obtained hyper-
graph, studying rank stability and identifying the param-
eter configurations that best ensure the concordance of re-
peated querieswith the same configuration. In some cases,
we obtained MAP scores comparable to Lucene TF-IDF,
while capturing and integrating heterogeneous informa-

tion in a generalized representation model that provides
explicit semantics and extreme flexibility in the definition
of n-ary relations, such as synonyms and context, as well
as subsumption or hierarchical relations. We also showed
that thehypergraph-of-entity is significantlymore efficient
than the graph-of-entity in indexing time and that it can
also be configured, through parameter r, for faster search
times with only a small penalty in effectiveness. One of
the more evident limitations of the model is the lack of
consideration for document length. Although verbosity is
mitigated (term repetitions are not considered), vocabu-
lary diversity in long documents that cover multiple top-
ics is still a problem (a kind of pivoted document length
normalization is required). Despite its performance limi-
tations, particularly when compared to state-of-the-art ap-
proaches, hypergraph-based representations have the po-
tential to more naturally model our cognition process, un-
locking increasingly intelligent information retrieval sys-
tems as we study and approach the brain.
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6.1 Future work

There are several pending improvements over the hyper-
graph-of-entity, even regarding basic tasks, such as plu-
ral removal, stemming or lemmatization. At this stage,
however, we used an inclusive policy to avoid discard-
ing potentially relevant information. Therefore, in the fu-
ture, we will focus on ways to decrease the size of the
model. For instance, we would like to measure the impact
of pruning nodes and hyperedges from the hypergraph, in-
dependently for each type of node and hyperedge, as well
as based on different weight thresholds. Another alterna-
tive would be to prune similar hyperedges (e.g., based on
the Jaccard index). The goal is to understand how much
we can improve efficiency until performance starts to de-
crease. In the same line,wewould also like to explore alter-
native approaches to generating the context similarity net-
work, using different word embedding strategies, as well
as avoiding non-optimal algorithms, like k-nearest neigh-
bors, to obtain the top similar terms. An alternative would
easily be the usage of pivots for an approximatedmeasure-
ment of similarity [75].

Apart from reducing the model by pruning redundan-
cies, we would, on the other hand, like to extend it with
synonyms for verbs, adjectives and adverbs, measuring
the impact in effectiveness, and understanding whether
the usage of synsets for nouns had been sufficient. An-
other interesting idea, that has been proven to improve
query understanding [76], is the usage of dependency pars-
ing. It would be interesting to extract term dependencies
from thedocuments in a collection, buildingadependency
graph and integrating these relations into the hypergraph
(like we did for the word2vec similarity network). The idea
is that it might indirectly improve query understanding,
even for simple keyword queries, and thus positively im-
pact the overall retrieval effectiveness.

While we have focused on improving the efficiency
of graph-of-entity by defining a new hypergraph-of-entity
model, there are still scalability issues to be tackled. In
particular, we would like to asses how the model scales
over datasets like the complete INEX 2009 Wikipedia Col-
lection or even the DBLP co-authorship network. We pre-
dict that, as the size of the collection increases, efficiency
problems will become more prominent and we think this
canbemitigatedwith different approaches to the computa-
tion of randomwalks, for instance based onfingerprinting,
as described by Fogaras et al. [77] or Chakrabarti [27].

While we have proposed the usefulness of a
hypergraph-based model to capture subsumption and
hierarchical relations, we haven’t properly assessed the
impact that such decision has in retrieval effectiveness.

This is something that we will focus on in the future.
Additionally, in order to assess the generality of the
model, we intend to also implement and measure the
effectiveness of other tasks from entity-oriented search,
including ad hoc entity retrieval, entity list completion
and related entity finding, over a common representation
model. Finally, regarding node and hyperedge weighting
functions, there are still many open questions that we
aim to answer. In particular, it is not clear what the best
approach to weighting is, whether weights can be learned
automatically and whether such weightingmodels should
be dependent on the target domain or query intent. In the
future, we will also explore these questions, in particular
in conjunction with the tasks of entity list completion and
related entity finding, which always provide a target type
for querying.
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