
Music Discovery: Exploiting TF-IDF to Boost

Results in the Long Tail of the Tag Distribution

José Devezas
jld@fe.up.pt

Filipe Coelho
filipe.coelho@fe.up.pt

Sérgio Nunes
ssn@fe.up.pt

Cristina Ribeiro
mcr@fe.up.pt

Abstract

We tackle the problem of music discovery using a
tag-based recommender system. We propose and
analyze two recommendation algorithms, each with
two parameters, to filter the number of tags con-
sidered, and assess the impact of changing each pa-
rameter individually for either algorithm. The goal
is to improve the discovery impact by boosting re-
sults in the long tail of the tag distribution with the
aid of the IDF metric. We automatically generate
twenty playlists based on text search and use them
as input to our recommendation algorithms. For
each algorithm, we do seven different runs, with
different combinations of parameters, and evalu-
ate the results based on the user taste profile sub-
set available as part of the Million Song Dataset.
While there are clear challenges regarding the eval-
uation of the quality of a playlist and its discovery
impact, we show that better rarity-driven results
were achieved when taking advantage of the IDF
metric.

1 Introduction

The way we listen to music and organize our
playlists is a very personal action. The problem
of generating good playlists for specific individu-
als, using a limited amount of data to characterize
their listening behavior, is still an open challenge.
Moreover, defining what a good playlist is and how
it can be evaluated is a complex task. Playlists
are usually generated with a given goal in mind,
defined by the user and usually hard to predict.
The objective of recommender systems is to enable
the discovery of potentially interesting new items
that the user hadn’t previously considered. While
discovery seems to be at the core of recommenda-

tion, many systems don’t quite focus on this goal
directly, but instead provide the users with similar
music that they are bound to like but that lack
a surprise factor. An example of a situation to
avoid is the recommendation of more Beatles al-
bums to someone who already likes Beatles songs.
While, for particular contexts, such as marketing,
this might be considered a successful and correct
approach, when assessing the discovery impact of
the suggestion, a user would easily indicate that the
recommendation is redundant, as the consistency
between Beatles albums is quite obvious and thus
a simple search by the Beatles discography would
easily achieve the same goal.

In this paper, we tackle the problem of playlist
generation for music discovery, by analyzing the
long tail of the tag distribution and proposing a
different approach for harnessing the information
given by the typical power law behavior of this
distribution. We compare two recommendation
methodologies based on the music folksonomy from
the Million Song Dataset [1]. The first method
uses a frequentist approach based on tag similar-
ity, to obtain and rank a set of tracks according to
the number of tags in common with the tracks in
the input playlist; we filter tags according to their
weight and at two different phases of the recom-
mendation process. The second method replicates
the same approach, but with an emphasis on the
long tail, i.e. the least popular tags. However, in-
stead of cutting the tag distribution into head and
tail, we propose the application of the IDF (Inverse
Document Frequency) to proportionally boost the
least popular tags, instead of separately analyzing
the most popular and the least popular tags.

1

2 Related Work

Playlist generation is a recommendation task that
has been addressed in many forms, namely with
social and content-based approaches. Indirectly,
social behavior also establishes a context through
music folksonomies. We explore the context pro-
vided by the long tail of the tag distribution to
improve music discovery through the characteriza-
tion of songs based on their most descriptive and
overall less popular tags.

2.1 Music Recommendation: Playlist
Generation

In his PhD thesis, Fields [4] has focused on the task
of automated playlist generation for music recom-
mendation. He proposed a novel multimodal simi-
larity measure that integrates the social dimension
with content-based features by taking advantage of
the network of top friends for MySpace artists. He
expanded this network by using songs as nodes and
weighting the edges of this socially induced net-
work with the similarity between songs using audio-
based features. Fields pointed out that, while it is
obvious that playlist generation highly depends on
the relationships between songs, no previous work
[prior to 2011] had acknowledged that fact. Fields
also demonstrated a successful application of com-
munity detection methodologies to the artist-based
song similarity network in order to cluster different
musical genres successfully.

We also explore the task of automated playlist
generation, but we focus on improving the music
discovery impact of the recommended tracks.

2.2 Using Folksonomies for Recom-
mendation

Sen et al. [11] presented a recommendation algo-
rithm that took advantage of tags to improve movie
suggestions. Their method, which they call a tag-
ommender, was based on the automatic inference
of tag preferences for a particular user, according
to their interactions with tags and movies. The au-
thors combined three signals for tag inference: (i)
the tags a user applies to movies, (ii) the tags a
user searches for, and (iii) the quality of the tags,
given by the all-implicit inference algorithm, which
is described in their previous work [10].

Knijf et al. [6] proposed a graph-based music
recommendation algorithm supported by a bipar-
tite graph, connecting artists via common tags.
They used a probabilistic method, based on ran-
dom walks with restart, to identify communities of
related artists, as well as to discover the most prob-
able paths between two given artists.

Firan et al. [5] evaluated the benefit of using tag-
based profiles for music recommendation. They
compared collaborative filtering with search-based
techniques and experimented with different weight-
ing schemes for tags, including the ITF (Inverse
Tag Frequency) metric, aimed at diluting the bias
of profiles towards highly used tags.

Similarly, in this work, we take advantage of a
music folksonomy for recommendation and discov-
ery, by focusing on the tags in the long tail to de-
scribe each track and enhance their uniqueness. We
also consider the impact of tag popularity for the
recommendation process, by taking advantage of a
metric analogous to the IDF measure.

2.3 Music Discovery in the Long Tail

Using the long tail of popularity distributions to
improve music discovery is not a novel approach.
As we previously implied, other authors have al-
ready addressed this issue by cutting the distribu-
tion into head and tail, and by either using differ-
ent methodologies for the two parts or by focusing
solely on the tail.

Park and Tuzhilin [8] defined a cutting point α to
divide the head from the tail in the item set distri-
bution. They then used different recommendation
methodologies for the head set and for the tail set:
the Each Item, where they defined a custom data
mining model for each item in the head set, and the
Clustered Tail, where they defined a custom data
mining model for each of the identified clusters in
the tail.

Òscar Celma [2] has also focused on music rec-
ommendation by exploring the long tail of the song
popularity distribution. The author has taken into
consideration an important characteristic of music
recommendation: discovery. A problem with rec-
ommender systems is that they tend to be biased
towards suggesting popular content, which easily
get a higher score simply due to the fact that most
users like this content. Assuming that the process
of discovery through a recommender engine is ex-

2

pected to result in higher gains than those obtained
with traditional methods, and knowing that popu-
lar content is easily spread through traditional me-
dia and word-of-mouth, focusing on the items in
the long tail should improve on the gain provided
by a recommender system. Herrada proposed that
music recommendation should simultaneously take
advantage of the user-item similarity network and
the popularity of the item, decreasing the score of
the recommended item alongside its popularity, in
order to increase the number of recommendations
in the long tail.

This is also the approach we take in this paper,
where we use the tag weight available in the Mil-
lions Song Dataset — a particular type of normal-
ized Term Frequency (TF) — to measure tag rele-
vance, and combine it with the tag IDF to boost tag
relevance in the long tail. Given that our work is fo-
cused on a graph database implementation, which
uses several Gremlin1 traversal queries, we exper-
iment with two parameters that limit the number
of top tags at two different phases of the traversal.
We analyze how these two parameters influence the
outcome, and we also compare the long tail ap-
proach with a generic approach that disregards tag
popularity.

3 Million Song Dataset

Our experiments are based on a selection of features
from the Million Song Dataset (2011) [1, 7, 9]. The
dataset is freely available and comprises a collection
of audio features and metadata for a million con-
temporary popular music tracks. Additionally, the
community has also contributed with several com-
plementary datasets, including lyrics from musiX-
match, weighted tags from Last.fm, and a taste pro-
file subset with over 48 million 〈user, song, play
count〉 tuples. Table 1 characterizes the data avail-
able in the Million Song Dataset, focusing on the
most relevant features for the scope of our work.

Given its dimension, this dataset is a perfect
workbench to experiment with large-scale music in-
formation retrieval and recommendation. In the
work we present here, we take advantage of the
Last.fm tags to discover related songs based on an

1Gremlin is a DSL for graph traversal that works
as a pipeline: http://markorodriguez.com/2011/08/03/
on-the-nature-of-pipes/

Table 1: Million Song Dataset.

Size 280 GB
Songs 1,000,000
Artists 44,745
Releases 221,753
Last.fm Tags 522,366
Taste Profile Triplets 48,373,586

input playlist, generated using textual search. We
then use the users’ taste profile subset to evaluate
the generated playlists.

4 Graph-Based Recommendation

Juggle, our recommender system, uses a graph-
based approach, implemented on top of the Neo4j
graph database, which enables the creation of a
knowledge model centered on the tracks and their
features.

To prepare our database, the Million Song
Dataset is first processed by generating a set of
TSV (Tab-Separated Values) files: one containing
the nodes and their properties, another one con-
taining the relationships, their type and their prop-
erties, and several other files containing the prop-
erties to index for each of the types of nodes avail-
able. Each TSV file references the precomputed
IDs for the nodes that will be inserted into an
empty Neo4j graph database and stored using the
graph property model, which distinguishes nodes,
relationships (the edges) and properties (the data
fields associated with the nodes and relationships).
This enables us to run a batch import process and
to quickly2 obtain a graph-based knowledge model
with nearly 3 million nodes, 60 million relationships
and 60 million indexed properties.

After preparing the graph database, we use the
Gremlin language to precompute some of the re-
quired properties, as well as to process the recom-
mendation requests. Recommendation scripts are
run through the REST API of the Neo4j server,
using the provided Gremlin plugin.

3

http://markorodriguez.com/2011/08/03/on-the-nature-of-pipes/
http://markorodriguez.com/2011/08/03/on-the-nature-of-pipes/

Track Release

ArtistTag

User

hasTag
weight: <int 0..100>

listenedTo
count: <int>

hasRelease

hasArtist

n

n

n

n

n 1

n

1

Figure 1: Juggle recommender system’s knowledge
model for the Million Song Dataset.

4.1 Knowledge Model

The knowledge model for Juggle is described in Fig-
ure 1. As shown in the figure, each song is repre-
sented by a track node and accompanied by a re-
lease node, which can be shared across several track
nodes, and an artist node, which can be shared
across many release nodes. Defining the release and
album as nodes instead of properties of the track
node is a way of enforcing consistency. An alter-
native would be to store this data in a separate
database and to keep a property in each track that
referenced the ID in the separate database. How-
ever, even though we currently don’t use the release
and the artist to filter recommendations, this is a
valuable feature that we plan on using later, thus
reinforcing the choice of storing them as nodes in
the graph database. Finally, each track connects to
several tags, with a weight that is based on a nor-
malized term frequency value, and each user con-
nects to several tracks, with a play count value rep-
resenting the number of times the user listened to
the specific track.

4.2 Data Preparation

For our experiment, we will need to calculate the
TF-IDF value for a tag (our terms) in a given track

2The entire batch importing process, including the TSV
export phase, takes less than two hours in a desktop machine
with 4 GB of RAM and a 5,400 RPM hard disk.

(our documents). This process is done on-the-fly
during the recommendation query, but requires the
IDF to be precomputed for each tag. Equation 1
shows how the IDF is analogously calculated for
tracks and tags. Let tracks be the set of tracks
and tags(t) the set of tags for track t:

IDF (tag, tracks) = log
|tracks|

|t ∈ tracks : tag ∈ tags(t)|
(1)

IDF calculation is done by using the Gremlin lan-
guage to traverse the graph, obtaining the value
and storing it as a property of each tag node. For
the knowledge graph g, we access the tracks index
and do a Lucene query for all track IDs to obtain
the total number of tracks, which we store in a
variable D = |tracks|. Similarly, we do an index
query to traverse all tag nodes and, for each tag,
we obtain the number of in-links, i.e. the number
of tracks tagged with the current tag. Finally, we
calculate the IDF for a tag using the logarithm of
the ratio between the total number of tracks D and
the total number of tracks associated with the tag
in the music collection.

4.3 Recommendation Queries

We describe the two recommender algorithms that
are the base of this work. Although our rec-
ommender system, Juggle, uses a multimodal ap-
proach that currently combines context from the
music folksonomy with user taste data for collab-
orative filtering, for the purpose of evaluation, we
leave the user taste profile out of the experiment
we present here and focus solely on the tag-based
recommendation.

Algorithm 1 shows the generic recommendation
strategy that we use, based on the tags and an asso-
ciated metric representing the tag weight within a
track. Algorithm 2 illustrates the traversal process
that, given a list of track nodes, returns the top
α tags for those tracks according to the selected
metric. Algorithm 3 illustrates the traversal pro-
cess that, given a list of tag nodes, returns the top
β tracks represented by the given tags. While we
use a functional approach to describe the Grem-
lin pipeline for the algorithm we implemented, we
should point out that each non-scalar function re-
turns an iterator instead of directly returning the

4

Algorithm 1 Recommendation algorithm for a
generic metric.

Input: Q (query), α (top tags fraction), β (top
tracks fraction), metric (TF or TF-IDF).

Output: A ranked list of recommended tracks.
tracks⇐ SearchByTrackId(Q)
tags⇐ TopTags(tracks, α, by=metric)
recs⇐ TopTracks(tags, β, by=metric) \ tracks

map⇐ Dictionary with default zero values.
for all rec ∈ recs do

Inc(map[rec])
end for
return DescendingSortByValue(map).take(10)

Algorithm 2 TopTagsByMetric.

Input: tracks, α, metric
Output: A list with the concatenation of the top
α tags with highest weight for each of the input
tracks.
tags⇐ Empty list.
for all track ∈ tracks do
ntags ⇐ CountTags(track)
tagstrack ⇐ HasTags(track)
tagstrack ⇐ DescSort(tagstrack, by=metric)
tagstrack ⇐ Head(tagstrack, α× ntags)
tags⇐ Append(tags, tagstrack)

end for
return tags

Algorithm 3 TopTracksByMetric.

Input: tags, β, metric
Output: A list with the concatenation of the top
β tracks with highest weight for each of the input
tags.
tracks⇐ Empty list.
for all tag ∈ tags do
ntracks ⇐ CountTracks(tag)
trackstag ⇐ TracksHaveTag(tag)
trackstag ⇐ DescSort(tracktag, by=metric)
trackstag ⇐ Head(trackstag, β × ntracks)
tracks⇐ Append(tracks, trackstag)

end for
return tracks

elements, which improves performance and mem-
ory usage.

Besides the metric selection parameter, there are
three additional arguments that must be passed to
our algorithm:

Q A Lucene query to obtain the set of track nodes
that represent the input playlist.

α A float value between 0 and 1, representing the
fraction of top tags to consider, according to
either the TF, given by the tag weight on a
track, or the TF-IDF of the tag within the in-
put track.

β A float value between 0 and 1 representing the
fraction of top tracks to consider, according to
either their TF weight value or their TF-IDF
value, for the traversed tags, i.e. for the tags
of the input tracks.

metric The metric used for the ranking of the top
tags and top tracks. This can either be the
TF or the TF-IDF metric. While the TF
is directly represented by the weight prop-
erty in each track-tag relationship, the TF-
IDF is calculated on-the-fly using the formula:
(weight(tag)/100)× IDF (tag, tracks).

The value for the track-tag relationship weight
represents the tag frequency within the associated
track, and is normalized using the maximum tag
frequency over all tags for the track, and then mul-
tiplied by 100. Our first recommendation algorithm
uses this TF value as the metric for tags and tracks.

The second recommendation algorithm is based
on tags and their TF-IDF relatively to a track. The
difference to the previous algorithm is that now we
combine the IDF with the tag weight to boost tags
in the long tail. This means that we avoid track
comparisons based on generic tags such as rock,
metal or electronic.

In either algorithm, the method is to find the
node representation for the input playlist tracks,
traverse the graph through the tags of the input
tracks, to arrive at new tracks, and count the num-
ber of times there was a traversal through each
track node. We use this frequency to rank recom-
mendation results and filter out tracks in the input
playlist. Given the large-scale of the collection, it is
important to develop filters that will spare system
resources during processing. We do this in differ-
ent ways for the two algorithms: either by selecting

5

●

●

●
●

●
●

●●
●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●
●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●
●●
●●
●
●●●●●●
●
●
●●●●●
●●●●
●

●
●●
●

●
●
●
●●
●●
●●●
●●●
●●
●
●

●

●●●●
●●●
●
●●●●●
●●●●●●
●●●
●
●●●

●

●
●
●●

●
●
●●●
●
●●●
●●●
●●

●●
●

●

●●●
●●

●●●
●
●
●●
●

●●●
●●
●
●

●●

●
●
●●●●
●
●
●●●
●●
●●

●●●●

●
●
●
●
●●
●
●●
●
●●●

●
●
●●●
●
●
●
●
●●●●
●

●

●●
●

●

●●
●
●

●
●●
●

●

●

●●●
●●●●
●●

●

●
●●
●

●

●
●
●
●●●
●
●
●
●●

●

●●

●

●

●●

●

●
●
●
●
●
●

●

●
●●

●

●

●
●●
●

●

●●●●●

●
●
●●
●
●
●

●

●

●

●
●●

●
●

●

●●●●
●●●
●●

●

●

●
●●
●●
●●

●

●

●●

●●

●

●●

●

●●
●

●

●
●
●

●
●
●
●

●

●

●●●

●
●●●
●

●

●

●

●
●
●

●
●●●
●
●
●
●

●

●

●●
●

●●●
●
●

●

●

●
●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●●

●

●●

●

●

●●

●

●●●

●

●●

●
●

●

●

●
●●●●

●

●

●●

●●●

●
●

●

●●
●
●
●●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●●●
●

●

●●

●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●

●

●

●

●
●
●●●●

●

●●

●

●●
●

●

●●

●

●

●

●●●

●●

●

●

●

●●●

●
●

●

●

●
●
●
●●

●

●

●●

●

●

●●

●
●

●●

●

●

●●
●

●●

●

●

●
●
●
●

●

●
●

●
●
●

●●●

●●

●

●

●

●
●
●
●
●
●

●●

●

●

●●

●●●
●
●

●●●

●

●

●

●●●

●

●

●

●

●●

●●

●●

●

●

●

●

●●●
●
●●

●

●
●

●●

●●

●

●●

●

●●

●
●●●●●

●●

●

●●

●

●●●

●

●●

●

●
●●
●

●

●

●●●●●●●●

●
●

●

●●
●●●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●●

●●

●

●

●
●
●

●●

●

●

●

●●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●

●

●●●●●

●

●●●●●

●

●

●●

●●●

●

●●●

●

●

●

●●●●

●

●●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●

●●

●●

●

●●●●●

●

●

●

●●●●

●

●●

●

●●●●●

●

●

●

●●●●

●
●

●●●●●●●●●

●●

●

●

●●●●

●

●●

●

●●●●●●●●●●●

●

●●●

●●
●

●●

●
●●

●

●●●●

●●

●

●●

●

●

●●

●

●

●

●
●

●●●●●●●●●●●●●

●

●●●●●●

●●

●●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●●●●●●●●●●

●

●

●

●●

●●

●●

●

●●

●

●●

●

●●●●

●

●

●

●●

●

●

●●●

●●

●●

●●

●

●●●●●●●●

●

●

●

●●●

●
●

●●●●

●

●●●●●●

●

●

●

●●●

●●

●●●●●●

●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●

●

●●●

●●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

1e+01

1e+03

1e+05

10 1000
Tag Count

F
re

qu
en

cy

Figure 2: Tag count distribution in log-log scale.

the top tags using the tag weight (the TF), or by
selecting the top tags using the TF-IDF of the tag
within the respective track. While TF-IDF is cur-
rently calculated on-the-fly during the recommen-
dation phase, this value could be precomputed and
stored as a property for each hasTag relationship
to speedup the process.

5 Experiment

As we can see from Figure 2, the distribution of tags
in the Million Song Dataset closely fits a power law.
This highlights the problem we are trying to ad-
dress here, as it shows that a small number of tags
have a high popularity and are widely used to char-
acterize songs, while a large number of tags have a
low popularity and are more sparse across the col-
lection. Some of the tags in the head of the dis-
tribution are depicted next, ranked by frequency:
pop, indie, female vocalists, rock, alternative, and
electronic. And some of the tags in the tail, with
frequency 1, are illustrated next: Car ride sing a
long, the word firecracker, guilty-pleasure, eliane,
bossa bova, and Eliane elias - Segredos Secrets.

Visibly, head tags tend to contain more generic
terms, such as pop or rock, while the tail con-
tains tags that are either more specific, like guilty-
pleasure, a typo, like bossa bova, or something di-
rectly related with the artists or the release itself,
like eliane or Eliane elias - Segredos Secrets. The
problem we face is that, by giving a higher weight
to elements in the head set, we will not obtain a set
of tags that can successfully characterize each track
in order to enable a suitable distinction from the re-

maining tags. While this can be done more success-
fully by using the tags in the tail set, most of them
are so unique that they will prevent a successful
clustering with similar tags, as there are no other
instances of those tags. That is why we decided to
take advantage of an established metric, the TF-
IDF, that tackles this problem with a balanced ap-
proach, where both uniqueness over the whole col-
lection and popularity are combined to provide an
estimate of the appropriateness of a tag to charac-
terize a given track, distinguishing the track from
disparate tracks or clustering it with other similar
tracks.

Our goal is to explore how the two parameters
α and β of each of the previously defined algo-
rithms influence the results, as well as to under-
stand the differences between boosting results in
the long tail using the IDF, versus singularly us-
ing the TF. In order to elaborate on this, we pre-
pared an experiment where we generated twenty
input playlists with ten tracks each, retrieved us-
ing a textual search process on top of an index with
the fields title, release name, artist name, tags and
lyrics, for the manually defined queries illustrated
in Table 2. Each query aims at representing a dif-
ferent kind of taste and, based on each resulting
playlist, we obtain a new playlist of recommended
tracks. The playlist generation task is usually con-
cerned with not only providing the best track rec-
ommendations, but also reordering the tracks by
coherence to ensure a smooth transition, however
we are not concerned at this point with the reorder-
ing task and thus disregard this factor in our ex-
periments.

Using the TF and the TF-IDF as alternative met-
rics to rank the top tags and top tracks, we pre-
pared seven runs for each of the input playlists,
where we tested different values for the parame-
ters, in order to understand how the results vary
as those values are increased or decreased individu-
ally. The parameter combinations used in each run
are shown in Table 3 in the α/β column. In total,
we obtained 280 distinct playlists (2 metrics × 7
runs × 20 input playlists) with 30 recommended
tracks each.

6

Table 2: Queries for the generation of the input
playlists.

Playlist Query

1 coldplay live

2 metallica slayer heavy metal

3 nirvana days of the new grunge alice in chains

4 jason mraz i’m yours

5 happy good vibe

6 sad depressing doom dark

7 britney spears rihanna madonna

8 norah jones diana krall jamie cullum

9 miles davis john coltrane classic jazz

10 frank sinatra new york

11 bob marley reggae summer happy positive

12 pop rock avril lavigne

13 indiana jones soundtrack

14 led zeppelin the who classic rock

15 rockabilly 50s elvis presley

16 country bluegrass bill monroe banjo

17 dubstep skrillex new beat

18 electronic aphex twin creative

19 house techno trance bestof

20 blues muddy waters robert johnson jimi hendrix

6 Evaluation

We did a comparison between corresponding result-
ing playlists in the first and second algorithms by
calculating the intersection size for the pairs of rec-
ommended playlists. Figure 3 illustrates how differ-
ent α/β parameter combinations influence the out-
come of the algorithms, by analyzing the number
of common tracks in the playlists generated with
the TF and the TF-IDF metrics. As we can see,
we consistently obtain the most different results for
α = 0.2 and β = 0.5. As expected, when the frac-
tion of considered tags and tracks approximates 1,
the algorithms tend to similar results. This hap-
pens due to the fact that information is being fil-
tered by extracting a fraction of the top ranked
items and as this fraction gets closer to 100%, the
number of common items increases, thus reducing
the difference between using the TF versus the TF-
IDF.

We further analyzed the resulting playlists and
assessed the discovery impact of the tag-based rec-
ommendations using an extension of the evaluation
method described by Coelho et al. [3]. Given the
lack of ground truth that would normally be used
to evaluate the results using precision and recall,

●

●

●

● ●

● ●

0

10

20

30

0.2/0.2 0.2/0.5 0.5/0.2 0.5/0.5 0.5/0.8 0.8/0.5 0.8/0.8
α β

In
te

rs
ec

tio
n

S
iz

e
Figure 3: Box plot illustrating the number of
common tracks in the corresponding recommended
playlists that resulted from each method. The se-
quence of boxes illustrates how the α and β param-
eters influence the results. The mean value of the
intersection size for each of the twenty playlists is
shown as a point.

Table 3: Playlist average evaluation score for the
280 generated playlist recommendations.

α/β
TF method score TF-IDF method score

Average Std. Dev. Average Std. Dev.

0.2/0.2 0.00204 0.00295 0.00100 0.00182

0.2/0.5 0.00171 0.00329 0.00100 0.00248

0.5/0.2 0.00184 0.00240 0.00085 0.00172

0.5/0.5 0.00158 0.00224 0.00100 0.00224

0.5/0.8 0.00174 0.00223 0.00111 0.00322

0.8/0.5 0.00176 0.00253 0.00114 0.00197

0.8/0.8 0.00171 0.00235 0.00111 0.00211

the authors considered a pair of tracks in a recom-
mended playlist as a true positive whenever it also
appeared in a user’s taste profile. In this paper,
we extend the binary approach used by Coelho at
al., where each pair of tracks would contribute only
once to the evaluation score even if it appeared on
more than one taste profile, to a frequentist ap-
proach, where a pair of tracks contributes as much
to the evaluation score as the number of times it
can be counted across individual taste profiles.

Thus, we defined our evaluation score as the sum
over all pairs of songs, for the total number of users
that listened to each individual pair of songs. This
value can be normalized with the division by the

7

maximum possible score, given by 1
2×p×(p−1)×u,

where p is the number of tracks representing the
playlist and u is the number of users. Additionally,
we improved on this evaluation method by select-
ing the subset of tracks with a play count superior
to the overall average play count (2.863) from the
users’ taste profiles. This has two consequences: (i)
the removal of tracks with the lowest play count,
solely focusing on tracks that the users potentially
liked, in the sense that they listened to them more
times than average, and (ii) a significant decrease
of the evaluation time complexity.

The results of the assessment are shown in Ta-
ble 3. As we can see, the recommendations pro-
vided by the second algorithm achieved a lower
overall score, with similar, while slightly lower,
standard deviation values, when compared to the
first algorithm. Based on the pairwise frequency
of the tracks from the recommended playlists in
the users music libraries, there is a clear indica-
tion that a smaller number of users have listened
to each pair of tracks that resulted from the TF-
IDF based method. We could say that the discov-
ery impact of the recommended playlist is poten-
tially higher when using the IDF to boost the TF
of the tags. This fact is congruent with our mu-
sic discovery goal, where less popular tracks should
have a higher probability of being included in the
recommended playlist. While the evaluation of dis-
covery cannot solely rely on popularity, we were
still able to obtain playlists with less popular and
potentially more surprising choices, whose genera-
tion process was supported by a solid knowledge
base that modeled the relationships between tracks
based on common tags.

7 Summary and Conclusions

We have compared two different methodologies
based on graph traversal operations using the
Gremlin language and a graph database backend
to support our recommendation system. We tested
each algorithm using a set of input playlists gener-
ated through textual search, obtaining several rec-
ommended playlists for representative pairs of pa-
rameters. We not only concluded that the IDF does
in fact influence the outcome of the system in a
positive way, regarding the discovery impact, but
also that using a lower fraction of top tags and top

tracks resulted in a stronger evidence of the differ-
ences introduced by using the TF-IDF versus the
TF.

7.1 Future Work

As future work, we would like to include addi-
tional features, such as content-based features or
genre, to improve the music discovery process. We
would also like to work on the evaluation method-
ologies, considering factors such as popularity and
discovery impact, but, more importantly, obtain-
ing human feedback regarding the recommended
playlists, to support our approach and its difference
from randomly selecting the tracks for a playlist.

Acknowledgments

This work has been financed by Laboratório
SAPO/U.Porto under a research grant for the Jug-
gle project.

References

[1] Thierry Bertin-Mahieux, Daniel P W Ellis,
Brian Whitman, and Paul Lemere. The Mil-
lion Song Dataset. In Proceedings of the
12th International Society for Music Infor-
mation Retrieval Conference (ISMIR 2011),
pages 591–596, Miami, Florida, 2011.

[2] Òscar Celma Herrada. Music recommendation
and discovery in the long tail. Phd thesis, Uni-
versitat Pompeu Fabra, 2009.

[3] Filipe Coelho, José Devezas, and Cristina
Ribeiro. Large-scale Crossmedia Retrieval for
Playlist Generation and Song Discovery. In
Proceedings of the 10th International Confer-
ence in the RIAO series (OAIR 2013), 2013.

[4] Benjamin Fields. Contextualize your listen-
ing: The playlist as recommendation engine.
Phd thesis, Goldsmiths, University of London,
2011.

[5] CS Firan, Wolfgang Nejdl, and R Paiu.
The benefit of using tag-based profiles. In
Web Conference, 2007. LA-WEB 2007. Latin
American, pages 32–41, 2007.

8

[6] Jeroen De Knijf, Anthony Liekens, and Bart
Goethals. GaMuSo: graph base music recom-
mendation in a social bookmarking service. In
Advances in Intelligent Data Analysis X, 2011.

[7] Brian McFee, Thierry Bertin-Mahieux,
Daniel PW Ellis, and Gert RG Lanckriet. The
million song dataset challenge. In Proceedings
of the 21st international conference compan-
ion on World Wide Web, pages 909–916.
ACM, 2012.

[8] Yoon-Joo Park and Alexander Tuzhilin. The
long tail of recommender systems and how to
leverage it. Proceedings of the 2008 ACM con-
ference on Recommender systems - RecSys ’08,
page 11, 2008.

[9] Alexander Schindler, Rudolf Mayer, and An-
dreas Rauber. Facilitating comprehensive
benchmarking experiments on the million song
dataset. In ISMIR, pages 469–474, 2012.

[10] S Sen, Jesse Vig, and John Riedl. Learning
to recognize valuable tags. In Proceedings of
the 14th international conference on Intelli-
gent user interfaces (IUI 2009), pages 87–96,
2009.

[11] S Sen, Jesse Vig, and John Riedl. Tagom-
menders: connecting users to items through
tags. In Proceedings of the 18th international
conference on World wide web, pages 671–680,
2009.

9

	Introduction
	Related Work
	Music Recommendation: Playlist Generation
	Using Folksonomies for Recommendation
	Music Discovery in the Long Tail

	Million Song Dataset
	Graph-Based Recommendation
	Knowledge Model
	Data Preparation
	Recommendation Queries

	Experiment
	Evaluation
	Summary and Conclusions
	Future Work

