
Juggle Mobile: Recommending Music

to Individuals and Groups

José Devezas
jld@fe.up.pt

Sérgio Nunes
ssn@fe.up.pt

Abstract

We present Juggle Mobile, a music recommender
system capable of suggesting new artists to an in-
dividual or a group of nearby people. We describe
the full process of creating such a system, includ-
ing data gathering, and recommender system train-
ing and prediction. In this work, we also tackled
recommendation to groups, proposing a balanced
rating aggregation methodology. We validated our
recommendation algorithm and further evaluated
the system’s usability and recommendations qual-
ity based on human feedback. Two iterations of
Juggle Mobile were evaluated: the first one corre-
sponding to our base system, and the second one
incorporating user feedback from the first iteration.
The recommender system suffered no change from
the first to the second iteration. Results of the sur-
vey show an average quality of recommendations,
as expected from the baseline algorithm we used.
On the other hand, we were able to surpass the
average value of 68 in the System Usability Scale
(SUS), visibly improving from the first to the sec-
ond iteration. We believe this work might be useful
to the community in the sense that it compiles the
whole process from conception to deployment of a
complete recommender system.

1 Introduction

We present Juggle Mobile, a responsively designed
system that can help users find music recommen-
dations by building a profile based on the ratings
of a randomly ordered collection of artists — using
a five-star scale, presented as Love, Like, Neutral,
Dislike, and Hate — as well as by optionally taking
advantage of Facebook and Last.fm account data
and combining it with the locally generated profile.

As opposed to music discovery services that are also
music players, we offer a system that provides a
silent experience where the user can explore infor-
mation about recommended artists and then listen
to them by using popular services such as Spotify,
Grooveshark or Last.fm. While we provide indi-
vidual recommendations, we also provide a location
based recommendation to groups feature, where the
user can select from a list of people around, based
on a sample of what they enjoy and avoid listen-
ing to, in order to combine his/her profile with the
tastes of other users. We see two main use cases for
the recommendation to groups module: (i) provide
a recommendation to a group of friends gathered
at the same location, or (ii) introduce a social bias
in the user’s profile to help deviate from an estab-
lished taste, based on people from a similar geo-
graphical context. There are several techniques for
recommendation to groups, where either user pro-
files are merged into a group profile or individual
recommendations are combined in order to obtain
a mutual list of recommendations. We introduce
the awareness that these techniques might produce
unbalanced results and that we should provide a
result that is independent of the profile size of each
group element, so that users with a large number
of ratings do not dominate the results.

This paper serves to introduce this idea and to
describe the architecture and user interface of our
recommendation system. In Section 2, we provide
a short survey on recommender systems. In Sec-
tion 3, we describe the modules of our system and
the architecture of the most relevant parts. In Sec-
tion 4, we describe how the system interacts with
the user, explaining some of the main challenges
of design. In Section 5 we evaluate our system
regarding usability and quality of the recommen-
dations, based on cross-validation and on human

1



input. Finally, in Section 6, we conclude by high-
lighting some of the considerations to have when
building recommender systems and by proposing
some lines of future work.

2 Reference Work

In the following sections we will present an overview
on recommender systems, focusing on collaborative
filtering, particularly based on latent factor models,
and music recommendation to groups.

2.1 Collaborative Filtering

As part of the winning team of the Netflix Prize
competition1, Koren et al. [9] demonstrated that
matrix factorization models are superior to near-
est neighbor techniques, for collaborative filtering.
Neighborhood methods tackle the problem of rec-
ommendation by either finding other users that
rated items similarly to the user, or by finding items
that were similarly rated by all users when com-
pared to the user’s highly rated items. This is usu-
ally done by comparing user or item vectors based
on metrics such as the Pearson’s correlation coeffi-
cient, the cosine similarity or the Jaccard index.

On the other hand, latent factor models, which
are usually based on matrix factorization, help un-
cover the hidden features that describe the items
(e.g. in movies: comedy vs drama, amount of ac-
tion, orientation to children), as well as how much
the users like items based on each of the uncovered
features. We can obtain these latent features by us-
ing Singular Value Decomposition (SVD), which,
given a user-item matrix M , results in the user-
features U matrix and the item-features V matrix,
along with a matrix Σ that contains the singular
values in the diagonal, which measure the impor-
tance of each feature [3]:

M = UΣV ∗ (1)

However, issues still arise from this technique, as
the user-item matrix is sparse, i.e. most of the users
haven’t rated most of the items. To deal with spar-
sity, earlier systems used imputation, for instance
by filling missing values with the mean of the row
or column, thus making the matrix dense. This

1http://netflixprize.com

presents an issue, as it’s more costly memory-wise
to compute the SVD for a dense matrix than it is
for a sparse matrix, but also because inaccurate im-
putation of values might distort the data. An alter-
native is to confine to available ratings, while avoid-
ing overfitting through a regularization procedure.
Two methods are described to solve the problem of
minimizing the difference between known and pre-
dicted ratings: stochastic gradient descent and al-
ternating least squares. Koren et al. also describe
temporal dynamics, modeling this problem based
on item biases, user biases and user preferences,
over time. While temporal features are certainly
relevant to improve recommender systems, we are
even more interested in the techniques used to in-
tegrate this information into the predicted ratings
matrix, since one of our goals is to account for so-
cial, cultural or community bias in our approach to
music recommendation.

Sarwar et al. [15] proposed and validated an in-
cremental technique for matrix factorization based
on singular value decomposition, in the context of
recommender systems. This technique, described
as folding-in, consists of adding a new vector of
user ratings to an existing factorization, which as-
sumes that the item collection will be static after
the initial factorization. To add a new user u, we
first calculate its projection onto the latent factor
space, using the formula û = uV Σ−1, and append
the projected vector û to the user-features matrix
U . While this same technique had been previously
explored by Berry et al. [1] in the context of infor-
mation retrieval, Sarwar et al. not only proposed
a new application to the area of recommender sys-
tems, but also provided an illustration to help clar-
ify the folding-in process.

2.2 Recommendation to Groups

In 2007, Jameson and Smyth [8] have explored
the challenges posed by the task of recommend-
ing for groups in the context of the adaptive web.
They identified four steps in this recommendation
process: (i) acquire information about the user’s
preferences, (ii) generate recommendations, (iii)
explain recommendations to the users, and (iv)
help the users settle on a final decision. This ap-
proach takes advantage of the collective intelligence
of users, adapting results based on a collaborative
process. We argue that, given the recent boom in

2



ubiquitous computing, there are several open op-
portunities for contribution, specially regarding the
contextual automatization of the recommendation
adaptive process. In their survey, Jameson and
Smyth cite some of the existing group recommender
systems, such as PolyLens, by O’Connor et al. [12],
or Flytrap, an intelligent group music recommender
system by Crossen et al. [4]. Both systems were
developed in 2002, a time when smartphone us-
age was far from achieving its peak. In fact, that
same year, BlackBerry launched what would be
considered the first real smartphone. In 2004, Mas-
thoff [11] studied user behavior in the selection of a
sequence of television items for a group of viewers.
She noticed that users instinctively took advantage
of the Average strategy, the Average without Mis-
ery strategy, and the Least Misery strategy, thus
having the whole group in mind when making their
choice. In 2005, having noticed the rapid develop-
ments in mobile communications technologies, Zhi-
wen et al. [18], proposed taking advantage of these
advancements to build an in-vehicle adaptive mul-
timedia recommender for groups of users. Their
approach was based on connecting the mobile de-
vices of the users and the automobile’s multimedia
system through a Wi-Fi LAN. They collected in-
dividual user preferences and fed this information
to the multimedia system, which received content
from available providers through a GPRS network
and played the best content based on the tastes
of the current passengers. Smyth et al. [17] pre-
sented, in 2005, their work on adaptive web search,
where, using a similar approach, they identified the
implicit preferences for communities of searchers,
in order to improve the results of future searches
from users with the same characteristics and social
context.

In 2013, Deventer et al. [5] have experimented
with group recommendation in a television context.
They merged the individual user profiles by using
the Least Misery rating aggregation technique to
model the group preferences, which is an effective
strategy for small groups. The system’s recommen-
dations were based on a user-genre matrix, instead
of a user-item matrix, which is quite smaller than
the latter. They also experimented with user iden-
tification schemes, both using facial recognition and
QR codes generated through a mobile application.
They left some open challenges, namely discovering
the correlation between the real group preferences

and the Least Misery aggregation, providing rea-
sons for the recommendations, and shielding the
user’s privacy given the shared environment with
co-watching friends and family.

Piliponyte et al. [13] proposed a new Balancing
approach to music recommendation to groups, as
an alternative to the traditional rating aggrega-
tion strategies: Average, Average without Misery,
or Least Misery (see Ricci et al. [14, Chapter 21,
Table 21.3] for a complete list of rating aggregation
techniques). They compared three approaches:

1. Average (the baseline), which consists of com-
puting the predicted rating for each item and
calculating the average over all the members
of the group.

2. Balancing without Decay, which is done in two
steps: first the “Average” aggregation is done
and a section of the highest rated items is se-
lected as the candidate set; then the individual
satisfaction of each user in the group is calcu-
lated iteratively, for the candidate set, when
adding a new track to the playlist, given the
sequence of previously built recommendations,
and, for each track, the sum of all the differ-
ences between user satisfactions is calculated,
recommending the next track by selecting the
lowest of these values. This means that each
track is selected sequentially based on the sat-
isfaction agreement of the group and the pre-
viously recommended tracks.

3. Balancing with Decay, which is similar to the
previous, but the satisfaction score is calcu-
lated differently, assuming that user satisfac-
tion is higher for tracks played more recently,
but also that the tracks with the highest pre-
dicted rating for each user have a higher weight
the largest their predicted rating for the user.

Based on the system they implemented to test their
hypothesis, they conclude that the Balancing tech-
niques can achieve better performance than the Av-
erage, as well as return results that are comparable
to humanly generated playlists, as created by a ran-
domly chosen group member.

Herr et al. [7] present a selection of social psycho-
logical concepts for group recommender systems,
including group identification, group norms and
social roles. The authors describe several items

3



within each topic, mapping their impact in group
recommender systems. Within the group identifica-
tion topic, they list: interpersonal attraction, self-
categorization, and interdependence. Within the
group norms, they list: communication rules and
attitude formation. And within the social roles,
they list: cognitive centrality, individual character-
istics, and expertise. This type of study is valuable
to understand group dynamics and to better tune
group recommender systems to account for real-
world group behavior.

3 System Architecture

Juggle Mobile’s backend was built in Python,
mainly supported on the flask, numpy and h5py
libraries. The recommender system’s module has
been released as open source2, while the web ser-
vices module, which represents a more trivial im-
plementation, hasn’t been released publicly. The
frontend was developed purely using HTML5, CSS3
and JavaScript, strongly supported on SAPO Ink3

for a responsive design adapted to the desktop,
tablets or smartphones.

Our system’s main task is to help users discover
new artists that might interest them. While the
user needs to build a profile to be able to make the
most of recommendation algorithms, we aimed at
making this task the least painful as possible. We
enabled the user to import tastes from Facebook
and Last.fm, but also provided random artist bi-
ographies as a means of exploration and of rating
known artists, in order to improve the user’s profile.

3.1 Artist Data Gathering

To be able to do what we just described, we must
first obtain a dataset of artist biographies along
with play counts for these artists so that we can
build our recommender engine. We started by
building a Last.fm crawler to gather user profiles
containing a series of records with at least three
fields: user, artist and play count. Given we have
released this as open source software4, we urge you

2https://github.com/jldevezas/phd/tree/master/
python-jldlab

3http://ink.sapo.pt
4https://github.com/jldevezas/phd/tree/master/

lastfm-crawler

Last.fm Crawler

Wikipedia Scraper

DBpedia Name 
Resolution

MusicBrainz Name 
Resolution

Wikipedia 
URL found?

Wikipedia 
URL found?

Seed 
username

List of artist 
names

Yes

No

Yes

No

Build URL from 
artist name.

Artist bio with 
photo

Figure 1: Subsystem for gathering listened to
artists and obtaining a MongoDB collection of
artist biographies, with a photo when available.

to download it, try it and improve it, as it can
crawl user profiles including not only artist play
counts, but also the social graph of these users.
The crawling algorithm does a breadth-first search
on the Last.fm social graph. It starts from a seed
user, gathering data about this user and all of its
neighbors, and repeating the process by randomly
selecting a neighbor as the new seed user. A seed
user is never crawled twice unless the crawler is
restarted — a restart process was done a few times
in order to build a larger user profile, as the crawled
playback data was based on the recently listened
tracks.

While the Last.fm crawler is a fundamental piece
to help us build our recommender system, it also
allows us to obtain a list of relevant artists whose bi-
ographies we must gather and store in our database.
Figure 1 describes our Wikipedia scraping tool5

and the process we used to gather artist infor-
mation. As you can see, we started by getting a
list of unique artist names that were crawled from
Last.fm, which we feed to a name resolver that
converts an artist name into its Wikipedia article
title. We use a main resolver based on DBpedia

5https://github.com/jldevezas/phd/tree/master/
wikipedia-scraper

4



that tries to find resources belonging to any sub-
class of http://schema.org/MusicGroup with a
foaf:name matching the artist name. As a fall-
back, we try to search MusicBrainz for the artist
name, run a string similarity heuristic on the top
result to ensure it’s within a given threshold and use
a CSS selector to obtain any available Wikipedia
link. If both name resolvers fail, we directly down-
load the Wikipedia page corresponding to the artist
name after replacing spaces with underscore char-
acters. We use some simple constrains to skip am-
biguous and other irrelevant pages, in which case
we skip the artist completely. Using this simple
method, we are able to obtain over 45% of the artist
biographies — the remaining 55% include artists
that do not have a Wikipedia entry and ignored
redirect pages.

We then randomly present these biographies to
the user, so that he/she can rate known artists us-
ing a Love, Like, Neutral, Dislike and Hate scale.
We will describe this in more depth in Section 4
together with the interface details.

3.2 Recommender System

Juggle Mobile’s recommender system consists of
two main modules: the training method, and the
rating prediction and recommendation methods.
The whole system is disk supported, using the
HDF5 format [6] to store the matrices and vec-
tors that represent the latent factors model. HDF5,
as the name implies, is a Hierarchical Data For-
mat designed to store and efficiently retrieve large
amounts of numerical data. Figure 2 illustrates the
SVD-based training (2a) and recommendation (2b)
methodologies showing what data is stored in disk
as HDF5.

As we can see in Figure 2a, the first
step of the process is to create a CSV in
the format <user>,<item>,<rating> which, in
our case translates to <user>,<artist>,<play

count>. The first step of the training is to read
the CSV file, creating a user-artist matrix and nor-
malizing the play count values for each user vector
using a 0 to 1 scale, thus making users comparable
independently of the total number of tracks they
have listened to. Having this matrix stored in disk
using the HDF5 format, the next step was to fac-
torize the matrix using SVD — for this we used

the pymf package6, which directly supports HDF5
through h5py. This resulted in three stored matri-
ces: a user-features matrix U , an item-features ma-
trix V and matrix Σ which represents the weight of
each latent factor/feature in the model. While we
store each matrix individually, were we to require
only two matrices, Ub and Vb, out of the factoriza-
tion, similarly to the Non-negative Matrix Factor-
ization (NMF), we would calculate Ub = UΣ−1 and
Vb = Σ−1V ∗, that is, include the square root of the
features weight matrix, so that when the two ma-
trices are multiplied each contributes with “half” of
the features weight matrix to the product, thus cre-
ating an equivalence between UΣV ∗ ⇔ UbVb. This
might be useful to avoid an extra calculations dur-
ing the ratings prediction phase, however we opted
to keep all data separate for future experiments.

In Figure 2b, we illustrate the recommendation
process, starting from a normalized user-artists vec-
tor u representing the tastes of a new user. We take
this vector and calculate its projection into the la-
tent factor space using the formula û = uV Σ−1.
We take this projection and do rating prediction on
the projected user-artists vector using the formula
r = ûΣV ∗. We then rank the artists by the pre-
dicted rating, remove any artists the user already
listened to and return the top-n artists as our final
recommendations.

While this methodology has been used fre-
quently [9], we believe the summarized explanation
we provide can help the novice recommender sys-
tems scientist grasp how latent factor models based
on matrix factorization work, without having to re-
peat the process of gathering all the scattered infor-
mation again, which encompasses knowledge from
information retrieval, as well as more recent con-
tent by authors such as the winners of the Netflix
Prize [9].

3.2.1 Training Data

We trained our recommender system using data for
955 users from the same connected social graph.
Each user contained the play counts for 3, 988
artists. Thus, our user-items matrix M had a
955 × 3, 988 dimension. We filled missing values
by the imputation of a zero, which accurately rep-
resents our use case where, for each user and artist,

6https://code.google.com/p/pymf/

5



Build normalized 
user-item matrix M

HDF5 Juggle 
Model

Factorize matrix M 
using SVD

Disk Supported 
Training

User-Features 
matrix U

Item-Features 
matrix V

Features weight 
matrix Σ

Last.fm Crawler
Seed 
username

user, artist, 
count CSV

(a) Disk supported model training using numpy and h5py.

HDF5 Juggle 
Model

Disk Supported 
Rate Prediction

User-Features 
matrix U

Features weight 
matrix Σ

New normalized 
user-items vector u

Project vector 
into latent 

factor space

Predict ratings 
using 

projected 
vector

Rank by rating 
and return 
top-n new 

items

(b) Disk supported rating prediction and top-n recommen-
dations.

Figure 2: A simple recommender system based on a latent factor model trained with Singular Value
Decomposition (SVD) matrix factorization.

it is natural to use a play count of zero for miss-
ing (never played) artists. This is not always the
case as, for instance, using a zero to replace miss-
ing ratings in a five-star scale would not accurately
represent the data; the zero would be interpreted
as a rather low rating instead of a missing value.

Each user had information for at least 1 artist,
having on average 6.521 non-zero ratings and a
maximum of 118 ratings. Each item had at least
1 rating from a user, having on average 1.562 user
ratings and a maximum of 37 user ratings (the most
popular artist). Unnormalized ratings, correspond-
ing to play counts, varied between 1 and 26, having
an average value of 2.178.

3.2.2 Recommendation to Groups

Besides the individual recommendations module
that we just described, Juggle Mobile also provides
an option to obtain recommendations for a group of
people at the user’s location who have been online
using the “Discover With People” feature in the
past few hours (we’re currently using a three-hour
span).

We chose to combine the group members pro-
files in order to build a group profile that we used

to compute our recommendations. Our first ex-
periments were done with the average aggregation
technique, which consists of calculating the average
vector for all the group members. Having profiles
with a large number of rated items, as well as pro-
files with only a few rated artists, we rapidly no-
ticed that the recommendation results were highly
biased towards the user with the highest number
of ratings. Recommending to groups makes little
sense if the results do not represent all group mem-
bers equally, thus we decided to use a weighted av-
erage instead.

Balancing Rating Aggregation In order to
create a balanced group profile, which gives every-
body a chance of getting enjoyable recommenda-
tions, we created a weights vector w with lower val-
ues for users with a large number of rated items and
high values for users with a small number of rated
items, in an attempt to generate a fairer group pro-
file. We call this rating aggregation technique Fair
Average. Fair Average is calculated by first gener-
ating vector w and then calculating the weighted
average, by wu, of the user ratings ui. Vector w is
computed by counting the non-zero ratings of each

6



member profile and normalizing these values by di-
viding by the maximum number of non-zero ratings
— corresponding to the user with the largest pro-
file. This guarantees that the values are within a
[0, 1] scale. We then take these values and subtract
them from 1, which gives us a larger weight for
smaller profiles and vice versa. However, to avoid
giving a 100% weight to the smallest profiles and
a 0% weight to the largest profile — which would
be equally unfair, as this user would be ignored in
the group recommendations —, we scale these val-
ues to a [α, β] interval, where α > 0 and β < 1 (in
our system we used [α = 0.3, β = 0.7]). Finally, we
multiply each individual weight by the ratings in its
corresponding member profile, obtaining a group
profile vector. Recommendations to the group are
then computed using the same process we described
for individual users, except they are based on the
group vector.

Next, we provide an example of the Fair Average
rating aggregation technique. Take a group of three
people, u1, u2 and u3 and four different items, i1,
i2, i3 and i4, as depicted in Table 1a. For each user
u, we show the rating (in this case the play count)
of each item i. In Table 1b, we show the weights
wu of each user’s profile in the final group profile.
Let’s assume the following scaling function:

f(v, α, β) =
(β − α)(vi − vmin)

(vmax − vmin)
+ α (2)

that takes a vector v and scales each of its elements
to fit the interval [α, β]. We calculate the unscaled
weight vector as follows: v = [1 − 1

3 , 1 −
2
3 , 1 −

3
3 ].

Each entry vi, for each user, is given by:

1− UserProfileSize

MaxUserProfileSize
(3)

where UserProfileSize is given by the number of
non-zero values and MaxUserProfileSize is the
size of the largest user profile. We then obtain w
by scaling v: w = f(v, α = 0.3, β = 0.7). Resulting
values of w are shown in Table 1c.

The average vector in Table 1a represents the
group profile according to the traditional average
rating aggregation technique, while the average
vector in Table 1c represents the group profile ac-
cording to the fair average rating aggregation tech-
nique. When comparing the group profile vectors
given by the Fair Average and given by the Aver-
age, we can see two things. The first is that the fair

Table 1: Comparison between original and
weighted user-item vectors.

(a) Original normalized user vectors.

i1 i2 i3 i3

u1 1.00 0.00 0.00 0.00
u2 0.00 0.50 0.00 1.00
u3 0.50 0.00 1.00 0.15

Avg. 0.50 0.17 0.33 0.38

(b) Weight vector (one weight per user vector).

wu1
wu2

wu3

w 0.70 0.50 0.30

(c) Weighted user vectors.

i1 i2 i3 i3

u1 0.70 0.00 0.00 0.00
u2 0.00 0.75 0.00 0.50
u3 0.15 0.00 0.30 0.05

Avg. 0.43 0.25 0.01 0.18

average approximates user vectors by diminishing
the range. The second is that, while it maintains
high values for highly rated items (e.g. i1 is the
highest rated group item in both methods), it also
gives less relevance to items that effectively do not
represent the group strongly (e.g. i3 was only rated
by u3, so its value was lowered). Our intuition for
this weighting scheme in the context of music rec-
ommendation was that the users have a tendency
to be biased towards a small set of musical gen-
res. For a particular group containing a user with
an extensive music library, a strong bias towards
the favorite genres would be introduced, and other
group members with possibly different tastes would
not be covered by the recommendations (manual
tests with both rating aggregation methodologies
supported this intuition).

4 User Interface

In this section, we will describe the user interface
and the interaction flow of our responsive web ap-
plication — designed with SAPO Ink7 and compat-

7http://ink.sapo.pt

7



(a) A 5-option rating of
“The Gift”. User can skip
using “Next”, “Save” to
view later, and “Ignore”
to never show the artist
again.

(b) Most loved, liked,
neutral, disliked, hated,
saved and ignored artists.

Figure 3: Artist rating and statistics.

ible with desktop, tablet and smartphone browsers.

After registering an account, the user can option-
ally connect to Facebook and/or Last.fm to peri-
odically import his/her liked or top listened artists
to the Juggle Mobile database. This will enable
the user to instantly obtain some recommendations.
However, Juggle Mobile provides a “Rate Artists”
feature (Figure 3a), which randomly presents an
artist’s biography giving the user the option to
Love, Like, Dislike, Hate or set an artist as Neu-
tral. Positive actions are colored in green, while
negative actions are colored in red, and neutral is
colored in yellow. The user also has the option
to skip using Next, whenever he/she doesn’t know
the artist or is too indecisive. Artists can always
be shown again, unless the user marks them as Ig-
nore in which case they will be hidden from “Rate
Artists” and from recommendation results. The
“Rate Artists” feature can also be used as an ex-
ploration feature, enabling the user to randomly
discover new artists and Save them in his/her ac-
count for later consultation. Each listed artist in-
cludes a quick search link for popular services such
as Spotify, Grooveshark, Last.fm and Wikipedia,
enabling the user to listen to or find more infor-
mation about an artist of interest. Based on all

(a) Profile showing some
of the loved, liked, dis-
liked and hated artists,
and individual recom-
mendations.

(b) Paginated list of
saved artists.

Figure 4: User’s individual account data.

the qualitative ratings available in the system, Jug-
gle Mobile also provides a simply statistics module
showing the top-3 artists in each category. This
is illustrated in Figure 3b, where we show the top
most loved artist, Dave Grohl.

In Figure 4a, we can see that each user has a
profile showing individual information, as well as
a small sample of positively and negatively rated
artists, which will be publicly shown to other users
to reflect individual profiles. Within the user’s
home, we also include the best artist recommen-
dations, given the currently available ratings for
the user. While this should be cached, it is cur-
rently computed on-the-fly as the user visits the
profile. The user can also access his/her “Saved”
artists (Figure 4b) which are paginated and shown
as groups of three per page, in columns for desktop
resolutions and vertically for mobile devices.

Finally, in Figure 5, we show the “Discover With
People” feature. As seen in Figure 5a, after ac-
quiring the HTML5 Geolocation from the device
and doing a reverse geocoding lookup to obtain the
location name, Juggle Mobile shows the nearby ac-
tive users in the last hours. Then, based on the
positive and negative ratings of each nearby per-
son, the user can select several profiles to combine

8



(a) List nearby people
and select some of them
based on their tastes.

(b) Show combined rec-
ommendations for user
and selected people.

Figure 5: Artist recommendations for location-
based group.

with his/her own. Recommendations will be com-
puted as previously described in Section 3.2.2 and
results will be shown for the group as depicted in
Figure 5b.

5 Evaluation

In this section, we validate our system and compute
the number of latent factors that result in the best
recommendations. We also assess the usability of
the system, as well as the human perception of the
quality of the results, correlating user profile size
with the scores given to each of the recommenda-
tion questions.

5.1 Model Validation

We used 10-fold cross-validation to determine the
quality of our recommender as well as the ideal
number of latent factors that minimize the mean
absolute error. We used the same dataset from the
training phase for validation. We did this by di-
viding it into 10 random subsets of users. We then
used nine of the subsets to train the recommender
and the remaining subset to test the recommender

●

●

●

●

●

●

●

●

●

●

●●●
●●●

●●
●

●● ●
● ●

● ●

●

●
●

●
●

●

●

● ● ●● ●

●
ArgMin(Avg. MAE) = 15

0.48

0.51

0.54

0.57

0.60

0 50 100 150 200
Number of Latent Factors

A
ve

ra
ge

 M
ea

n 
A

bs
ol

ut
e 

E
rr

or

Figure 6: Average value for the Mean Absolute Er-
ror of the test sets from 10-fold cross-validation, for
different numbers of latent factors. Figure shows
that using 15 latent factors result in the best rec-
ommendations.

(after removing a fraction of know ratings). We
compared the predicted ratings with the original
ratings using the mean absolute error. We repeated
this process to use each of the 10 subsets as test
sets. Figure 6 shows the mean absolute error, av-
eraged over the 10-folds, for increasing numbers of
latent factors (the left and right singular vectors in
U and V matrices). Given that the error tends to
stabilize as the number of factors increase, we did a
denser sampling for lower values, relaxing it as the
number of factores increased.

In the figure, we can see that the number of la-
tent factors that minimizes the average mean abso-
lute error is 15. While we only show the error for
the first 200 factors, our data contains 939 factors,
which increases the complexity of the recommen-
dation algorithm in space and time. By properly
selecting the ideal number of factors, in this case 15,
will not only decreases complexity, but also improve
the quality of the recommendations. The average
mean absolute error when using 15 latent factors is
0.4954. While this value is quite high, since ratings
were normalized in a [0, 1] scale, a manual inspec-
tion shows that recommendations are in fact quite
accurate for most user profiles. In order to support
this intuition, we added a small set of questions
to the usability survey we will present next, that
are meant to obtain human feedback regarding the
provided individual recommendations.

9



Table 2: Summary of SUS scores obtained from survey.

Iteration Min. 1st Qu. Median Mean Std. Dev. 3rd Qu. Max.

First 40.00 43.75 67.50 61.79 19.24 76.25 85.00
Second 47.50 62.50 77.50 73.89 16.68 90.00 95.00

5.2 Human Feedback

In order to better understand the perception of the
users towards Juggle Mobile, we have elaborated
a survey starting with a small guide that covered
account creation as well as the core tasks of the
system (rating artists, importing data from music
social networks, visiting recommendations and the
overall features). The first part of the survey was
concerned with usability. For this, we used a set of
ten standard questions based on a Likert scale [10],
called the System Usability Scale (SUS) [2, 16]. We
clearly named this section of the survey as “Usabil-
ity”. In order to also obtain some feedback on the
recommendations, we also prepared and added a
set of four custom questions aimed at reflecting the
worst and the best of our recommender system. We
clearly named this section of the survey as “Artist
Recommendations Quality”.

Instead of massively deploying the survey, we di-
rectly asked people to answer the questions, try-
ing to ensure a minimal investment on the sur-
vey. Repliers included colleagues with a similar
background, web designers and developers, human-
computer interaction experts, and music lovers. In
total, there were 16 repliers in a one-month times-
pan, 4 female and 12 male, with ages ranging from
23 to 38, although users below 30 corresponded to
81.25% of the sample. Only one user tested the sys-
tem using a smartphone, no users tested it using a
tablet, and every other user tested the system using
the desktop. We speculate this has to do with the
fact that it is currently unnatural (or the least less
comfortable) to multitask in mobile and even more
to use a surveying system that is not well adapted
to these devices (very small radio buttons). In fact,
the only user that tested the system using a smart-
phone still replied in a desktop.

5.2.1 Usability

We distinguish and compare two different iterations
of our system: the first was an initial stable ver-

sion, and the second was an improved version based
on the comments of the first repliers. Feedback
was left in a large text area at the end of the sur-
vey. Surprisingly, most repliers left long and useful
comments identifying bugs, sharing concerns and
proposing new features. Specifically focusing on
some of the most critical bugs, we decided to re-
iterate and launch some fixes, as well as the most
desired features. In this section, we compare the re-
sults of both iterations, showing that the test was
in fact useful and enabled us to improve the overall
system’s usability.

The first iteration included 7 repliers, all male,
with an age ranging from 23 to 38 similarly to the
global sample. The second iteration included the
remaining 9 repliers, 4 female and 5 male, with
ages ranging from 23 to 37, also not unlike the
global sample. As you can see in Table 2, there
was a 19.58%8 improvement of the average SUS
score, from the first to the second iteration. The
second iteration also shows a stronger agreement
between users, with a 15.35%8 lower standard de-
viation value. Through usability evaluation, we
were able to go from a below average SUS score
(less than 68) to an above average SUS score (more
than 68). Specifically, we went from a grade D to
a grade C. While the goal is to get usability to a
grade A, since at that point users are more likely to
recommend the product to their friends, given this
is a demonstrable prototype, we were quite pleased
with the improvements.

5.2.2 Recommendations

At the end of the usability survey, we included a
custom set of questions to assess the perceived qual-
ity of the recommendations by the users:

Q1 How good did you consider the recommended
artists, based on the information you’ve given
the system? (1 to 10)

8We used relative change to calculate this percentage.

10



Q2 How many artists did you consider to be com-
pletely misplaced in the recommendations?
(max. 30)

Q3 How many artists did you consider to be great
recommendations? (max. 30)

Q4 How many of the artists that were unknown to
you were able to capture your attention enough
to listen to later? (max. 30)

With these questions, we expected to account for
the overall quality (Q1), the worst (Q2), the best
(Q3) and the discoveries (Q4). The user distri-
butions of the scores for each question showed an
inconsistency in overall quality, with a tendency for
lower values; the number of completely misplaced
recommendations varied between 0 and 20, with the
user distributions of the scores linearly decreasing
from lower to higher values; the number of great
recommendations varied between 0 and 10, with
the user distributions of the scores also linearly de-
creasing from lower to higher values, but showing a
stronger tendency for lower values; the number of
unknown artists that captured the user’s attention
varied between 0 and 6, without showing a strict
pattern.

To conclude, there were few completely mis-
placed recommendations, but also few great, or
unknown and captivating recommendations. Ac-
cording to these results, our system didn’t behave
badly, but also didn’t behave as good as expected.
We were specially surprised by the fact that a few
users found around 20 completely misplaced recom-
mendations. However, we found two possible expla-
nations for this that led to an inaccurate evaluation
of our system. First, at the beginning of the survey,
each user was asked to rate at least 10 artists before
answering the questions. Some of the users, how-
ever, didn’t rate a single artists or even imported
artists from Facebook or Last.fm, which led them
to evaluate the recommendations for a profile filled
with zeros, since we didn’t constrained the recom-
mendations to only be displayed after a certain pro-
file size was achieved. Secondly, from the first it-
eration to the second, we noticed that the virtual
machine where we had the demo running wasn’t
correctly handling concurrency. Thus, we added
caching to the recommendations list. Given some
users didn’t follow the steps we provided and visited
this list before rating any artists or after doing this

Table 3: Correlation between all the questions and
the user profile size.

Q1 Q2 Q3 Q4 P

Q1 1.0000 -0.4535 0.6051 0.3488 0.0343

Q2 -0.4535 1.0000 -0.2992 -0.3064 -0.2467

Q3 0.6051 -0.2992 1.0000 0.0565 0.0693

Q4 0.3488 -0.3064 0.0565 1.0000 0.2843

P 0.0343 -0.2467 0.0693 0.2843 1.0000

but before importing Facebook or Last.fm artists,
the recommendations were cached for 5 minutes
and displayed wrong results that led the users to
reply with lower scores.

To further support our first hypothesis, we
present in Table 3 the correlation matrix for the
score variables of each question in the recommen-
dations survey as well as the profile size, depicted
by the P letter. As we can see, there is a slight
negative correlation between the number of com-
pletely misplaced recommendations (Q2) and the
profile size (P). On the other hand, with a simi-
lar intensity, there is a slight positive correlation
between the number of unknown artists that were
able to capture the user’s attention (Q4) and the
profile size (P). While the absolute values of these
correlations are only around 30, this still leads to
believe that larger profiles should result in better
recommendations.

We also performed some aggregations on the
data, analyzing for instance the overall quality per-
ceived by the surveyed users, depending on age and
gender. We noticed a peak for people of ages 26
and 27, independent of gender, which might lead
us to believe that our target audience would be
young adults. Then we analyzed the same overall
quality variable, but now depending on the profile
size. Although we would need more data to obtain
a stronger conclusion, we noticed a slight evidence
of medium sized profiles resulting in larger quality
scores. The score was low for small profiles, peaked
for medium profiles and decreased again for large
profiles. We hypothesize that this happens because
users looking for variety fed the system with a large
but very narrow set of tastes, creating a biased pro-
file (e.g. towards a specific musical genre) that re-
sulted in a recommendations list with a very low
deviation from the user’s main tastes.

11



6 Summary and Conclusions

We have presented the Juggle Mobile responsive
web application to recommend music to individu-
als and groups of nearby people. Our contributions
focused on showing the complete process of build-
ing a recommender system, from data gathering
to system engineering, including the detailed con-
struction of our recommender engine and the evalu-
ation of the system based on validation and human
feedback. Besides this contribution from the in-
formations system standpoint, we also present the
simple, but to our knowledge, novel idea of cre-
ating a group profile based on a balanced rating
aggregation methodology that priorizes users with
smaller profiles in the process of recommendation
to counteract the strong contribution of users with
large profiles. This avoids an unfair recommenda-
tion list that is comparable to the individual rec-
ommendations of the user with the largest profile.
The idea is that a group recommendation should al-
ways equally consider the tastes of their members
to make sense in its inherent context.

We also showed how to evaluate a recommender
system by first validating it and then using the
system usability scale to assess usability together
with a small set of questions to assess the quality
of the actual recommendations. This brought sev-
eral small concerns to our attention, regarding for
instance the importance of immediately reflecting
changes to the user profile in the recommendations,
or even the generic importance of user feedback
during the development process of a recommender
system.

6.1 Future Work

As future work, we would like to improve the artist
rating module to evenly provide random artists
over different genres and popularities, thus avoiding
a situation where the user is constantly getting an
unpopular (and probably unknown) artist to rate,
or a sequence of artists in a same genre that the
user doesn’t listen to and thus will not rate. We
believe that by controlling some of this random-
ness we will provide a more engaging experience to
the user, which in turn will result in a richer profile
and better recommendations.

Regarding the sample size of our survey, we
would like to extend this to a larger number of

participants, after introducing some constrains in
our system to avoid users from evaluating the rec-
ommender system without having provided enough
information about their tastes beforehand.

We would also like to work on an evaluation
framework capable of assessing the quality of rec-
ommendations to groups, in a scenario where
a group corresponds to a cohesive community
(e.g. close friends, work colleagues, Black Sabbath
fans, etc.).

Acknowledgments

This work has been financed by Laboratório
SAPO/U.Porto under a research grant for the Jug-
gle project.

References

[1] Michael W Berry, Susan T Dumais, and
Gavin W O’Brien. Using Linear Algebra for
Intelligent Information Retrieval. SIAM Re-
view, 37(4):573–595, 1995.

[2] J Brooke. SUS: A ’Quick and Dirty’ Usabil-
ity Scale. In Usability evaluation in industry,
pages 189–195. CRC Press, 1996.

[3] Columbia Department of Statistics.
Week 7: hunch.com, Recommenda-
tion Engines, SVD, Alternating Least
Squares, Convexity, Filter Bubbles.
http://columbiadatascience.com/2012/10/18/
week-7-hunch-com-recommendation-engines-
svd-alternating-least-squares-convexity-filter-
bubbles/, 2013. [Accessed: Nov. 11, 2013].

[4] Andrew Crossen, Jay Budzik, and KJ Ham-
mond. Flytrap: Intelligent Group Music Rec-
ommendation. In Proceedings of the 7th inter-
national conference on Intelligent user inter-
faces (IUI 2002), pages 184–185, 2002.

[5] Oskar Van Deventer, Joost de Wit, Jeroen
Vanattenhoven, and Mark Guelbahar. Group
recommendation in an Hybrid Broadcast
Broadband Television context. In In Pro-
ceedings of the Workshop on Group Recom-
mender Systems: Concepts, Technology, Eval-
uation (GroupRS), at the 21st Conference on

12



User Modeling, Adaptation and Personaliza-
tion (UMAP 2013), 2013.

[6] Mike Folk, Albert Cheng, and Kim Yates.
HDF5: A file format and I/O library for high
performance computing applications. In Pro-
ceedings of Supercomputing, volume 99, 1999.

[7] Sascha Herr, Andreas Rösch, Christoph Beck-
mann, and Tom Gross. Informing the design
of group recommender systems. Proceedings of
the 2012 ACM annual conference on Human
Factors in Computing Systems (CHI 2012),
page 2507, 2012.

[8] Anthony Jameson and Barry Smyth. Rec-
ommendation to groups. In The Adaptive
Web, pages 596–627. Springer Berlin Heidel-
berg, 2007.

[9] Yehuda Koren, Robert Bell, and Chris Volin-
sky. Matrix factorization techniques for rec-
ommender systems. Computer, 42(8):30–37,
2009.

[10] Rensis Likert. A technique for the measure-
ment of attitudes. Archives of psychology,
1932.

[11] Judith Masthoff. Group Modeling: Selecting a
Sequence of Television Items to Suit a Group
of Viewers. User Modeling and User-Adapted
Interaction, 14(1):37–85, February 2004.

[12] M O’Connor, Dan Cosley, JA Konstan, and
John Riedl. PolyLens: A recommender sys-
tem for groups of users. In Proceedings of the
Seventh European Conference on Computer
Supported Cooperative Work (ECSCW 2001),
pages 16–20, Bonn, Germany, 2002.

[13] Auste Piliponyte, Francesco Ricci, and Ju-
lian Koschwitz. Sequential Music Recommen-
dations for Groups by Balancing User Satis-
faction. In In Proceedings of the Workshop
on Group Recommender Systems: Concepts,
Technology, Evaluation (GroupRS), at the
21st Conference on User Modeling, Adaptation
and Personalization (UMAP 2013), 2013.

[14] Francesco Ricci, Lior Rokach, Bracha Shapira,
and Paul B Kantor, editors. Recommender
Systems Handbook. Springer US, Boston, MA,
2011.

[15] Badrul Sarwar, G Karypis, J Konstan, and
J Riedl. Incremental Singular Value Decompo-
sition Algorithms for Highly Scalable Recom-
mender Systems. In Proceedings of the 5th In-
ternational Conference on Computer and In-
formation Science, 2002.

[16] Jeff Sauro. Measuring Usability with
the System Usability Scale (SUS).
http://www.measuringusability.com/sus.php,
2011.

[17] Barry Smyth, Evelyn Balfe, Jill Freyne, Peter
Briggs, Maurice Coyle, and Oisin Boydell. Ex-
ploiting Query Repetition and Regularity in an
Adaptive Community-Based Web Search En-
gine. User Modeling and User-Adapted Inter-
action, 14(5):383–423, April 2005.

[18] Yu Zhiwen, Zhou Xingshe, and Z Daqing. An
adaptive in-vehicle multimedia recommender
for group users. In 2005 IEEE 61st Vehicu-
lar Technology Conference (VTC 2005), pages
2800–2804, 2005.

13


