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A B S T R A C T

Entity-oriented search has revolutionized search engines. In the era of Google Knowledge
Graph and Microsoft Satori, users demand an effortless process of search. Whether they
express an information need through a keyword query, expecting documents and entities, or
through a clicked entity, expecting related entities, there is an inherent need for the combina-
tion of corpora and knowledge bases to obtain an answer. Such integration frequently relies
on independent signals extracted from inverted indexes, and from quad indexes indirectly
accessed through queries to a triplestore. However, relying on two separate representation
models inhibits the effective cross-referencing of information, discarding otherwise available
relations that could lead to a better ranking. Moreover, different retrieval tasks often demand
separate implementations, although the problem is, at its core, the same. With the goal of
harnessing all available information to optimize retrieval, we explore joint representation
models of documents and entities, while taking a step towards the definition of a more gen-
eral retrieval approach. Specifically, we propose that graphs should be used to incorporate
explicit and implicit information derived from the relations between text found in corpora
and entities found in knowledge bases. We also take advantage of this framework to elabo-
rate a general model for entity-oriented search, proposing a universal ranking function for
the tasks of ad hoc document retrieval (leveraging entities), ad hoc entity retrieval, and entity
list completion.

At a conceptual stage, we begin by proposing the graph-of-entity, based on the relations
between combinations of term and entity nodes. We introduce the entity weight as the
corresponding ranking function, relying on the idea of seed nodes for representing the query,
either directly through term nodes, or based on the expansion to adjacent entity nodes. The
score is computed based on a series of geodesic distances to the remaining nodes, providing a
ranking for the documents (or entities) in the graph. In order to improve on the low scalability
of the graph-of-entity, we then redesigned this model in a way that reduced the number of
edges in relation to the number of nodes, by relying on the hypergraph data structure. The
resulting model, which we called hypergraph-of-entity, is the main contribution of this thesis.
The obtained reduction was achieved by replacing binary edges with n-ary relations based
on sets of nodes and entities (undirected document hyperedges), sets of entities (undirected
hyperedges, either based on co-occurrence or a grouping by semantic subject), and pairs of
a set of terms and a set of one entity (directed hyperedges, mapping text to an object).

We introduce the random walk score as the corresponding ranking function, relying on
the same idea of seed nodes, similar to the entity weight in the graph-of-entity. Scoring
based on this function is highly reliant on the structure of the hypergraph, which we call
representation-driven retrieval. As such, we explore several extensions of the hypergraph-of-
entity, including relations of synonymy, or contextual similarity, as well as different weighting
functions per node and hyperedge type. We also propose TF-bins as a discretization for
representing term frequency in the hypergraph-of-entity. For the random walk score, we
propose and explore several parameters, including length and repeats, with or without seed
node expansion, direction, or weights, and with or without a certain degree of node and/or
hyperedge fatigue, a concept that we also propose.

For evaluation, we took advantage of TREC 2017 OpenSearch track, which relied on an on-
line evaluation process based on the Living Labs API, and we also participated in TREC 2018

Common Core track, which was based on the newly introduced TREC Washington Post Cor-
pus. Our main experiments were supported on the INEX 2009 Wikipedia collection, which
proved to be a fundamental test collection for assessing retrieval effectiveness across multiple
tasks. At first, our experiments solely focused on ad hoc document retrieval, ensuring that
the model performed adequately for a classical task. We then expanded the work to cover
all three entity-oriented search tasks. Results supported the viability of a general retrieval
model, opening novel challenges in information retrieval, and proposing a new path towards
generality in this area.
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R E S U M O

A pesquisa orientada a entidades revolucionou os motores de busca. Na era do Google
Knowledge Graph e do Microsoft Satori, o utilizador exige um processo de pesquisa sem
esforço. Quer o utilizador expresse uma necessidade de informação através de uma consulta
de palavras-chave, procurando obter documentos e entidades, ou através de uma entidade
clicada, procurando obter entidades, existe a necessidade inerente da combinação de corpora
e bases de conhecimento para obter uma resposta. Tal integração depende frequentemente
de sinais independentes extraídos de índices invertidos, e de índices de quads acedidos indi-
retamente através de interrogações a uma triplestore. Contudo, depender de dois modelos de
representação separados restringe a eficácia do cruzamento de informação, descartando re-
lações que, de outra forma, estariam disponíveis e poderiam resultar num ranking de maior
qualidade. Além disso, diferentes tarefas de recuperação exigem frequentemente implemen-
tações separadas, apesar do problema ser, na prática, o mesmo. Com o objetivo de tirar
partido de toda a informação disponível para otimizar a recuperação, exploramos modelos
de representação conjunta de documentos e entidades, em simultâneo dando um passo em
direção à definição de uma abordagem mais geral para a recuperação de informação. Con-
cretamente, propomos a utilização de grafos para incorporar informação explícita e implícita
derivada das relações entre o texto que encontramos em corpora e as entidades que encon-
tramos em bases de conhecimento. Tiramos também partido deste framework para elaborar
um modelo geral para pesquisa orientada a entidades, propondo uma função universal de
ranking para as tarefas de ad hoc document retrieval (alavancando entidades), ad hoc entity
retrieval, e entity list completion.

Na fase conceptual, começamos por propor o graph-of-entity, baseado nas relações entre
diferentes combinações de nós termo e entidade. Introduzimos o entity weight como a função
de ranking correspondente, suportada na ideia de nós-semente que representam a consulta,
quer diretamente através de nós termo, quer baseados na expansão da consulta a entidades
adjacentes. A pontuação é computada com base numa série de distâncias geodésicas aos
restantes nós, resultando num ranking de documentos (ou entidades) no grafo. Com a fi-
nalidade de melhorar a baixa escalabilidade do graph-of-entity, redesenhamos este modelo
de forma a reduzir o número de arestas em relação ao número de nós, suportando-nos no
hipergrafo como estrutura de dados. O modelo resultante, ao qual chamamos hypergraph-
of-entity, é a principal contribuição desta tese. A redução obtida foi alcançada substituindo
arestas binárias por relações n-árias baseadas em conjuntos de nós e entidades (hiperaresta
não-dirigida documento), conjuntos de entidades (hiperarestas não-dirigidas, baseadas em
co-ocorrência ou no agrupamento por sujeito semântico), e pares de um conjunto de termos
e um conjunto de uma entidade (hiperarestas dirigidas, mapeando texto para um objeto).

Introduzimos a random walk score como a função de ranking correspondente, suportada
na mesma ideia de nós-semente utilizada também no entity weight do graph-of-entity. A
pontuação gerada por esta função é altamente dependente da estrutura do hipergrafo, o que
designamos por recuperação orientada à representação. Como tal, exploramos várias exten-
sões do hypergraph-of-entity, incluindo relações de sinonímia, ou similaridade contextual,
bem como diferentes funções de pesagem por tipo de nó e hiperaresta. Também propomos
o conceito de TF-bins como uma discretização para representar a frequência do termo no
hipergrafo. Para a random walk score, propomos e exploramos vários parâmetros, incluindo
comprimento e repetições, com ou sem a expansão de nós-semente, direção, ou pesos, e com
ou sem um certo grau de fadiga nos nós e/ou hiperarestas, um conceito também por nós
proposto.

Para a avaliação, tiramos partido do TREC 2017 OpenSearch, suportado num processo de
avaliação online com base na API do Living Labs, e também participamos no TREC 2018

Common Core, baseado no recém-introduzido TREC Washington Post Corpus. As nossas
principais experiências suportaram-se na coleção da Wikipedia do INEX 2009, que veio a
demonstrar-se fundamental ao teste e à avaliação da eficácia da recuperação, de forma trans-
versal às múltiplas tarefas. Inicialmente, as nossas experiências focaram-se exclusivamente
em ad hoc document retrieval, garantindo que o modelo desempenhava adequadamente esta
tarefa clássica. De seguida, expandimos o trabalho de forma a englobar as três tarefas de pes-
quisa orientada a entidades. Os resultados obtidos suportam a viabilidade de um modelo
de recuperação geral, abrindo novos desafios na recuperação de informação e propondo um
novo caminho para a generalidade nesta área.
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gated Management of Resources and Academic
Records”. SIGARRA is the information system
used at the University of Porto. It is provided as
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well as other institutional units, like the rectory,
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Services. 24, 103, 107, 110
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Search originated in the library, but it flourished in the web. It all started with the
need to find the right content for the given information need. At first, there were
directories, that were maintained to organize web sites into categories and to facil-
itate browsing. Then, as the web blossomed and site production increased, search
engines became a necessary tool to reach the desired information among an ever-
growing volume of content. Initially, web pages were treated as simple documents
and search was mostly keyword-based. Ad hoc document retrieval was the main
paradigm for finding web pages that best matched the given search terms. Later
on, as the semantic web [2] emerged, the opportunity for search engines to also
account for semantics in user queries and documents presented itself. Furthermore,
the information needs of users were increasingly communicated as complex and
verbose questions about specific objects [3]. As users were becoming more demand-
ing, with nearly 39% queries directly referring to entities and 87% containing at
least one entity [4], the need for entity-oriented search became evident.

Search engines like Google are already able to fairly understand queries, exploit-
ing semantics to provide substantially improved and more direct answers to the
users. As seen on Figure 1.1a, when searching for [ sci-fi movies from 1985 ], it is
now common to receive a list of movies instead of a simple ranking of documents
based on whether they contain the query terms. Similarly, when searching for a par-
ticular entity, like [ back to the future ], modern search engines frequently display
a widget with information about the movie, sometimes including related queries.
This is illustrated in Figure 1.1b, where we find the suggestions for [ Back to the

Future Part II ] and [ Teen Wolf ], a sequel to Back to the Future and a popular movie
starring the same actor, respectively — in April 2017, the same query had displayed
[ Directed by Robert Zemeckis ] and [ Time travel movies ], illustrating the dynamics of
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(a) Entity list for [ sci-fi movies from 1985 ]. (b) Information about [ back to the

future ].

Figure 1.1: Web search, based on Google Knowledge Graph, ran on November 2019.

the system. We can also find queries that lead to other relevant entities, such as
[ Michael J. Fox ] or [ Christopher Lloyd ], which are a part of the cast, a relation that
could only be found thanks to Google’s Knowledge Graph [5].

Despite all the advancements that have been made in search, there are still several
open challenges and unexplored opportunities. In particular, little work has been
done on unified approaches to information retrieval. Is there a way to model het-
erogeneous data as a single useful representation for retrieval? Can we seamlessly
combine and represent unstructured text from corpora and structured statements
from knowledge bases, so that we can take advantage of all available information to
provide the best answer to the user’s information need? Is there a universal ranking
function that can be used to generally solve retrieval tasks? Will a unified frame-
work be more effective and efficient or does generalization represent a tradeoff with
performance? These are many of the questions that we explore in this thesis, while
developing graph-based entity-oriented search and proposing new approaches that
take the potential of generalization into consideration.

The structure of this chapter is organized as follows:

• Section 1.1 provides an historical perspective on the area of information re-
trieval, beginning at the library, and covering the evolution of search [§1.1.1].
It then analyzes the mixed history of the web, knowledge graphs and real-
world networks [§1.1.2], and it describes the events that led to entity-oriented
search [§1.1.3]. To help guide the reader, we provide three timelines that in-
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1.1 historical perspective

clude relevant events for each area, focusing particularly on events that are
pertinent to this thesis within that area.

• Section 1.2 reinforces the need for a global perspective to coexist with a spe-
cialized approach in science, highlighting the importance of consolidating
models. It shows examples of unified models in different domains of sci-
ence, from physics to machine learning [§1.2.1], comparing a classical and a
contemporary definition of IR (Information Retrieval) to motivate the need
for a new, more general, approach to the area [§1.2.2]. It then demonstrates
the success of graphs as a representation data structure in multiple domains
[§1.2.3], and it closes by positioning this doctoral work in the intersection area
of unified information retrieval, whose development is motivated through this
contribution [§1.2.4].

• Section 1.3 introduces the basic concepts of a unified model for entity-oriented
search, discussing about combined data as a way to link unstructured and
structured data [§1.3.1], and specifying the retrieval tasks for which a univer-
sal ranking function is proposed [§1.3.2].

• Section 1.4 presents an overview of the problem description, specifying the
tackled challenges and formalizing the problem as a thesis statement.

• Section 1.5 tells the story of how the research work progressed, in order to
provide context, clarify the motivation, and position this thesis [§1.5.1]. It then
presents an overview of the document structure, describing the content of the
remaining chapters of this thesis [§1.5.2] and its main contributions [§1.5.3].

1.1 historical perspective
Ever since the 7th century BC, with the Royal Library of Ashurbanipal, that human-
ity has been collecting and organizing knowledge [6, §2.1.1]. It was there that we
found what is perhaps the first categorization of materials, into six subjects: history,
law, science, magic, dogma, and legends. Centuries later, around the 3rd century BC
and inspired by Ashurbanipal, the Great Library of Alexandria was founded. For
three centuries it is said to have accumulated around 700,000 scrolls, losing around
40,000 scrolls in the first-century BC to a fire during Caesar’s Civil War. Initially
stored as wedge-shaped cuneiform tablets and later on evolving to scrolls, docu-
ments slowly became what we know them to be today, leading to our present form
of writing, to paper manuscripts and to the current era of digital encoding.

Throughout history, libraries have been used as a means to solve information
needs, upholding knowledge and the development of mankind, by recording and
preserving, for future generations to build upon the discoveries of previous ones.
With an ever-increasing, harder to manage, amount of information, there has also
been a constant evolution of storage and retrieval approaches. One of the early solu-
tions for efficient retrieval was the peek-a-boo system of punch cards [7, §2.2], which
established a Boolean logic over document subjects, thus being able to identify a set
of relevant documents, that covered all the desired subjects, simply by overlapping
cards and peeking through the holes using light. As technology evolved, a signif-
icantly larger amount of information started to be stored within computers and,
even more, spread over the internet within one of the most important inventions of
the 20th century, the world wide web.

Present information retrieval, as a computer science subject, was born in the 1950s,
when Hans Peter Luhn started taking a statistical approach to characterize and de-
scribe documents within a collection. He used thesauri and indexes to encode docu-
ments in the machine, tackling the problem of search in a way that has now become
classical [8]. The approach was, however, quite novel at the time. Years later, in the
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1970s, another key moment would take place, with Karen Spärck Jones’ contribu-
tion to the statistical interpretation of term specificity [9]. In complement to term
exhaustivity, which had already been studied by Luhn, leading to the concept of TF
(Term Frequency), the work by Karen Spärck Jones materialized into another central
statistic of information retrieval, the IDF (Inverse Document Frequency). With TF,
we would identify documents with a higher number of mentions to words relevant
to our information need. With IDF, we could reduce the influence of terms that had
little discriminative power — happening when too many documents mentioned a
term for it to be useful for an automatic system to distinguish between documents.
However, a final problem became clear during the third edition of TREC (Text RE-
trieval Conference) — an evaluation forum for Information Retrieval organized by
ARPA and NIST. Given the varying length of documents in the test collection, it
became clear that results were biased towards longer documents. This led Amit
Singhal, Gerard Salton, Mandar Mitra, and Chris Buckley to propose the introduc-
tion of a new component, PDLN (Pivoted Document Length Normalization) [10,
11], which would fairly rank documents independently of their length. These three
elements, TF, IDF, and PDLN, are now central concepts in most information re-
trieval models — search requires a match between a query and several documents,
based on whether they share many words of interest (TF), that do not appear in too
many documents (IDF), with longer documents regularized to account for a higher
chance of terms repeating (PDLN).

1.1.1 Information retrieval and the evolution of search

In information retrieval, and particularly in search, the research focus has been in
developing ranking models, to improve effectiveness, but also on proposing index-
ing approaches, to improve efficiency. Figure 1.2 illustrates the evolution of search
over time, signaling the year when the most important representation and retrieval
models appeared. Hiemstra [12] was used as a reference for retrieval models, and
Zobel and Moffat [13] for representation models. Other, more recent, graph-based
models were also considered [14–16].

We begin in 1847, with George Boole and his approach to logic [17], that later
led to the Boolean retrieval model. This was the first model used in information re-
trieval, even prior to computers, for instance implemented in the peek-a-boo punch
card approach that we described before. Then, in 1945, Vannevar Bush, postulated
a device that he called the memex (from “memory” and “index”). In his article, «As
We May Think» [18], he defined this device as follows:

A memex is a device in which an individual stores all his books, records, and
communications, and which is mechanized so that it may be consulted with
exceeding speed and flexibility. It is an enlarged intimate supplement to his
memory.

– Vannebar Bush, 1945

Bush proposed that “selection by association, rather than indexing” could be mech-
anized, providing a better match to the human mind, which also “operates by as-
sociation”. He stated that “the process of tying two items together is the important
thing” and predicted that “new forms of encyclopedias” would appear “ready made
with a mesh of associative trails running through them, ready to be dropped into
the memex and there amplified”. He also suggested that there would be “a new
profession of trail blazers, those who find delight in the task of establishing useful
trails through the enormous mass of the common record”. Bush was a true vision-
ary, but it would take decades of research to even approach his vision. In fact, today
we are still working on strategies to augment text with entities, and we haven’t yet
figured out the best way to create a truly useful memex. We have hypertext and
knowledge bases, but we only recently started working on bringing them together
to support search, fully exploiting available resources to respond to our information
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1.1 historical perspective

Figure 1.2: The evolution of search: a timeline of representation and retrieval models.

needs. The following paragraphs provide an overview on the history of information
retrieval preceding this thesis, which is perhaps more aligned with Bush’s vision of
focusing on associations rather than present information retrieval trends.

In 1957, H. P. Luhn founded what we now know as information retrieval, with
his statistical approach to search [8]. In 1960, his work was followed by the prob-
abilistic indexing model [19], where the Bayes theorem was used as a weighting
model to calculate the probability of a document given a term. This marked the
beginning of two of the main approaches to ranking, the vector space model and
the probabilistic models. In 1971, Jardine and van Rijsbergen [20] proposed the
cluster hypothesis (see also Voorhees [21]), stating that “the associations between
documents convey information about the relevance of documents to requests”). In
1972, Spärck Jones contributed to improving the discriminative potential of TF by
proposing IDF [9], which was perhaps one of the most remarkable contributions to
information retrieval, culminating in the classical TF-IDF ranking function.

At this time, given the infancy of the area, storage was not yet a central issue.
Only in 1973, did the first indexing approaches for search emerge, with Knuth’s
clear definition of an inverted file [22, §6.5].

Inverted files. The first important class of techniques for secondary key re-
trieval is based on the idea of an inverted file. This does not mean that the
file is turned upside down; it means that the roles of records and attributes are
reversed. Instead of listing the attributes of a given record, we list the records
having a given attribute.

– Donald E. Knuth, 1973

In 1974, the 2-Poisson model was proposed by Bookstein and Swanson [23] and
further explored by Harter in 1975 [24]. It consisted of a linear combination of two
Poisson distributions for the study of specialty words in technical literature. This

5



1.1 historical perspective

also introduced the concept of eliteness, where a subset of the collection showed
evidence of a higher-than-normal presence of a given term, while a second subset
did not. In 1976, Stephen Robertson and Karen Spärck Jones defied the principles
put forward by H. P. Luhn. They proposed the probabilistic retrieval model [25],
where the similarity between query and document was not the only considered cri-
terion. Instead, they identified cases where the probability of retrieving a relevant
document would be higher even if it did not contain a query term. This happened
for example when the fraction of relevant documents was higher than the fraction
of documents containing the desired term. Naturally, this required relevant docu-
ments to be known ahead of time, a case that is common, for instance, in the library,
but not in the web.

In 1984, Faloutsos and Christodoulakis [26] were the first to attempt to compete
with the inverted index, by proposing signature files as an alternative for indexing
a collection. Their approach, however, required more disk accesses and space, and
did not provide support for ranked retrieval. They also used probabilistic index-
ing, making false match elimination an issue. In 1989, learning to rank approaches
emerged through Norbert Fuhr’s work [27], providing an advancement over manu-
ally designing a function for combining and weighting features. This groundwork
would, later on, lead to the automatic learning of the ranking function, over a wide
range of document aspects (e.g., number of incoming links for a web page), as well
as query-document relations (e.g., TF-IDF).

In 1990, there was a new attempt at an alternative to the inverted index, with
Udi Manber and Gene Myers’ proposal of the suffix arrays for string search [28],
which, like signature files, failed to provide ranked retrieval, and were inefficient for
large-scale applications. In 1991, Bayesian networks were used to define the infer-
ence network model [29], a graphical model describing dependencies between the
information need, the query, the representation elements (e.g., terms) and the docu-
ments. In 1992, Forbes Burkowski took the initial steps towards region models [30],
an extension of the Boolean model applied over segments of the text, showing that
there was still room for non-ranking and set-based retrieval approaches. In 1994,
at TREC-3, Robertson et al. [31] proposed Okapi BM25, a probabilistic model with
two configurable parameters, k1, for controlling the gain introduced by multiple
occurrences of a term, and b, for controlling the influence of document length nor-
malization. In 1995, Markov networks were proposed as an approach to information
retrieval [32] by modeling the dependencies between queries and documents. Un-
like Bayesian networks, there was no direction assigned to the dependencies within
the graphical model for Markov networks. This meant that calculations were not
done based on conditional probabilities, but instead on log-linear models of factors
associated with the dependencies. In 1996, and thanks to the diverse lengths of doc-
uments in the TREC collection, Singhal et al. [10, 11] introduced Pivoted Document
Length Normalization.

In 1997, link analysis emerged in information retrieval as way to take advantage
of the hyperlinks connecting web pages. This was when the famous PageRank
algorithm [33] appeared, proposed by Sergey Brin and Larry Page, the founders of
Google. In that same year, Jon Kleinberg also proposed HITS (Hyperlink-Induced
Topic Search) [34], as a way to exploit hyperlinks for search. While the prior could
be computed offline for the web graph, the latter was applied over a subset of the
web graph that contained previously retrieved pages relevant to the topic. In 1998,
Ponte and Croft [35] proposed the inference of a language model for each document
to estimate the probability of generating the query, taking language models from
speech recognition and applying them to information retrieval. Ranking models
like PageRank and language models both have an underlying graph, PageRank
modeling transitions between web pages and language models modeling transitions
between words. Identifying such regularities will pave the way towards a general
model for information retrieval.
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In 2002, Giambattista Amati, a member of the Terrier [36] team, proposed a new
model, divergence from randomness, that built upon the 2-Poisson model and the
concept of eliteness. It was based on the combination of a basic model (analogous
to IDF), an after-effect, also called the first normalization (analogous to TF), and
a term frequency normalization, also called the second normalization, or simply
normalization (analogous to Document Length Normalization). Different models
were provided as a choice for each of these three components.

In February 2012, Blanco and Lioma [15] structured several approaches for graph-
based term weighting, over graphs that linked terms within a sliding window, op-
tionally establishing direction based on POS (Part-Of-Speech) tags and Jespersen’s
rank theory [37] (from lowest to highest ranks). Based on the undirected and di-
rected versions of these graphs, they proposed four ranking functions: TextRank,
TextLink, POSRank and POSLink. “Text” or “POS” referred to the undirected or
directed graph, respectively, while “Rank” or “Link” referred to the PageRank or
indegree over that graph. In August 2012, Michael Bendersky and W. Bruce Croft
took yet another step forward with their query hypergraph [14] for modeling higher-
order term dependencies. Like Markov networks, a query hypergraph can also be
transformed into, and solved through, a factor graph. However, unlike Markov
networks, which only capture dyadic relations, the query hypergraph is able to cap-
ture polyadic relations. Finally, in 2013, building on the work by Blanco and Lioma,
François Rousseau and Michalis Vazirgiannis proposed the graph-of-word repre-
sentation model and the TW-IDF retrieval model [16], based on a directed graph to
model term dependencies. They also used a sliding window, but this time it was
not centered around each term, but rather started at the term, arguing that the fol-
lowing terms were more relevant than the previous ones for establishing a context.
In 2018, in the context of learning to rank, and thinking about how loss can be point-
wise, pairwise or listwise, Ai et al. [38] proposed that so should document scoring
be computed groupwise. This defied the pointwise model that had been used so
far to score documents (i.e., instead of computing score(q,d), we should compute
score(q,D), considering a set of documents D as opposed to a single document d
for a query q). This showed the importance of considering documents as a group,
instead of individually, during ranking.

So far, we have learned about the evolution of representation and retrieval models
mostly used in ad hoc document search. We have talked about how the web graph
inspired PageRank, and how term dependencies were eventually represented as a
graph and used for ranking documents. We have even identified a hypergraph-
based model for capturing more complex dependencies. What we have not covered
so far is entity-oriented search, but, before jumping into our main subject, let us
first look at the evolution of graphs, in the web, as a way to represent knowledge,
and as a tool to study real-world complex systems.

1.1.2 The web, knowledge graphs, and real-world networks

Graphs have had a significant role in the organization of documents and knowl-
edge, but they have also been used to study complex systems. The web is a per-
fect example of the intersection and consolidation of the former concepts. When
studying graph-based entity-oriented search, we must first understand how data
is represented through graphs, as well as which statistics can be used for ranking
within networks. Figure 1.3 illustrates the evolution of graphs, integrating impor-
tant events from network science, as well as the world wide web, as it transformed
into a more semantic web, mainly through knowledge graphs.

Graph theory was born with Leonhard Euler in 1735, when he presented his solu-
tion to the Seven Bridges of Königsberg. Centuries later, graphs became the mathe-
matical structure used in network science to study real-world networks. Use cases
ranged from the study of protein-protein interactions, coauthorship, or social net-
works, to the understanding of communication networks or the link ecosystem of
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1.1 historical perspective

Figure 1.3: The evolution of graphs: a timeline of network science, the development of the
semantic web and the rise of knowledge graphs.

the web. The first centrality metrics, built to measure node importance, originated
in the 1950s, at a time when information retrieval was also in its infancy. It was pre-
cisely in 1950 that Alex Bavelas proposed the closeness centrality [39] as a way to
assess communication scenarios within small groups as well as larger organizations.

And then hypergraphs emerged. Claude Berge, the founding father of hyper-
graph theory, wrote in the foreword of his 1973 edition of «Graphes et Hyper-
graphes» [40]:

At the Balatonfüred Conference (1969), P. Erdös and A. Hajnal asked us why
we would use hypergraphs for problems that can be also formulated in terms of
graphs. The answer is that by using hypergraphs, one deals with generalizations
of familiar concepts. Thus, hypergraphs can be used to simplify as well as to
generalize.

– Claude Berge, 1970

In science, we build models that try to explain reality, or parts of it. In this sense, a
structure that is general and supports the easy representation of familiar concepts
is worth considering over a structure with lower expressive power, even when there
are equivalences. This thesis explores graph-based models, in which hypergraphs
were included, with its central contribution lying in the latter.

In 1972, the eigenvector centrality was proposed by Phillip Bonacich [41, 42] to
measure the power of an individual in the social structure and for predicting how
fast information would spread. In 1974, a year after inverted files were clearly
defined by Knuth, random walks on graphs emerged [43] and, in 1977, Linton C.
Freeman’s betweenness centrality provided a way to measure the importance of
a node as a bridge [44]. In 1989, the web was born through Berners-Lee “Mesh”
proposal [45] and, 7 years later, in 1996, RDF emerged [46]. The following year,
PageRank [33] and HITS [34] were proposed, and 4 years later, in 2001, the semantic
web was born [2].
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In the years following the birth of the semantic web, semantic technology con-
tinued to evolve, with RDFa [47] appearing in 2004, to integrate entity semantics
directly into web page attributes. In 2005, microformats [48] continued this trend
and, in 2007, two important knowledge bases were born, Freebase [49] and DBpe-
dia [50]. In 2010, JSON-LD [51] was proposed to represent linked data, and, in 2011,
schema.org [52] emerged. In 2012, Google’s Knowledge Graph [5] was born from
Freebase, after Google acquired Metaweb. Freebase was shutdown in August 2016,
leaving behind its resources to Wikidata [53], which also appeared in 2012, when
graph-based term weighting was being proposed by Blanco and Lioma [15]. In 2013,
Microsoft followed Google with their own knowledge graph, Satori [54]. 2013 was
also the year when random walks on hypergraphs were formalized [55]. That same
year, the graph-of-word was proposed by Rousseau and Vazirgiannis [16], and, in
2016, the Microsoft Academic Graph knowledge base was created [56]. Graphs
have become ubiquitous, but spread differently across domains. As such, there is
still much integration to be done, leading to better information retrieval, through
the associations that Bush talked about in his idea for a memex.

We have looked at key events in the evolution of graphs, focusing on the repre-
sentation of relations between entities, in particular for modeling knowledge, but
also as a structure of relevance. As information retrieval’s dependence on interre-
lating and cross-referencing information grew, so did its dependence on complex
networks. With it, the access to the existing mechanisms of network science also
extended the range of available tools to information retrieval. Could graph-based
information retrieval be used for generally modeling and retrieving text and knowl-
edge? Could it be the answer to a more general retrieval model, based on a univer-
sal ranking function? To reflect about this, let us now introduce and learn about
entity-oriented search.

1.1.3 Documents meet entities: the birth of entity-oriented search

The shift to entity-oriented search was brought by the semantic web, information
extraction, and information retrieval communities. The semantic web community
wanted to find ways to exploit the machine understandable structure they had pro-
posed to make knowledge more accessible. Thus, they experimented with the re-
trieval of subgraphs that would match a query graph [57, 58], or the retrieval of
entities and relations to augment traditional search results [59, 60] — they mod-
eled semantic search as either graph matching, or as ad hoc entity retrieval. On the
other side of the spectrum, information retrieval scientists who had been, until then,
focused on working with unstructured data from text, were now also considering
structured data. With the help of information extraction approaches, they began in-
troducing structure through semantic annotations in documents and queries, identi-
fying entity mentions and linking them to the corresponding entities in a knowledge
base. This led to the first approaches for ontology driven semantic search [61] — in
IR, this was synonymous with ad hoc document retrieval, leveraging entities.

At this point, the concept of semantic search was becoming itself semantically am-
biguous. In 2018, Krisztian Balog finally clarified the definition, using a more gen-
eral approach that would subsume the previous definitions [62, §1.3.3]:

Semantic search encompasses a variety of methods and approaches aimed at
aiding users in their information access and consumption activities, by under-
standing their context and intent.

– Kritsztian Balog, 2018

Figure 1.4 illustrates key events in the origin and evolution of entity-oriented
search. It was in 2002, the year immediately following the birth of the semantic
web, that the concept of semantic search started to be explored [57–60], with graph
matching and ad hoc entity retrieval. It was also in 2002 that the «TAO of Topic
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Figure 1.4: The evolution of entity-oriented search: a timeline of semantic retrieval ap-
proaches over corpora and knowledge bases.

Maps» was published [63], describing a structure that emerged in the 1990s based
on HyTime [64], to describe topics, their associations and occurrences. This enabled
multiple back-of-the-book indexes to be merged, establishing n-ary inter-topic links,
leading to what was perhaps the first general representation model based on hyper-
graphs.

In 2004, the first methods for document retrieval that leveraged entities and
their relations started to emerge [61]. In that same year, ObjectRank [65], the first
PageRank application for ranking entities based on a keyword query was proposed.
In 2005, Microsoft’s PopRank continued this trend by combining web page links and
entity relations to form a query-independent feature for Microsoft Academic Search
(at the time still at its infancy with codename Libra). With a similar goal, in 2006,
Hogan et al. proposed ReConRank [66], a combination of ResourceRank, computed
over an entity graph based on subjects from triples, and ContextRank, computed
over a context graph based on contexts linked by one or more common entities.
Interestingly, the diagram they presented to illustrate their approach [66, Fig.2] re-
sembled a hypergraph. Unfortunately, this data structure is frequently overlooked
as a modeling solution — it is less known than graphs, but there is also a scarcity
of tools for hypergraphs. In 2007, HubRank [67] was proposed as an approach for
improved performance over ObjectRank. It was based on the precomputation of a
set of hub nodes according to query logs and using random walk based fingerprints
to estimate scores. Also in 2007, virtual documents were used for the first time [4]
to represent and support the retrieval of entities. That same year, the task of entity
list completion appeared in INEX 2007 [68], only coming to TREC in 2010 [69].

Two years later, in 2009, the task of related entity finding was introduced in
TREC [70] and it was also around that year that learning to rank started to be ap-
plied to ad hoc entity retrieval [71]. In 2010, Delbru et al. [72] proposed DING
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(Dataset rankING) as a way to rank datasets based on entity links, as well as inter-
dataset links, and Pound et al. [3] proposed five query categories to classify ad hoc
entity retrieval information needs: entity query, type query, attribute query, rela-
tion query, and other keyword query. In 2012, the query hypergraph model, which
can loosely be considered a part of entity-oriented search, also contributed with a
different view on modeling polyadic dependencies. Entities were defined as a part
of the concepts, however the model did not contemplate knowledge base relations.

In 2013, the cluster hypothesis for entity-oriented search was proven by Raviv et
al. [73], supporting the fact that entities similar to relevant entities also have a high
chance of being relevant. In that same year, Bast and Buchhold [74] proposed a joint
index for ontologies and text, essentially arguing that it would be the only viable
way to cross-reference information transversal to unstructured and structured data
during retrieval. It was also in 2013 that the community started experimenting
with tensors to represent entity graphs [75], where a third dimension was used,
for instance, for different predicates. Tensor factorization could then be used with
listwise loss to obtain a learned ranking function. In 2016, representation learning
was used to find a joint space for words and entities, reinforcing the importance of
combining unstructured and structured data in a single “knowledge space”. In 2017,
Dekker and Birnbaum [76] proposed a representation model for text documents that
would capture n-ary relations, with words forming sentences, sentences forming
paragraphs and paragraphs forming documents, among others. Despite no direct
relation with entities was established here, it is obvious that we might define entity
markup annotations without significantly altering the model.

The refocus on associations, brought by graph-based models for information re-
trieval, has taken us full-circle to the original vision of Vannevar Bush and his memex
device. With entities and their relations at the center of information retrieval, there
is still, however, a need for intersecting unstructured and structured data, so that
we can cross-reference information in both sources. In this thesis, we propose that
this should be done using a general representation model and a universal ranking
function over a graph or hypergraph data structure.

1.2 the importance of consolidating models
In the beginning, philosophy was an all-encompassing field of knowledge. Over
time, however, as the body of knowledge increased in size and complexity, further
specialization was required and new fields were born and developed. As fields
like mathematics or information retrieval evolved, the view of the whole moved
to the background, or rather became present only in sparse contributions across
time — the ability to intersect knowledge, or the holistic aspects inherent to philos-
ophy faded away with specialization. Information retrieval, for example, focused
on “finding material [. . . ] of an unstructured nature” [77], thus limiting its own
ability to solve an information need. In the present, however, with search increas-
ingly relying in heterogeneous collections, including corpora and knowledge bases,
such a general view becomes once again relevant. Its importance to entity-oriented
search lies in the need to cross-reference information from unstructured and struc-
tured data sources, to access previously unreachable information, benefiting from
general models to better solve the information needs of the users.

In science, the process by which we develop general models has traditionally been
a bottom-up process, from the modeling of individual phenomena, to the merging
and generalization of the devised models — extending them to more than one phe-
nomenon, or mapping the relations between phenomena. It is perhaps more than
ever the function of PhDs (doctors of philosophy) in information retrieval to take
a holistic stance towards the elements that lead users to the knowledge that they
seek. The contribution of this thesis is on finding a general representation model
for corpora and knowledge bases, as well as on defining a universal ranking func-
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tion over such a model. In this section, we compare information retrieval with other
domains of science, motivating the study of unified models, arguing for the usage
of graphs as a supporting data structure for general models, and reinforcing the
need for such an area of study in the information retrieval domain. This naturally
positions this thesis in the area of entity-oriented search, where documents, entities
and their relations coexist to solve information needs.

1.2.1 Unified models: from physics to machine learning

Proposing unified models requires a deep understanding of the phenomena under
consideration, as well as of the already existing models for each phenomenon and
their commonalities. Sometimes this means creating abstractions for the models,
so that we establish a common ground at a higher level. Other times, it means
specializing or further dividing the elements of the models, so that we find lower
level connections.

Most fields of science have worked on the unification of theories or models in
their area. In physics, Albert Einstein [78] has provided a unified description of
gravity as a geometric property of space and time. In his last lecture, John von
Neumann [79] established a parallel between the computer and the brain, motivat-
ing the cross-pollination between computer science and neuroscience. In cognitive
science, Allen Newell [80] has proposed a unified theory of cognition, compiling
a list of functional criteria that a human cognitive architecture should follow [81,
Tab.1]. In information retrieval, Zhou and Huang [82] have explored the unifica-
tion of text and visual features for image retrieval. In recommender systems, Bu
et al. [83] have proposed a unified hypergraph that combined social and acoustic
features for music recommendation. In information extraction, Moro et al. [84]
have proposed a unified approach for entity linking and word sense disambigua-
tion. In machine learning, Pedro Domingos [85] has worked on the unification of
the master algorithms from “the five tribes of machine learning”: symbolists, with
inverse deduction; connectionists, with backpropagation; evolutionaries, with ge-
netic programming; bayesians, with probabilistic inference; and analogizers, with
kernel machines.

With the proliferation of entity-oriented search, the matter of a unified model
to represent corpora and knowledge bases, as well as to retrieve any of the stored
elements, becomes more evident. While some work has already been done regard-
ing the joint representation learning, of words and entities [86], few attention has
been given to this problem in entity-oriented search. Moreover, work regarding
the unification of different retrieval tasks is quite limited — few of the available
examples include, for instance, the unified modeling of information retrieval and
recommender systems [87, 88].

1.2.2 Towards general approaches to information retrieval

In 1990, Alan Emtage [89] created Archie1, the first internet search engine, built
to locate content on public FTP servers. At that time, search was still heavily
based on keyword queries, as inspired by the library and the search potential of
the back-of-the-book index. However, with the evolution of the web and the de-
vices used to interact with it, the materialization of people’s information needs also
evolved. Queries changed from simple topic-driven keywords to more complex
entity-oriented structures. In 2007, Bautin and Skiena [4] found that nearly 87%
of all queries contained entities, according to the analysis of 36 million queries re-
leased by AOL [90]. Furthermore, entities are also frequently found in documents
— in the CoNLL 2003 English training set [91], there are 1.6 entities per sentence
(23,499 entities for 14,987 sentences). Such a pervasive presence of entities, both in

1 http://archie.icm.edu.pl/archie-adv_eng.html
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queries and in documents, easily justifies the current direction of search engines
and their focus on entity-oriented search.

According to Balog [62, Def.1.5]:

Entity-oriented search is the search paradigm of organizing and accessing infor-
mation centered around entities, and their attributes and relationships.

– Krisztian Balog, 2018

This presents a different side of the problem described in the classical definition of
information retrieval portrayed by Manning et al. [77]:

Information retrieval (IR) is finding material (usually documents) of an un-
structured nature (usually text) that satisfies an information need from within
large collections (usually stored on computers).

– Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze, 2008

In entity-oriented search, the materials can be of an unstructured or structured
nature. In fact, they are often a combination of both, either taking the form of
semi-structured data or links between unstructured and structured data. In their
survey on semantic search on text and knowledge bases, Bast et al. [92, Def.2.3]
defined combined data as text annotated with entities from a knowledge base, or
as a combination of knowledge bases with different naming schemes. Combined
data is at the core of entity-oriented search. However, in the past, techniques for
representing and querying corpora and knowledge bases have been explored sepa-
rately. In a way, there are two different communities that require cross-pollination.
Appropriately, Baeza-Yates et al. [93] had identified semantic search as a task that
lies in between several areas of specialization. The same applies to entity-oriented
search, which, according to Balog [62, §1.3.3], is subsumed by semantic search.

Modern search engines offer entity-oriented search through the orchestration of
several components which are built on top of a common set of resources — a collec-
tion of documents and knowledge bases, containing terms and entities, along with
links and resource statistics. A complete pipeline relies on components for entity
ranking and similarity measurement, target entity type identification, word sense
disambiguation and entity linking, document and query semantic analysis, query
expansion and entity list completion, and query recommendation and related en-
tity finding. Many of these approaches can be unified and refocused for better con-
tributing to solving the information need. While there is a considerate challenge in
reintegrating a set of components that have been strategically identified and devel-
oped over time, there might also be a considerate gain in breaking these boundaries,
perhaps enabling uncertainty to be spread across the system rather than propagated
from component to component. In this thesis, we motivate the idea of a more gen-
eral approach to information retrieval through a unified modeling strategy. And,
while not exclusively limited to, the task of merging many of these components can
often be accomplished through graph-based models.

1.2.3 The success of graphs as general representation models

Graphs have had success in the representation of a wide range of data types. They
have been used to represent documents, by establishing dependencies between their
terms [15, 16], as well as knowledge bases, by modeling relations between their en-
tities [49, 50, 53, 94, 95]. Recommender systems have also relied on graphs to
generate music playlists [96], image retrieval has used them to establish similar-
ity networks for reranking based on PageRank [97], and bibliometrics has relied
on coauthorship network analysis to understand collaboration patterns and mea-
sure author importance [98]. Graphs have been used to pose representations of the
brain [99], to study protein-protein interactions [100], to analyze social networks
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and the semantic web [101], or even for counter-terrorism and intelligence [102].
Graphs have also supported the development of unified frameworks across differ-
ent areas. Take for instance Moro et al. [84] who proposed a graph-based approach
for unified word sense disambiguation and entity linking, Dietz [103] who pro-
posed entity-neighbor-text relations to train a learning-to-rank-entities model based
on edge feature functions, or even Richardson and Domingos [104], who proposed
Markov logic networks, as a combination of probability and first-order logic, which
could easily model the uncertainty of statements describing entity attributes and
relationships. Graphs are even suitable to find explanations for entity relatedness,
through the identification of relevant paths that describe how two entities are con-
nected [105]. They are a flexible data structure in what comes to the representation
of heterogeneous data and, in particular combined data. Yet, we can do even better,
increasing the expressiveness of our representation model, if we use hypergraphs.

Hypergraphs are generalizations of graphs, that are polyadic instead of dyadic
— i.e., hypergraphs support n-ary relations, while graphs only support binary re-
lations. This means that they can be used to represent graphs, but also extended
with relations that would otherwise require multiple edges, or auxiliary hub nodes,
to be defined over a graph (e.g., synonymy, or contextual similarity). While in
graphs two edges can be adjacent if they share a common vertex, in hypergraphs,
two hyperedges can go beyond defining a simple adjacency relation, also modeling
intersection or overlap. If we go back to the origins of information retrieval, to
Luhn’s illustration on the communication of ideas [8, Fig.1], we find the importance
of modeling the overlap of common experience, at different levels of granularity.
Luhn’s model starts with an ‘idea’, the atomic element of communication, and pro-
gressively expresses it using: (i) a single sentence, for a high level of common
experience; (ii) multiple sentences in a single paragraph, for a moderate level of
common experience; and (iii) multiple paragraphs, with multiple sentences, for a
low level of common experience. The expression of an idea requires overlap and
a chaining of smaller ideas over a common experience. It is through the relations
and overlap of experience that ideas are modeled. From this point of view, the
hypergraph can be seen as a useful data structure for representing experience and
ideas, usually expressed through text, entities and their relations. In Luhn’s model,
these relations are established by common experience, which can be seen as external
knowledge that is required for a successful communication.

It would be a natural step to evolve a hypergraph-based retrieval model inspired
by Luhn’s model, for instance using documents to represent high levels of common
experience, entities to represent the intermediate levels, and terms to represent the
low levels. Perhaps the best reason to justify why this line of research was not
pursed at the time is that the concept of hypergraph was only born 13 years later,
in 1970, with the work by Claude Berge [40]. More recently, in 2017, adjacent rep-
resentation ideas have been put forward by Dekker and Birnbaum [76], who explic-
itly explored hypergraphs to represent text, proposing several other relations like
:line, :phrase, :quatrain, :stanza, or :excerpt. In information retrieval, hypergraphs as
representation and retrieval models have been scarcely studied in the decades fol-
lowing Luhn’s work, perhaps with the most relevant contribution being the already
mentioned query hypergraph, by Bendersky and Croft [14, 106], who used hyper-
graphs as probabilistic graphical models to consider n-ary relations. Dietz [103]
also touched on the subject of hypergraphs, but focused on the equivalent bipartite
graph representation, instead of directly taking advantage of the hypergraph. When
applied to information retrieval, hypergraphs have the potential to form a hybrid
model that acts like a mixture of the Boolean model and graph-based models, simul-
taneously supporting set operations, like union and intersection, and graph-based
operations, like the computation of shortest paths and node centralities. This is
worth exploring, as it will takes us closer to a unified framework for information
retrieval.
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Figure 1.5: Graph-based entity-oriented search: a unified framework to index and search
over combined data in the intersection of the worlds of documents, entities and graphs.

1.2.4 A unified framework for information retrieval

Figure 1.5 illustrates the rationale behind a unified framework for information re-
trieval, which we apply here to entity-oriented search. Corpora (the world of doc-
uments), and knowledge bases (the world of entities) intersect mainly in the task
of semantic annotation. NERD (Named Entity Recognition and Disambiguation)
is frequently used to identify segments of the text that mention a particular entity,
usually taking advantage of the context, found both in the text and knowledge base,
to link the mention to the correct entity instance. Some approaches to NERD even
rely on graphs for disambiguation, as we have seen previously in Section 1.2.3 with
Moro et al. [84]. Moreover, the world of documents and the world of entities each
intersect with the world of graphs. Graph-based document retrieval is a good ex-
ample of how graphs can be used to represent and retrieve documents, and graph
matching is frequently used to query knowledge bases, usually through SPARQL
(SPARQL Protocol And RDF Query Language), which establishes conjunctive graph
patterns based on triples to be matched with the knowledge graph. With multiple
overlapping points leading to graphs, the question that remains is whether we can
devise a joint representation model based on graphs that supports the tasks re-
quired to solve an information need over text and entities (see the last paragraph
in Section 1.2.2). Our goal is to prove that this is possible using graph-based entity-
oriented search, opening the way for a new line of research in unified models for
information retrieval, while also approximating adjacent areas like information ex-
traction and linked data.

In entity-oriented search, data is heterogeneous. This means that the information
leading to an answer that satisfies the information need might be spread across
different sources. It can be explicitly described in knowledge bases, or implicitly
available in corpora. Furthermore, it might require cross-referencing across data
sources for an answer to be found. No matter the type of item to be ranked, we can
benefit from linking the data to maximize the available information at any given
stage of the retrieval process. In this particular case, we have two main units of
retrieval — documents and entities — which can both be linked among themselves
in homogeneous networks (i.e., modeling document–document and entity–entity
relations). Furthermore, documents (or parts of documents) can also be linked to
the entities that they mention, forming an heterogeneous network. Finally, entities
are naturally linked to related entities within the same knowledge base, and they
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can also be linked to other instances, representing the same entity within another
knowledge base. These connections are the essence of combined data — they estab-
lish links between different sources of information, be it structured or unstructured.
In this thesis, we propose a unified framework for entity-oriented search, first based
on graphs, and then evolving to hypergraphs, both acting as general representation
models for corpora and knowledge bases. We then design a universal ranking func-
tion, over our hypergraph-based model, that supports four different retrieval tasks,
as a way to prove our thesis and motivate further research in unified models for
information retrieval.

1.3 a unified model for entity-oriented search
As we have seen, entity-oriented search not only encompasses tasks based on entity
ranking, such as ad hoc entity retrieval, related entity finding, and entity list com-
pletion, but it also covers ad hoc document retrieval, as long as it relies on entities
for semantic enrichment [62, Ch.8]. While these tasks can be modeled individually,
they share a common collection of combined data, bringing together text and en-
tities, in their heterogeneity, through annotations that connect mentions to entities,
as well as individuals representing the same entity. A data structure capable of rep-
resenting such heterogeneous data is a graph, which is why this thesis focuses on
exploring graph-based entity-oriented search. Graphs have the ability to represent
documents, entities, and their relations, working as a joint representation model
that provides the opportunity to tackle information retrieval in a more general way.

In this section, we introduce combined data as the main type of dataset for entity-
oriented search, showing how different inputs and outputs can lead to different
retrieval tasks. We also present an overview on the main tasks in entity-oriented
search, covering ad hoc document retrieval, ad hoc entity retrieval, related entity
finding, and entity list completion.

1.3.1 Combined data: linking corpora and knowledge bases

The concept of combined data has been inherently present in information extraction,
through entity linking, where textual mentions are identified, disambiguated and
associated with the correct, or most probable, entity in a knowledge base. It has
also been present in the semantic web, through ontology alignment, where the cor-
respondence between instances in different ontologies is established by a relation
of equivalence (e.g., owl:sameAs). The definition proposed by Bast et al. in their sur-
vey on semantic search [92, Def.2.3] accounted for these two aspects, distinguishing
between link and mult, to refer to text-to-entity, and to cross knowledge base entity-
to-entity relations, respectively. A slightly higher-level reiteration of that definition,
also considering links between documents, is proposed:

Definition 1. Combined data is a collection of corpora and knowledge bases, which includes
not only the natural relations between documents (e.g., hyperlinks in the web), and entities
(e.g., object properties in triplestores), but also cross-context relations, from mentions found
in documents to entities in knowledge bases, and from entities found in knowledge bases to
instances of the same entity in other knowledge bases.

Figure 1.6 illustrates the usefulness of combined data in providing a common
ground for integrating text and entities. As we can see, in yellow, there is a col-
lection of documents (C1), with hyperlinks connecting them. There are also two
knowledge bases (KB1 and KB2), containing entities and their relations in green. In
pink, we find the cross-context links that are crucial to combined data, connecting
entity mentions, in documents, to entities in a knowledge base, or two instances
of the same entity that appear in different knowledge bases. These cross-context
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or annotation links act as access points to augment not only text with knowledge,
but also knowledge with text. Take for instance Doc.2 and Doc.4, which are not
directly linked. We know, however, that there is a relation between these two doc-
uments, since they are co-cited by Doc.1. Additionally, based on the links from
Doc.2 to Entity 1, and from Doc.4 to Entity 1 and Entity 2, we now know that the
two documents are related because they cite a common entity. This is reinforced
by the fact that Doc.4 cites Entity 2, which is related to Doc.2 through Entity 1. As
another example, let us now look at Doc.3, which mentions Entity 5. Since we also
know that Entity 5 and Entity 7 refer to the same entity, then we might also reach
Entity 8 as a second degree connection. These links also contribute to measuring
node importance. If we look at Entity 1 without considering annotation links, it
only has one incoming link. Thus, we might consider it less important than Entity
4, which has two incoming links. However, when also accounting for information
from documents, Entity 1 might be considered more important than Entity 4, since
it has three incoming links, one from Entity 2 and two other from Doc.2 and Doc.4.

Entity 1

Entity 2

Entity 4

Entity 5

Entity 3
Doc.1

Doc.3 Doc.4

Doc.2

Entity 7

Entity 6

Entity 8

Knowledge Base KB1 Knowledge Base KB2

Document Hyperlink Entity Relation Annotation (Mention to Entity / Entity to Entity)

Corpus C1

Figure 1.6: Integrating unstructured and structured data through corpus↔ knowledge base
and knowledge base↔ knowledge base links.

Bast and Buchhold [74] presented the following example that illustrates the need
for cross-referencing information from unstructured and structured data:

Consider the query for entertainers that are friends with [an astronaut who
walked on the moon . . . ] and that the fact about friendship is retrieved from the
text and not part of our ontology. There is no way to process the full-text and
ontology part independently and afterwards combine the results.

– Hannah Bast and Björn Buchhold, 2013

In this particular instance, the ontology clearly identifies astronauts and entertain-
ers. However, there can be multiple reasons why the friendship relation is not
present in the knowledge base. This might be because the curator did not add it, or
because the relation extraction system was unable to identify a friendship relation
in the text, or even because that particular ontology does not model friendship re-
lations. There are multiple solutions to this problem. We can extend the ontology,
eventually reusing a different ontology to express friendship, and we can ask the
curator to start considering friendship relations. We can also rely on open informa-
tion extraction [107], which, without the need to define a vocabulary for specific
relations beforehand, should be able to identify friendship relations automatically,
when available in the text. However, these alternatives all have a cost. It represents
an increase in the workload of the curator, a revision to the relation extraction sys-
tem so that it supports additional relations without compromising accuracy, and a
revision to the ontology. Even with open information extraction, which is perhaps
the best option, there are also some concerns. Namely, it usually requires syntac-
tic and lexical constraints to ensure a higher level of precision and recall, and a
better tradeoff between those two metrics [108]. Achieving this can be computation-
ally expensive, specially for large collections, since it usually requires POS tagging,
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chunking, and dependency parsing [108, §5.1]. Moreover, extracting information
from the combined data collection to be indexed is a process that represents a sub-
stantial modification to the original data, along with a potential loss of information
introduced by additional uncertainty. The argument is not that this uncertainty
should be removed, since, regardless of the approach, it is bound to be a part of
the process. The argument is that, for information retrieval, uncertainty should be
introduced only after considering the user’s information need. This way, we en-
sure minimal loss of information — we take into consideration the user’s query, all
available text, and all available knowledge, and we then take advantage of a large
number of relations to disambiguate and rank. The motivation is that small leads,
if modeled correctly, can be as good for the retrieval process as a properly curated
knowledge base for a specific domain.

As we have pointed out before, there is a clear advantage of using combined
data to better solve information needs. By cross-referencing information from cor-
pora and knowledge bases, we are able to explore new paths that provide further
insights through previously unconsidered connections. This expands search possi-
bilities and, at the same time, it also provides an approach for measuring impor-
tance through network structure. While conceptually sound, there is a challenge
with representing and exploiting the relations within combined data, for search.
The indexing of combined data has largely relied on the inverted index, and the
triplestore, either losing the statistics of the inverted index used for ranking, or the
complex relations stored within the triplestore. Another approach has been to sepa-
rately compute and merge signals and lists from either storage system. Regardless,
there is always a compromise that will prevent the usage of all available informa-
tion to solve the information need. In this thesis, we propose a joint representation
model for terms, entities and their relations that attempts to take a step towards
solving this problem.

1.3.2 Retrieval tasks: towards a universal ranking function

In order to better understand the representation requirements for combined data
and the suitability of graphs for supporting retrieval, we must understand the
tasks in entity-oriented search. In this section, we present two different approaches
for solving the user’s information need, comparing classical text-based search and
entity-oriented search. We also describe the four tasks that we consider fundamen-
tal in entity-oriented search, illustrating with examples.

Figure 1.7 portrays two approaches to solving an information need, based on dif-
ferent subclasses of combined data (structured, unstructured and semi-structured).
As we can see, the basic approach to information retrieval is to build a retrieval
model based on text corpora, web pages or XML. Then, for a given information
need, usually expressed as a keyword query, we provide a list of ranked documents
to the users. If the users were looking for a specific document, like a web page they
want to access, then the system did its job. However, if the users were looking
for a specific answer, they might have to read through the retrieved documents un-
til they find the answer and solve their information need. Entity-oriented search
takes advantage of knowledge bases, frequently in the form of an entity graph, to
more effectively provide answers to the users. It may sill return documents, but
it always takes advantage of the semantics imposed by the entities mentioned in
the documents and their relations, to better measure relevance and more accurately
provide an answer. It might also directly provide entities to the users, displaying an
information card with metadata about a single entity (e.g., [ back to the future ]), or
displaying a list of entities, if the query so requires (e.g., [ sci-fi movies from 1985 ]).
Related entities might also be suggested in connection to one of the retrieved docu-
ments or entities.

In order to tackle each of these problems, we have segmented entity-oriented
search into four fundamental tasks: ad hoc document retrieval, ad hoc entity re-
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Information	Need
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They	don't	want	to	go
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Figure 1.7: Solving an information need in classical search versus entity-oriented search (the
dashed arrow symbolizes a partial dependency — e.g., discarding some of the structural
information, such as the hierarchical relations in XML).

trieval, related entity finding, and entity list completion. A description of each of
these tasks is briefly presented next.

Document mentioning the College of Information and 
Computer Sciences and Hypergraph entities, since W. 
Bruce Croft is dean of the College of Information and 
Computer Sciences and Hypergraph is one of the topics 
covered by Michael Bendersky in his thesis.

Doc:
342

Doc:
13

Doc:
671

Faculty member and 
former Dean in the 
College of Information 
and Computer Sciences.

Recent Ph.D. Graduates:

Michael Bendersky
Van Dang

Input Output

Keyword Query: croft bendersky

Figure 1.8: Ad hoc document retrieval, leveraging entities.

ad hoc document retrieval Figure 1.8 illustrates the traditional task of ad hoc
document retrieval, where, given a keyword query, the search engine must retrieve
a ranked list of documents, according to their relevance to the query. In text-based
search, this is usually done by tokenizing each document and creating an inverted
index where terms point to the documents containing it, along with several statis-
tics. In entity-oriented search, however, there is also the question of how to integrate
the information from documents and entities. Should we index them together as
text? Should we compute signals from the inverted index and knowledge base and
combine them? Is there a way to jointly represent documents and entities? How can
we ensure we harness the complex relations of entities to improve retrieval effective-
ness? The example in Figure 1.8 shows how entities and their relations can be used
to influence and improve the ranking of documents. Given the query [ croft bender-

sky ], we assume there is a query entity linking process that associates “croft” with
W. Bruce Croft and “bendersky” with Michael Bendersky. Analogously, we assume that
there is an entity linking process that associates each mention of an entity in the doc-
uments with its corresponding entity in a knowledge base. One way entities could
then affect the ranking process would be by boosting documents with entities re-
lated to the query, not necessarily mentioned explicitly. In the example, a document
mentioning College of Information and Computer Sciences and Hypergraph was boosted
because these entities were related to W. Bruce Croft and Michael Bendersky. Se-
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mantics was considered based on the entity graph and the corpus↔ knowledge base
relations.

Keyword Query: croft bendersky Entity: [Person] W. Bruce Croft

Entity: [Person] Michael Bendersky

Input Output

Figure 1.9: Ad hoc entity retrieval.

ad hoc entity retrieval Figure 1.9 illustrates the task of ad hoc entity retrieval,
where, given a keyword query, the search engine must retrieve a ranked list of en-
tities, according to their relevance to the query. The challenge lies in the mismatch
between the graph-based representation of the knowledge base and the multi-field
document representation of the inverted index. Should we index the text associ-
ated with the entities? And, if so, which attributes and related entities should we
consider, if any? Immediate neighbors, or more than that? Should we simply com-
pute relevance weights directly based on the knowledge graph? In the example,
“croft” and “bendersky” are the query terms used to search over the knowledge base,
retrieving two tied entities, W. Bruce Croft and Michael Bendersky. While in ad hoc
document retrieval we are required to leverage entities for it to be considered an
entity-oriented search task, in ad hoc entity retrieval, the reverse is not true. While
we are not required to leverage documents to improve entity ranking, this analo-
gous step ensures that all available information is exploited, having the ability to
improve performance [109].

Input Output

Entity: [Person] Michael Bendersky

Type: [ScholarlyArticle]

Relation: [creator]

Entity: [ScholarlyArticle] Modeling higher-order 
term dependencies in information retrieval using 
query hypergraphs

Entity: [ScholarlyArticle] Discovering key 
concepts in verbose queries

Figure 1.10: Related entity finding.

related entity finding Figure 1.10 illustrates the task of related entity finding,
which is somewhat analogous to entity recommendation, without a user profile (a
pseudo user profile is instead established by the query). Given an entity, a target
entity type and a relation, the goal is to retrieve and rank other entities that respect
the relation and target type. Traditional recommendation techniques, which also
include graph-based approaches, can be used to support this task (e.g., Reinanda et
al. [110] have experimented with both learning to rank and subgraph propagation
in a Bayesian network). In the example, given the Michael Bendersky entity, we want
to find scholarly articles created by him. Retrieved results include an article about

“verbose queries” and another one about the “query hypergraph”.

entity list completion Figure 1.11 illustrates the task of entity list completion.
Similar to related entity finding, it also requires an entity, target entity type and
relation as the query. Additionally, it considers example entities, as relevance feed-
back to inform retrieval. In the example, the same two articles shown in Figure 1.10

were retrieved, however the article about the “query hypergraph” was ranked higher,
since the example article provided was also about the same topic.
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Input Output

Entity: [Person] Michael Bendersky

Type: [ScholarlyArticle]

Relation: [creator]

Entity: [ScholarlyArticle] Modeling higher-order 
term dependencies in information retrieval using 
query hypergraphs

Entity: [ScholarlyArticle] Discovering key 
concepts in verbose queries

Example 1: [ScholarlyArticle] Information 
retrieval with query hypergraphs This is more similar to the example, so we moved it up.

Figure 1.11: Entity list completion.

The four retrieval tasks can be described over a common collection of combined
data and, were it not for the heterogeneity of unstructured corpora and structured
knowledge bases, they could all be modeled simply through different combinations
of input and output. For a keyword query and a ranking of documents, we would
get ad hoc document retrieval. For a keyword query and a ranking of entities, we
would get ad hoc entity retrieval. For an entity query with a single entity and a
ranking of entities, we would get related entity finding. And, finally, for an entity
query with multiple entities and a ranking of entities, we would get entity list
completion. This is central to the motivation of this thesis, where we propose a
representation and retrieval model capable of indexing combined data, as well as
a universal ranking function that, solely by controlling input and output, is able to
respond to any of these four tasks. Our generalization is applied only to existing
tasks, however we could just as easily define a task where an entity query is used
as input and a ranking of documents is used as output, obtaining the most relevant
document for a given set of entities. This is an advantage of unified models.

1.4 problem statement
When answering a user’s information need, entity-oriented search reconciles results
from unstructured and structured data. This problem is frequently approached by
establishing separate tasks, where the information need is solved as a combination
of different subsystems. While each subsystem can use information from the other
subsystems, they usually have their own central representation and retrieval model.
For example, the inverted index is one of the main representation models in ad hoc
document retrieval. And while structured information can be integrated into the in-
verted index to improve retrieval effectiveness, the rich and complex relations from
knowledge bases are seldom transposed to the inverted index in an effective manner.
For instance, related entities can be represented as text through a description or a
profile. This way they can then be indexed in one or multiple fields of the inverted
index and contribute to the ranking function as any other field would. Another
approach is to separately query the inverted index and the knowledge base and
combine document and entity weights. This means that the approach has been to
either combine the output of two models, or to translate one type of data to approx-
imately fit the model of the other type of data, from then on working exclusively
in that domain. Both approaches represent a missed opportunity to cross-reference
units of information from unstructured and structured sources (see also the exam-
ple cited in Section 1.3.1). A similar case can be made for knowledge bases where
indexes over triples can be queried through SPARQL, sometimes taking advantage
of full-text search to filter fields. There is clearly an opportunity for a joint repre-
sentation model, with ranking approaches that are generalizable to different units
of information, and to different tasks over those units. With this thesis, we focus on
developing the groundwork for such a model.
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Although there is already work where unstructured and structured data are com-
bined, models have been overly centered on one or the other type of data, frequently
considering one of them as the external signal. It is in this lack of a balanced mid-
dle ground that we find the opportunity for a contribution. The hypothesis is that,
by proposing a representation and retrieval model where text and knowledge are
seamlessly considered, we will be able to:

1. Jointly represent terms, entities and their relations in a single index;

2. Propose a universal ranking function for multiple entity-oriented search tasks;

3. Improve overall retrieval effectiveness through the unification of information
sources.

More formally, this threefold hypothesis is expressed by the following statement:

Thesis statement

A graph-based joint representation of unstructured and structured
data has the potential to unlock novel ranking strategies, that are,
in turn, able to support the generalization of entity-oriented search
tasks and to improve overall retrieval effectiveness by incorporating
explicit and implicit information derived from the relations between
text found in corpora and entities found in knowledge bases.

1.5 thesis outline
In the journey to prove the thesis statement described in the previous section, dif-
ferent approaches were explored. Before going further into this work, we believe it
is useful to provide a brief overview of the rationale behind the line of research that
we followed. We then identify the main reasons to read this thesis, as well as the
main contributions of this work, guiding the reader to the respective chapters and
sections.

1.5.1 The story

We began by studying the literature and developing a prototype for an entity-
oriented search engine (Section 5.1). This provided insight into the challenges and
opportunities in the area. Once again, we studied the literature (Chapter 2), which
led to the graph-of-word [16], a graph-based model for ad hoc document retrieval,
that could also be used for keyword extraction [111]. We then created an experimen-
tation and evaluation platform, that acted as a central codebase for the contributions
developed during the doctoral work (Section 5.2). Every experiment and script that
we prepared is a part of this platform, called Army ANT, which is publicly avail-
able as an open source project in GitHub1. Our first approach, the graph-of-entity
(Chapter 6), was inspired by the graph-of-word. The main focus, however, was on
integrating entities, which we did by linking to terms that matched a part of the
entity’s name. We kept term relations, but only for immediately adjacent terms
(i.e., we used a window size of 1), and we also kept entity relations based on the
knowledge base. We transformed the document-based graph into a collection-based
graph, identifying different documents by adding a ‘doc_id’ attribute to each entity
node — this was only possible because we were working with the INEX 2009 Wiki-
pedia collection [112] (Chapter 4), where a document is always associated with an

1 https://github.com/feup-infolab/army-ant
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entity. On one side, because the graph-of-entity would not explicitly represent doc-
uments, and, on the other side, because the number of edges grew exponentially
with the number of nodes, we started thinking about alternatives. Additionally, we
wanted to experiment with synonyms and contextual similarity, which meant that
the number of edges would once again increase substantially, making it a priority
to improve performance, even if only to make experiments viable. Since it was
becoming so hard to deal with the growth in the number of edges, we thought
we could take advantage of hypergraphs to create relations based on sets of nodes
instead of relying only on dyadic relations (e.g., synonymy could be represented
through a single hyperedge). Thus, we reworked the graph-of-entity, proposing
the hypergraph-of-entity, which has become the central contribution of this thesis
(Chapters 7, 8 and 9).

At that point, we were able to represent a higher number of relations. However,
for the hypergraph-based model, it was not viable to compute the entity weight —
the ranking function used in the graph-of-entity, based on shortest distances. This
led us to experiment with approximated techniques to capture network structure.
We ended up exploiting random walks for the task of node and hyperedge ranking
over the hypergraph. In turn, this led us back to link analysis, to PageRank [113],
at the origins of graph-based algorithms for ranking. Thus, a detour to study
PageRank variations was justified (Appendix A and Section 2.2.8), learning about
power iteration and how to reduce each variation to a power iteration solution. At
that time, inspired by von Neumann’s last lecture [79] and the idea of neuronal fa-
tigue, we proposed random walks with fatigue, first over the hypergraph and then
as a Fatigued PageRank for graphs (Appendix B). As a long-term approach, we
thought that we would be able to exploit Multilinear PageRank [114] to adapt Fa-
tigued PageRank for hypergraphs — this was dependent on finding a tensor-based
representation for our hypergraph. However, we found that there is a considerable
challenge in representing a general mixed hypergraph using tensors. The main
work we identified on this topic was developed at CERN and at the University of
Geneva, by Ouvrard et al. [115], but the challenge they addressed was on represent-
ing general hypergraphs, considering only undirected hyperedges. Their work was
based on homogeneous polynomials to add to lower cardinality hyperedges, until
a tensor for a uniform hypergraph could be coded.

Contributing to that work was outside of the scope of this thesis, making this
a nonviable research line. We opted, instead, to focus directly on simulating ran-
dom walks over the hypergraph, step by step, in order to measure the effectiveness
of our approach, regardless of efficiency. This was the approach that supported
several iterations over the random walk score, the universal ranking function that
we propose. The random walk score is largely representation-driven, in the sense
that the structure of the hypergraph is directly responsible for the quality of the
ranking. Nevertheless, there were multiple parameters that we could study, and we
could also experiment with different index extensions, reconfiguring the represen-
tation model and studying the effects in ranking performance, without altering the
ranking function. From that moment on, we focused on the hypergraph-of-entity,
studying it (Chapter 8) and evaluating several models based on different configu-
rations of the hypergraph-of-entity (Chapter 7), as well as the random walk score,
which led to a model for general entity-oriented search (Chapter 9).

1.5.2 Document structure

In order to better convey the work that we just described, we organized this docu-
ment according to the following structure:

• Part i covers the state of the art on graph-based entity-oriented search, mostly
through subjects that potentiate this approach, due to the limited number of
contributions to this specific topic.
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– Chapter 2 surveys the state of the art on graph-based entity-oriented
search. It covers classical text retrieval and learning to rank, and it ex-
plores graph-based models for retrieval, both leading to specific appli-
cations for entity-oriented search. It then examines evaluation forums
and test collections, and it closes with a discussion, presenting observa-
tions on the subject, as well as an organized overview on the covered
approaches.

• Part ii introduces the materials and methods used throughout the thesis.

– Chapter 3 covers the approach to literature review, introduces the empiri-
cal cycle and the particular instantiation used in this work, and describes
the approach to systematic documentation based on a wiki.

– Chapter 4 describes the datasets used throughout this thesis, including
test collections for retrieval, produced and published datasets, and auxil-
iary datasets used for secondary tasks.

– Chapter 5 describes the software developed throughout this doctoral
work, focusing on ANT and Army ANT. ANT is an entity-oriented search
prototype developed to index and search over the public content pro-
vided by SIGARRA, the University of Porto’s information system. Army
ANT, is a workbench for innovation in entity-oriented search, providing
a framework for implementing and testing search engines, easily reusing
test collections, configuring ranking functions and their parameters, and
learning about collections, retrieval models, and the ranking functions.

• Part iii describes the main contributions of this doctoral work, prepared with
the goal of proving the thesis.

– Chapter 6 describes the graph-of-entity model, as well as the experi-
ments carried over the INEX 2009 Wikipedia collection and the TREC
2017 OpenSearch track.

– Chapter 7 describes the hypergraph-of-entity, introducing it as a general
model for entity-oriented search. It covers an initial characterization of
the representation model, as well as an evaluation based on the INEX
2009 Wikipedia collection and the TREC 2018 Common Core track for
the ad hoc document retrieval task.

– Chapter 8 focuses on the characterization of the hypergraph using the
tools from network science or, in some cases, proposing analogous ap-
proaches more adapted to hypergraphs. We also study temporal statis-
tics, based on the growth of the index, as documents and associated enti-
ties are added.

– Chapter 9 explores the hypergraph-of-entity as a general model for
entity-oriented search, evaluating three of the four retrieval tasks de-
scribed in Section 1.3.2. We considered the remaining task, related entity
finding, to be subsumed by entity list completion. This way, we proved
the generality of our (hyper)graph-based model. Experiments were car-
ried over the complete INEX 2009 Wikipedia collection, relying on docu-
ment profiles. These were created through keyword extraction and thus
indirectly filtered linked entities, to reduce index space complexity.

• Part iv reflects on the proposed models and the results of the experiments as
a whole, considering future directions not only for hypergraph-based models,
but also for general models in information retrieval.

– Chapter 10 provides a discussion and an overview on the studied and
proposed models, considering their limitations and proposing other pos-
sible applications.
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– Chapter 11 concludes with a consideration about the strengths and weak-
nesses of three large groups of models for entity-oriented search, moti-
vating continued work in graph-based entity-oriented search. We also
suggest several future lines of research, identifying the challenges that
need to be solved in order to develop a production-ready system that
solves information needs in a general way.

• The Appendix covers other relevant work, adjacent to entity-oriented, that
would not fit the narrative.

– Appendix A provides a reference on PageRank, where we explored sev-
eral applications and variations, reducing solutions to a power iteration,
whenever an alternative version was provided.

– Appendix B covers a parallel line of research where we proposed fa-
tigued random walks, inspired by John von Neumann’s reference to the
neural fatigue in the brain. We applied fatigued random walks to the
graph-based models, proposing a fatigued random walk score over the
hypergraph-of-entity, as well as a Fatigued PageRank over a graph.

– Appendix C organizes reference work about classical information re-
trieval, learning-to-rank, and graph-based models, with application to
entity-oriented search, into approach and affected tasks, while briefly
summarizing each contribution.

– Appendix D provides a list with the bibliographic references of the sci-
entific publications generated throughout this doctoral work.

1.5.3 Contributions

You should read this thesis if you are interested in:

• Gaining perspective towards general models to solve information needs
(Chapter 9).

• Modeling retrieval approaches completely based on graphs, e.g., without the
need for inverted indexes (Chapters 6, 7 and 9; see also Section 2.2).

• Understanding how hypergraphs can be used for jointly representing terms
from documents in corpora, and entities from statements in knowledge bases
(Chapters 7).

• Understanding how random walks can be used in a representation-driven
retrieval model to rank different units of information (Chapter 9).

• Learning how to tackle the characterization of a hypergraph, by applying or
adapting traditional network analysis approaches (Chapter 8).

• Learning how to manipulate PageRank as a random walk based approach for
ranking through its different components (Appendix A; see also Section 2.2.8).

• Learning about neuronal fatigue and how it was used to introduce a novel
random walk constraint, as well as a Fatigued PageRank (Appendix B).
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The main contributions, by order of relevance (as we perceive it), are the following:

1. Hypergraph-of-entity and random walk score (Chapters 7 and 9).

2. Army ANT evaluation framework (Section 5.2).

3. ANT search engine prototype (Section 5.1).

4. Characterization approaches for hypergraphs (Chapter 8).

5. Graph-of-entity and entity weight (Chapter 6).

6. Simple English Wikipedia Link Graph with Clickstream Transitions 2018-12

(Section 4.2.1).
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summary
In this introductory chapter, we have established context for this thesis, both by pro-
viding an historical perspective of information retrieval, as well as the web, knowl-
edge graphs, and real-world networks, and the transition from text search to entity-
oriented search. We then presented a motivation for consolidating models, through
examples of unified models already explored in other domains. This provided an
incentive for general models in information retrieval to be explored, and for unified
frameworks, capable of maximizing available information in the process of retrieval,
to be proposed. We then introduced combined data and four retrieval tasks central
to the creation of a unified model for entity-oriented search. Next, we presented
the problem statement, describing the three main goals of this doctoral work, and
formalizing them as a thesis statement to be proven. Finally, we described the re-
search line that led us from one step to the next in proving this thesis, presenting
the thesis outline over each part and chapter, along with the main reasons to read
this thesis, as well as the main contributions that we produced during this doctoral
work.
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Only recently has entity-oriented search been conveniently defined and described
as an area [62]. While several graph-based approaches have been generally used
in information retrieval, graph-based entity-oriented search is still in its infancy.
It lies within this area the ability to tackle issues like the combination of hetero-
geneous information sources or the generalization of entity-oriented search tasks
— all available information, structured or unstructured, should be available for
cross-referencing, collectively contributing to solving the users’ information needs.
Likewise, individual tasks leading to the answer might benefit from a departure
from modularity and into a more intertwined approach, where intermediate com-
putations from any task should be able to contribute to other tasks, seamlessly at
any step. In order to develop such a holistic approach to entity-oriented search, we
must first compile a comprehensive guide with a high-level view over information
retrieval, and in particular the developments leading to entity-oriented search and
the overall usage of graphs in the area. Our goal with this survey was to solve
for this need, striving to be complete in the sense of coverage, as opposed to be-
ing exhaustive, and showing the potential for tackling information retrieval as the
analysis of a complex network.

Entity-oriented search tasks heavily rely on exploiting unstructured and struc-
tured collections. Moreover, it is frequent for text corpora and knowledge bases
to provide complementary views on a common topic. While, traditionally, the
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retrieval unit was the document, modern search engines have evolved to also re-
trieve entities and to provide direct answers to the information needs of the users.
Cross-referencing information from heterogeneous sources has become fundamen-
tal, however a mismatch still exists between text-based and knowledge-based re-
trieval approaches. The former does not account for complex relations, while the lat-
ter does not properly support keyword-based queries and ranked retrieval. Graphs
are a good solution to this problem, since they can be used to represent text, entities
and their relations. In this chapter, we examine text-based approaches and how they
evolved in order to leverage entities and their relations in the retrieval process. We
also cover multiple aspects of graph-based models for entity-oriented search, pro-
viding an overview on link analysis and exploring graph-based text representation
and retrieval, leveraging knowledge graphs for document or entity retrieval, build-
ing entity graphs from text, using graph matching for querying with subgraphs,
exploiting hypergraph-based representations, and ranking based on random walks
on graphs. We then cover available evaluation benchmarks and datasets for entity-
oriented tasks, focusing on conferences, evaluation forums and their tracks. We
close with a discussion on the topic and a view of the future to motivate the re-
search of graph-based models for entity-oriented search, particularly of joint repre-
sentation models for the generalization of retrieval tasks.

The structure of this chapter is organized as follows:

• Section 2.1 introduces the classical models of information retrieval and how
they influenced and led to applications in entity-oriented search [§2.1.1]. It
also introduces learning to rank, highlighting entity-oriented search applica-
tions [§2.1.2].

• Section 2.2 focuses on describing graph-based models with strategies appli-
cable to entity-oriented search. We start by introducing classical link analysis
[§2.2.1], and text representations as a graph [§2.2.2]. We cover retrieval pro-
cesses based on knowledge graphs, as well as their construction [§2.2.3]. We
then study retrieval strategies based on entity graphs directly built from text
[§2.2.4], and explore their tensor-based representation [§2.2.5]. We also cover
graph matching, which is an important part of the semantic web, used in
SPARQL for querying RDF [§2.2.6]. We cover several hypergraph-based mod-
els, used for different representation and retrieval tasks, including unified
indexes, modeling complex document structures, or establishing higher-order
dependencies to rank documents [§2.2.7]. Finally, we survey random walk
based models, focusing on PageRank variations with several concrete applica-
tions in entity-oriented search [§2.2.8].

• Section 2.3 covers contributions with a clear evaluation strategy in entity-
oriented search. It also covers benchmarks and datasets, usually provided as
test collections by evaluation forums, such as TREC, INEX, and CLEF. Given
the general relevance of TREC and INEX for the IR community, we also cover
several tracks of both events that are relevant for entity-oriented search, in-
cluding entity ranking, question answering, or open search tasks.

• Section 2.4 begins by presenting several observations about the area [§2.4.1]:
justifying the need for a state of the art in graph-based entity-oriented search;
commenting on the relations between entity-oriented search and semantic
search; clarifying the definition of graph-based models, as used throughout
this thesis and across the literature; and further motivating the study of hy-
pergraphs and higher-order dependencies in information retrieval, as a suc-
cession to graphs’ first-order dependencies. We provide an overview on the
reviewed strategies for entity-oriented search [§2.4.2], segmenting them by ap-
proach and tasks, for classical, learning to rank, and graph-based models. We
do an automatic analysis of the bibliography, both based on the BibTeX file
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included on this thesis, and on the reviewed literature that we documented in
the doctoral wiki [§2.4.3]. We close the chapter by reflecting on the future of
graph-based entity-oriented search [§2.4.4].

2.1 from text-based to entity-oriented search
Until recently, search has been focused on the retrieval of documents, a unit of re-
trieval that frequently represents a partial solution to the information needs of the
users. This assigns to the users the task of further analyzing documents from a pro-
vided ranking, in order to seek the exact answers to their questions. Furthermore,
not only are verbose queries increasingly frequent (cf. Gupta and Bendersky [116,
§1.2]), but also are entities more frequently mentioned in queries (cf. Bautin and
Skiena [4]). Appropriately, entity-oriented search has been gaining relevance as
an encompassing area of research [62], with multiple work unknowingly contribut-
ing to this larger area, either by focusing on semantic search1, question answering,
hybrid search, object retrieval, entity search, retrieval or ranking, or other generic
approaches that leverage entities, such as document retrieval, sentence retrieval, or
learning to rank. Moreover, the Karen Spärck Jones Award2, an important distinc-
tion in the area of information retrieval, has been granted to Krisztian Balog, in
2018, greatly due to his referential work on entity-oriented search.

In this survey, we are particularly interested in graph-based models for entity-
oriented search. Nonetheless, we consider it fundamental to first understand the
basic concepts of information retrieval, in particular regarding the evolution of text-
based approaches to accommodate the needs of entity-oriented search. In the fol-
lowing sections, we provide an introduction to classical information retrieval mod-
els (Section 2.1.1) and learning to rank models (Section 2.1.2). Each section then
leads to applications of entity-oriented approaches based on each class of models.

2.1.1 Classical models

Classical information retrieval models broadly include exact match models, the vec-
tor space model, and probabilistic models [12]. In exact match models, like the
Boolean model, retrieval is done through set operations of union, intersection and
negation. However, there is no order to the retrieved documents and thus there
is no relevance ranking. On the other side, in the vector space model, documents
and queries are represented as vectors of terms, supporting term weighting. This
enables documents to be ranked according to their relevance for a particular query.
Perhaps the most widely known ranking function for this model is TF-IDF [8, 9],
where each Term Frequency (TF) of query terms is measured for each document
and multiplied by its Inverse Document Frequency (IDF) [9]. The IDF decreases
the influence of terms that are frequently found in the collection and therefore have
a low discriminative power. Another important heuristic for ranked retrieval is
Pivoted Document Length Normalization (PDLN) [10, 11], which is used as part
of term frequency normalization. It mitigates the impact of document length in
relevance ranking, without completely discarding information on the length of the
original document.

The underlying concepts of term frequency, inverse document frequency and piv-
oted document length normalization are transversal to most retrieval models. For

1 Semantic search as a task either refers to the semantically informed retrieval of documents, or to the
retrieval of entities or relations over RDF graphs. We cover work on either approach, as both tasks are
entity-oriented, using semantic search indiscriminately in both cases.

2 Karen Ida Boalth Spärck Jones was an influential information retrieval scientist, responsible for the
creation of the inverse document frequency (IDF), one of the three fundamental concepts in information
retrieval, the other being term frequency and document length normalization. See https://irsg.bcs.

org/ksjaward.php for more information on the award.
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instance, in probabilistic models, ranking functions like BM25 [31] also use term
frequency, tackling normalization in a different way, but using the same approach
for pivoted document length normalization (see the explanation by Rousseau and
Vazirgiannis [16, §5.2], based on the work about information retrieval heuristics by
Fang et al. [117], and Lv and Zhai [118]). While BM25 can be seen as the proba-
bilistic counterpart of TF-IDF, there are other widely adopted probabilistic models,
like language models, divergence from randomness, Bayesian networks or Markov
networks. PageRank can also be classified as a probabilistic model, since it can be
modeled as a stochastic process, however we cover it in Section 2.2, as a graph-based
model.

Language models [35] rank documents based on the probability of the query
term given the document is relevant. For multi-keyword queries, probabilities are
multiplied. Language models take advantage of smoothing, usually Jelinek-Mercer
or Dirichlet, in order to consider documents with missing query terms, or even
documents with none of the query terms. A similar smoothing strategy is also
explored in PageRank (see Equations A.2 and A.5 in Appendix A). By considering
the prior probability of a term, we broaden the notion of relevance, taking into
account query-independent evidence — i.e., a document might be relevant solely
due to its terms, however it will often be less relevant than documents with a strong
query-document relation.

Divergence from randomness [119] is a probabilistic model where we measure
the information gain of a term given a document. This model is a generalization
of Harter’s indexing model [24], where two Poisson distributions (hence 2-Poisson)
were combined in analogy to TF and IDF, using the notion of eliteness to describe
documents with a more prominent presence of query terms, when compared to
other documents. A similar approach is taken in divergence from randomness, but
there is a wide range of models to select from, as opposed to only being able to
use the Poisson distribution. The gain in divergence from randomness is computed
based on the risk of a term not being informative (akin to TF), as well as the proba-
bility of the term given the document not being random according to the collection
(akin to IDF). The absolute term frequencies are normalized according to the stan-
dard document length (akin to document length normalization). Risk is also known
as the after effect or the first normalization and it is defined as the probability of
a term belonging to a document given the document belongs to an elite set (i.e.,
documents that are more representative of a given term in the collection). This
probability is usually computed based on a divergence from randomness model.
Another basic divergence from randomness model is then selected for the IDF-like
part of the model, which also defines the normalization approach for TF.

Finally, Bayesian networks and Markov networks are probabilistic graphical mod-
els, respectively based on a directed acyclical graph and an undirected graph (po-
tentially with cycles). In particular, the inference network model [29], based on
a Bayesian network, models the dependencies between the information need, the
query, the representation nodes (e.g., terms, phrases, etc.) and the documents. A
similar approach, perhaps less classical, can be taken based on Markov networks,
by modeling the dependencies between query terms and documents [120]. The ad-
vantage is that terms can be modeled in a more expressive manner, for instance as
fully independent, sequentially dependent or fully dependent, where there is no
clear direction, but rather bidirectional dependencies based on adjacency.

Applications to entity-oriented search

Some of the first approaches to entity-oriented search revolved around classical re-
trieval models, through the reuse of well-established text-based ranking techniques,
as presented above. They include, most notably, defining virtual documents to rep-
resent entity profiles, or integrating results obtained from an inverted index and a
triplestore.
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Bautin and Skiena [4] presented what they considered to be the “first-in-literature”
implementation of an entity search engine. Their first step was to find evidence that
the task was relevant, based on the analysis of the AOL dataset, with 36 million
web search queries. They found that 18–39% queries directly referenced entities
and 73–87% contained at least one entity. They then proposed a concordance-based
model for entity representation, along with an adaptation of Apache Lucene’s1 TF-
IDF scoring scheme. Each concordance2 (a virtual document) was built from the
concatenation of all sentences containing the entity it represented, optionally for
a given period of time (e.g., a month). Appropriately, they also proposed a time-
dependent scoring function, modeling user interest in an entity as a function of time,
and optimizing parameters based on the frequency of entities in the AOL query log.
Finally, experiments were run over the entities extracted from an 18 GiB collection
of US news articles, collected through the Lydia pipeline [121]. They proposed a
method for evaluating entity search by comparing the results list with the corre-
sponding list obtained through a juxtaposition score [121]. The juxtaposition score
measures the upper bound of the probability of two entities occurring in the same
sentence under the assumption of independence. By obtaining the results list from
Lucene and the results list based on the top related entities according to juxtaposi-
tion, the lists were then compared using the Kmin distance from Fagin et al. [122],
showing the best results for phrase queries with the slop parameter (word-based
edit distance) equal to the number of query terms.

Bhagdev et al. [123] presented an example of hybrid search, where they com-
bined keyword-based search with semantic search, showing that their approach
outperformed either of the alternatives when individually used. They indexed text
documents using Apache Solr3; they stored annotations generated by an informa-
tion extraction system on a Sesame triplestore4; and they linked the extracted re-
lations by annotating the provenance of the triples with the document of origin.
At retrieval time, this enabled them to do keyword search over the inverted in-
dex, metadata search over the triplestore using SPARQL, and keywords-in-context
search by retrieving text documents and matching them with triples through the
provenance annotation. Their evaluation was based on 21 queries over a collection
of 18 thousand technical documents. When comparing keyword search with meta-
data search, they obtained the best recall for keyword search (0.57 versus 0.40) and
the best precision for metadata search (0.85 versus 0.56). However, when combining
both approaches in a hybrid search, they obtained the best overall result, with a
precision of 0.85 and a recall of 0.83. While the authors did not specifically mention
it, this is clearly an example of entity-oriented search over combined data.

Pound et al. [3] proposed a formal model for ad hoc entity retrieval, but they
used the designation object instead of entity, in the context of the web of data (the
semantic web). They defined the task based on a keyword query for input, with an
identifiable query type and query intent. The query was then processed over a data
graph, returning a ranked list of resource identifiers (entities). Based on the analysis
of real query logs from a commercial search engine, they also proposed five query
categories for ad hoc entity retrieval: entity query, type query, attribute query,
relation query, and other keyword query. These query categories can be mapped
into specific tasks of entity-oriented search [62]. For instance, an entity or type query
could be solved through ad hoc entity retrieval over virtual documents [4, 124],
while an attribute or relation query might be solved through related entity finding
or entity list completion, if attributes were indexed as entities. They also discussed
result presentation, proposing that each retrieved entity should be decorated with
linked entities, in order to explain or contextualize the result. For evaluation, they
established a baseline ranking approach based on TF-IDF for RDF, over an inverted

1 http://lucene.apache.org
2 A concordance is a list of terms and their context. In this case, the concordance is about entities and

their context.
3 http://lucene.apache.org/solr/
4 Sesame is now known as Eclipse RDF4J: http://rdf4j.org/.
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index. They then compared it with two other approaches based on the reranking of
the top-5 results given by the baseline: a random reordering and an ideal reordering
based on the assessments of human judges. Assessment was done in regard to
the query resource (indicative of intent) and in regard to the full text query, both
evaluated by the human assessors. In both cases, the baseline was able to surpass its
randomly reranked version, but, as expected, it was still below the ideal reranking.
They also evaluated the stability of the metrics, using bootstrapping to generate
one million samples over the 264 assessed queries, and then compared the mean of
each metric over all samples with the empirical mean over the original data, thus
verifying that they approximated each other.

Koumenides and Shadbolt [125] proposed a Bayesian inference model for en-
tity search. They combined link-based and content-based information as defined
through RDF object properties and data properties. A query network was defined
based on entity and property evidence, that could either be provided explicitly as
entities or implicitly as a combination of keywords. Common object or data prop-
erties were modeled through common identifier nodes Oi and Dj. By keeping
separate nodes ok,i and dk,j for different instances of object and data properties,
the model was able to use query nodes as evidence of object property identifiers, as
well as data property identifiers or instances. This could then be further expanded
into entities, or terms in the literal space. Unfortunately, the authors did not pro-
vide appropriate evaluation of their approach, making it unclear how it performs
in relation to other approaches.

Urbain [126] presented a pipeline for entity-oriented sentence retrieval, propos-
ing a strategy for the integration of terms (context), entities and their relations. He
used a Markov network for modeling the dependencies between a pair of entities,
a relation and a context, using a fully connected approach. No external knowledge
bases were used. Instead, sentences in the form of triples 〈entity, :relation, entity〉
were obtained through natural language processing, extracting structure from doc-
uments and natural language queries. This enabled the construction of a Markov
network that, together with user relevance feedback, was able to rank sentences
by leveraging entities and relations. He compared several models, based on dif-
ferent combinations of feature functions for the Markov network. This included
dependencies between entities, relations, and sentence and document terms. They
consistently obtained better results for the proposed entity-relation model, support-
ing the importance of the entity graph in retrieval tasks.

Raviv et al. [124] proposed a general model for entity ranking, based on a Markov
network for modeling the dependencies between the query and the entity. In partic-
ular, the model captured the dependencies between: (i) the entity document (i.e., a
virtual document) and the query; (ii) the entity type and the query target type; (iii)
the entity name and the query. A profile based approach, supported on a Dirich-
let smoothed language model, was used for scoring entity documents. A filtering
approach, based on the Kullback-Leibler divergence between the probability distri-
butions of the entity and query types, was used for scoring the entity type. The
entity name was scored using a voting or a global approach. The voting approach
was based on the language models of retrieved entity documents relevant to the
query. The global approach was based on the pointwise mutual information be-
tween the entity name and a query term. Evaluation was done over the INEX 2006

and 2009 Wikipedia collections, based on the topics and relevance judgments from
the Ad Hoc track. They experimented with three entity ranking models based on
fully independent, sequentially dependent and fully dependent query terms, that
combined entity document, entity type and entity name dependency models. In
2007, they obtained the best results, according to MAP, using full dependence over
a ranking function based on the combination of the three dependency models. In
2008 and 2009, they obtained the best results, according to infMAP [127, §2.5], using
sequential dependence for the same ranking function.
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Raviv et al. [73] also tested the cluster hypothesis for entity-oriented search, i.e.,
the hypothesis that “closely associated entities tend to be relevant to the same re-
quests”. They experimented with four similarity metrics: (i) an exponential func-
tion of the shortest distance between any two categories of a pair of entities in the
Wikipedia’s category graph (Tree); (ii) the cosine similarity between the binary cat-
egory vectors of the two entities (SharedCat); (iii) an exponential function of the
negative cross entropy between the Dirichlet-smoothed unigram language model
for the documents resulting from the concatenation of all the Wikipedia articles
for each category (CE); and (iv) the cosine similarity between two vectors obtained
from explicit semantic analysis (ESA). For each similarity measure, three different
weighting schemes were used: LDoc, LDoc;Type and LDoc;Type;Name. For LDoc,
the Wikipedia document corresponding to each entity was indexed and directly
used to retrieve the entity. For LDoc;Type, the similarity between the category set
of each entity and the query target type was also taken into consideration. Finally,
for LDoc;Type;Name, the proximity between the query terms and the entity name
was also taken into consideration. Evaluation was carried over the datasets for the
2007, 2008 and 2009 INEX Entity Ranking tracks, which used the English Wikipedia
from 2006 and 2008. The authors found that the nearest neighbor cluster hypoth-
esis holds. While result lists frequently contained 10-25% relevant entities, nearest
neighbor entities of a relevant entity contained 30-53% relevant entities. Best results
were achieved when using the Tree and SharedCat inter-entity similarity measures
and were particularly good for the Oracle method, which employed cluster-based
reranking based on the true percentage of relevant entities contained in each cluster.
Other approaches included the MeanScore and RegMeanScore, which instead used
the average score within a cluster of entities, optionally with regularization.

Bron et al. [128] tackled the task of entity list completion, where, given a textual
description for a relation and a given set of example entities, the goal was to re-
trieve similar entities that respected the specified relation. Supported on language
models, they experimented with text-based and structure-based approaches, as well
as a combination of both. The text-based approach took advantage of the textual
description of the relation, while the structure-based approach used the set of exam-
ple entities provided as relevance feedback. For integrating both approaches, they
experimented with a linear combination, as well as a switch method. The switch
method was based on a performance overlap threshold, used to determine whether
there was a relevant difference in performance between the two methods. In that
case, they selected the method that achieved the highest average precision. Other-
wise, when no relevant difference in performance was found, they simply relied on
the linear combination. Their experiments showed that both approaches were effec-
tive, despite returning different results. They also found that the combination of the
two approaches outperformed either one of them when independently used. This
further supports the need for a hybrid approach that combines both the strengths
of text-based and structure-based features.

Bast and Buchhold [74] presented a novel index data structure for efficient seman-
tic full-text search. They argued that neither classic inverted indexes nor triplestores
could handle the problem individually. None of the approaches was able to provide
multiple integration steps for different stages of query processing. They exemplified
with a friendship relation that could only be found in the text, but should influence
retrieved triples, potentially by establishing new connections. This was, however,
unsupported by current approaches. Accordingly, they proposed a joint index for
ontologies and text. As opposed to traditional keyword queries, they used trees as
queries, based on the graphical interface provided by the Broccoli semantic search
engine [129]. In order to provide a search mechanism over a tree query, the index
distinguished between two types of lists: lists containing text postings, which they
called context lists, and lists containing data from ontology relations. Each context
list was associated with a word prefix and contained one index item per occurrence
of a word starting with that prefix. An index item, in turn, contained the context
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ID, a unique ID mapping to either a word or an entity, a score for each word/entity,
and the position within the context for each word/entity. Each ontology relation
(e.g., :born-on-date) was represented by a separate index, containing a list of items,
each with a unique ID for a source entity (e.g., Neil Armstrong), a unique ID for a
target entity (e.g., August 5, 1930), and a score for the relation, possibly left as a
placeholder for future weighted relations, since it was fixed at 1 for all relations.
Query processing was then based on resolving variable nodes, ontology arcs, occurs-
with arcs, has-occurrence-of arcs, occurs-in arcs and in-range arcs, by traversing the
query tree in a bottom-up recursive fashion. Tree nodes could then be processed
based on the context lists and the ontology relation lists of the joint index. They
evaluated efficiency, by comparing the inverted index and the triplestore baselines
with two approaches (Map, linking context ID to entity postings, and CL, context
lists with word and entity postings) based on their joint index. While the joint index
supported all defined queries, these were only partially supported by each baseline
individually, but completely supported by both when collectively considered. Over-
all, they found the joint index approaches to require less disk space, taking similar
or less time to query than the baselines.

Zhou [130] wrote a doctoral thesis on entity-oriented search, exploring the topic
by distinguishing between querying by entities and querying for entities. In query-
ing by entities, entities were taken as input, while results could either be documents
or entities. In querying for entities, entities were returned as output, while queries
could either be keywords or entities. He also highlighted the particular case of
querying by and for entities, where entities were both taken as input and output.
For querying by entities, he presented contributions on entity-centric document fil-
tering. He proposed using an entity page, such as the associated Wikipedia page,
to describe an entity in the query. This is different from the virtual document
approach, described in previously covered work [4, 124], in the sense that it is the
entities in the query that are represented as documents, as opposed to the entities in
the index. Regarding querying for entities, they proposed a content query language
(CQL) over a relational-model based framework, as a solution to a data-oriented
content query system. As opposed to keyword or entity queries, this querying ap-
proach required advanced technical knowledge, similar to SQL or SPARQL. In order
to support CQL, they used an advanced index layer that included a joint index and
a contextual index. The joint index combined pairs of keywords, keyword and data
type, and pairs of data types, storing, for each occurrence, the document identifier,
the position of the first keyword or data type and the distance to the second key-
word or data type — only keywords or data types within a distance were considered
for indexing. The contextual index combined ordered pairs of keywords, keyword
and data type, data type and keyword, and pairs of data types, storing, for each oc-
currence, the document identifier, the position of the source keyword or data type
and a list of tuples, each with an offset and term occurring within the given dis-
tance of the source. Regarding querying by entities and for entities, they proposed
a relational entity search framework based on a target relation r(q, #E), where r was
the relation, q was the query and #E was the entity type that should be returned by
the query (e.g., FounderOf(‘microsoft’, #person)). In order to deal with unseen cases,
they proposed a distantly supervised ranking method to learn a relation-specific
ranking function for entity search. Based on the book on entity-oriented search by
Balog [62], we can reclassify the tasks explored by Zhou in his doctoral thesis. The
task of querying by entities, where results are documents, can be classified as ad hoc
document retrieval leveraging entities [62, Ch.8]. The task of querying for entities,
where the query is keyword-based, can be classified as ad hoc entity retrieval [62,
§3.1]. Finally, the task of querying by entities and for entities, where both the query
and the results are entities, can be classified as related entity finding [62, §4.4.3].

Dietz and Schuhmacher [131] introduced Queripidia, as a set of knowledge port-
folios. A knowledge portfolio represented a query-specific collection of relevant
entities, combined with text passages from the web that explain why the entity is rel-
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evant to the query. They used two main datasets in order to develop a working pro-
totype: the FACC1 entity link collection1, a Freebase annotation of the ClueWeb cor-
pora, automatically generated by Google; and the ClueWeb12

2, Category A dataset,
used in the TREC Web track, where several test queries were also provided. Besides
text passages, neighboring entities from the knowledge base were also included in
the explanation, in order to provide additional context. In turn, each neighboring
entity was associated with its own explanation in the context of the same query.
This work is further detailed in Dietz et al. [132], where they explored several entity
ranking approaches in order to understand whether the combination of documents
and a knowledge base would improve entity ranking. All approaches were based
on language models. They explored two different entity profile approaches: (i) us-
ing textual evidence surrounding the entity to establish context, and (ii) using the
entity’s Wikipedia page to represent the entity. Ranking based on the entity context
involved document retrieval using the sequential dependence model by Metzler
and Croft [120], followed by entity context construction and reranking based on
the entity profile. Ranking based on Wikipedia was simply modeled as document
retrieval, using the entity’s page as its profile. The best retrieval performance was
obtained based on the entity context, particularly for a window size of 50 words,
when compared to the Wikipedia based approach. However, the best overall per-
formance was achieved using a rank fusion technique based on the two methods,
showing that the combination of text and knowledge in fact outperforms each indi-
vidual approach.

remarks The clear advantage of reusing classical information retrieval models
for entity-oriented search is the support on well-established approaches that have
been researched for text-based applications over the years. On the other hand, it is
quite limiting to discard or flatten complex entity relations that can’t be represented
using an inverted index, but would otherwise be helpful to solve an information
need.

2.1.2 Learning-to-rank models

Learning-to-rank [133, 134] provides several approaches for applying existing ma-
chine learning techniques to document or entity ranking. A ranking function is
learned from a training set based on a matrix X of document features — which can
be query-dependent, for multiple queries, or query-independent — along with a
vector Y with the relevance grades — that measure the matching degree between
a document and a query. Query-dependent evidence includes features like TF,
IDF, document length, BM25, or language model based weighting, while query-
independent evidence includes features like the number of slashes in the URL and
the length of the URL, or link analysis metrics like indegree and outdegree, HITS
authority and hub scores, or PageRank. Depending on the learning-to-rank ap-
proach, the actual Y variable might be optimized over different loss functions. In
particular, there are three main approaches to measuring the loss when training a
model: pointwise, pairwise and listwise. When using pointwise loss, each individ-
ual document is considered only in regard to the query, based on the computed
features that already account for this relation. It measures the distance between the
ranking function to be learned and the relevance grade. When using pairwise loss,
the relative ranking of pairs of documents is instead considered. This requires using
the relevance grade to compare the two documents. In practice this usually means
that we instead consider the combined features of the two documents and that the
loss function becomes an indicator of relative order. Finally, when listwise loss is
considered, performance metrics like NDCG are instead used to compute the loss
over a complete ranking, instead of individual or pairs of documents. Out of the

1 http://lemurproject.org/clueweb09/FACC1/
2 http://lemurproject.org/clueweb12/
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three loss functions, listwise loss is the only one that takes into account the group
structure of the rankings.

Ai et al. [38] have drawn the attention to the fact that, despite loss being computed
as pointwise, pairwise or listwise, the learned ranking function is still pointwise in
regard to a document. This follows the classical approach of information retrieval,
where ranking is based on score(q,d), be it TF-IDF, BM25 or language models. The
authors proposed GSF (Groupwise Scoring Function) to take advantage of relations
between multiple documents during ranking, separating them into groups of sizem.
They presented this approach, based on deep neural networks, as a generalization
of other existing approaches for pointwise scoring. The neural network architecture
they proposed is invariant to input document order and limited to comparisons
between small groups of documents. Each group is built from the permutations
of size m over n = |D| documents. This means that, for groups of size m = 1

over n = 2 documents, this is equivalent to pointwise scoring and pairwise loss,
where one deep neural network is trained per document pair. It also means that,
for groups of size m = 1 over n documents, where n is the size of the list, this is
equivalent to pointwise scoring with listwise loss. Evaluation was done over the
MSLR-WEB30K dataset1, using NDCG@5 to compare RankNet [135], MART and
LambdaMART [136], GSF and LambdaMART + GSF. GSF was able to outperform
RankNet, but not MART or LambdaMART. However, the best results were obtained
for the combination of LambdaMART + GSF. The GSF model also obtained better
results for higher group sizes m, showing that inter-document comparisons are im-
portant in discriminating relevance. This is also a strength of graph-based models
like PageRank or HITS, which have been focused on the query-independent rank-
ing of documents through their relations. In a sense, this also aligns with the cluster
hypothesis, where documents similar to relevant documents are probably also rele-
vant.

Applications to entity-oriented search

Chen et al. [137] explored the task of answer sentence retrieval, where sentences
were ranked in respect to an input question. The challenge was that the best results
did not necessarily contain the terms of the query, resulting in a lexical mismatch be-
tween the sentences and the question. This was an indicator that semantic features
could be useful in tackling the problem. The authors proposed a learning to rank ap-
proach, establishing a baseline supported on Metzler-Kanungo (MK) features [138]
— sentence length, sentence location, exact match of query in sentence, term over-
lap of query terms in sentence, synonym overlap of query terms in sentence, and
language model (i.e., likelihood of query terms being generated by the sentence
language model). They then proposed and tested two new semantic features, one
based on ESA (Explicit Semantic Analysis) [139] (the cosine similarity between the
query and sentence ESA vectors), and another one based on the word2vec skip-
gram approach [140] (the average cosine similarity between any query-word vector
and any sentence-word vector). Through the evaluation of three learning-to-rank
approaches — linear regression, coordinate ascent, and MART — they showed that
results could be improved by leveraging semantic features. For each approach, they
compared four feature configurations: (i) MK; (ii) MK + ESA, (iii) MK + word2vec
and (iv) all features. The best results were consistently obtained for all features
combined, except for MART, where MK + ESA obtained the best results, despite
being closely followed by all features combined.

Lin et al. [141] tackled the task of related entity finding in TREC 2011 Entity
track [142], where the goal was to rank the homepages of target entities, given a
source entity, a target entity type and a narrative describing the relation between
the source and target entities. Their approach consisted of document retrieval (us-
ing Yahoo!), entity extraction (using StanfordNER), feature extraction and entity

1 https://www.microsoft.com/en-us/research/project/mslr/
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ranking. For document retrieval, the goal was to obtain the homepage of an en-
tity — their best approach was based on querying using the narrative to describe
the relation. For entity ranking, they used a learning to rank approach based on
features that considered frequency, density, proximity, semantic similarity, and the
average rank of web pages, in regard to a candidate entity (e.g., total frequency of
the entity in search results, similarity between the query and the entity type). They
trained three SVM, one with default hyperparameters, another one with tuned hy-
perparameters, and a final one after applying feature selection. They discovered
that the SVM with tuned hyperparameters performed better than the one with the
default hyperparameters, and that the SVM with the selected features performed
worse than the tuned SVM. Interestingly, they also discovered that directly using
one of their proximity-based features yielded better results by itself. Based on the
number of retrieved documents multiplied by the cumulative distance between the
query and the entities in the documents, the authors were able to achieve better re-
sults than the SVM models. They also compared the tuned SVM with an approach
based on a linear combination of all features, obtaining better results for the linear
combination, thus finding that their assumption that the SVM would perform better
was wrong.

Schuhmacher et al. [143] used a learning-to-rank approach for entity ranking,
combining features about documents, entity mentions and knowledge base entities.
They experimented with pairwise loss based on a support-vector machine, minimiz-
ing the number of discordant pairs in Kendall rank correlation coefficient. They also
experimented with listwise loss based on coordinate ascent, minimizing both MAP
and NDCG. Several features were considered, based on an initial set of retrieved
documents. In particular, they covered features like mention frequency, query-
mention similarities, query-entity direct matching and path similarity over DBpedia,
query term presence in the entity’s Wikipedia article (based on a boolean retrieval
model), the retrieval score for Wikipedia pages representing an entity (based on a se-
quential dependence model with Dirichlet smoothing), the PageRank of the entity’s
Wikipedia page, and entity-entity features measuring the path similarity between
all considered entities (introduced in the model via a semantic smoothing kernel).
Evaluation was carried over the REWQ datasets1, created by the authors over the
TREC Robust 2004 dataset and the ClueWeb12 corpus. They compared three base-
line and three learning to rank models. The baseline models included the sequential
dependence model, the mention frequency, and the PageRank. The learning to rank
models included coordinate ascent and two SVMs, with and without a semantic
kernel based on the relations between entities. They obtained the best overall re-
sults for the coordinate ascent approach. For the REWQ Robust dataset, the best
performing individual feature was the sequential dependence model, while, for the
REWQ ClueWeb12 dataset, it was the mention frequency. Both resulted in NDCG
scores close to the learning to rank models.

Chen et al. [144] studied the effectiveness of learning to rank for ad hoc entity
retrieval. They represented an entity based on a document with five fields derived
from RDF triples: names, attributes (excluding the name), categories, related entity
names and similar entity names (aliases). They then extracted query-entity features
based on a language model, BM25, coordinate match, cosine similarity, a sequen-
tial dependence model (SDM) and a fielded sequential dependence model (FSDM).
This resulted in a total of 26 features (five dimensions per feature, except for FSDM,
which resulted in only one dimension). They experimented with a pairwise method
(RankSVM) and a listwise method (coordinate ascent, optimized for MAP), compar-
ing with the FSDM baseline, as well as a sequential dependence model and a mix-
ture of language models, both optimized using coordinate ascent (SDM-CA and
MLM-CA). They consistently obtained the best results for the two learning-to-rank
approaches over test collections from well-known evaluation forums (SemSearch ES,
ListSearch, INEX-LD and QALD-2). They also measured the influence of the fields

1 http://mschuhma.github.io/rewq/
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and feature groups in the RankSVM approach, overall finding that the related entity
names was frequently an important field, and that the SDM related features were
in general the most influential.

Gysel et al. [86] have tackled the problem of product search based on representa-
tion learning. They proposed the latent semantic entities (LSE) for jointly learning
the representations of words (Wv), entities (We), and a mapping between the two
(W). A string, be it an n-gram from a document or a keyword query, is mapped
to the entity space based on the following steps. Given a word represented by
its one-hot vector, a learned matrix Wv of word embeddings is used to map the
averaged one-hot vectors of the string to its embedding. A word embedding is
then mapped to the entity space using a learned matrix W and bias vector b and
applying the tanh function. An entity can also be represented in the same space,
based on its embedding, as defined in the entity embeddings matrix We. Learn-
ing is done based on gradient descent over a loss function L(Wv,We,W,b). They
evaluated the effectiveness of LSE in an entity retrieval set based on a learning-to-
rank pairwise approach (RankSVM), exploring query-independent features (QI), a
query-likelihood language model (QLM), and the latent semantic entity representa-
tion (LSE). Their best results were consistently obtained for QI + QLM + LSE, tested
over different product categories, when compared to QI, QI + QLM, and QI + LSE.

remarks With learning to rank, we require prior data for multiple queries and
the corresponding lists of ranked documents or entities, with associated relevance
judgements. This enables the training of a model based on a set of features that
characterize the document or entity and the query-document or query-entity re-
lations. A ranking function is learned by fitting these features, while optimizing
for the relevance judgments using pointwise, pairwise, or listwise loss functions.
Learning to rank inherently supports the integration of signals from heterogeneous
sources. It might also contribute to the generalization of entity-oriented search,
through multi-task learning, which relies on a shared representation [145, §1.1] or
common input-output space [146, §3] to train tasks in parallel. To our knowledge,
this hasn’t yet been explored for generalizing entity-oriented search tasks. Further-
more, a relevant question is whether machine learning models are able to provide
adequate explainability and transparency. Maybe graphs have the edge there? Re-
gardless, they are both worth studying as general solutions to information retrieval.
In this work, we focus on graphs, so let us discuss graphs.

2.2 graph-based models
Search is based on a simple principle developed in the library. In order to find a
relevant page of a book, based on a given keyword, we originally had to scan the
book, page by page. This was a time consuming task, particularly for books with
a large number of pages. The problem was solved through the back-of-the-book
index, where a list of manually selected keywords would point to the pages men-
tioning a given concept. Taking only a few pages and using an alphabetical order,
this approach was more efficient than reading the whole book. The same princi-
ple applies when indexing a collection of documents in a computer. A collection
that would take a long time to be fully scanned is condensed in an inverted index,
where terms point to lists of documents, storing statistics like the frequency or the
positions of the term in the document. As opposed to the back-of-the-book index,
an inverted index contains most of the terms in the collection, usually discarding
frequent words (stopwords) and sometimes storing a reduced form of the word
(obtained from stemming or lemmatization). Automatization means that a larger
volume of data can be processed efficiently, and stored statistics can be used as a
way to measure relevance. However, one thing that is lost with the inverted index is
the ability to relate concepts. In the back-of-the-book index, a domain expert might
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provide associations between concepts (e.g., using ‘see also’) or use keywords that
are not explicitly mentioned in the page despite being more adequate for search.
The inverted index is usually focused on representing the document as is, however
we can use techniques like query expansion or latent semantic indexing to establish
new connections that make documents more findable. With query expansion we
can, for instance, also consider the synonyms of the query keywords to increase
recall. With latent semantic indexing we can establish new relations based on con-
textual similarity, or we can use approaches like word2vec or explicit semantic
analysis for a similar purpose.

Another relevant source of concept relations are knowledge bases, which are
more explicit and can be used to improve retrieval by leveraging the semantics
provided by entities. Due to the complex relations between entities, knowledge
bases are usually represented as graphs. The most frequently used model for this
is RDF (Resource Description Framework), a tripartite labeled directed multigraph.
In an RDF graph, each relation is modeled by three linked nodes known as a triple
— a subject (entity), a property (relation), and an object (entity or attribute). Other
approaches include topics maps or the property graph model. Topic maps model
topics through their associations and occurrences. Topics are analogous to key-
words in the back-of-the-book index, while occurrences are analogous to the page
numbers. Associations can represent n-ary connections between topics, similar to
the role of the ‘see also’ expression in the back-of-the-book index. In the property
graph model, relations are captured between entities, but properties are not explic-
itly a part of the graph, being externally associated with nodes and edges instead.
In comparison to RDF, attributes and relations are not represented as nodes in the
graph, but are instead stored in a node property index and defined as edge la-
bels, respectively. RDF is a strong model for inference, while the property graph
model provides a solid base for ranking entities without having to consider the
effect of tripartite relations or having to compute a projection over one the three
modes. Knowledge graphs [62, §1.4.4] are usually queried through a structured lan-
guage like SPARQL, used for graph matching. Unlike unstructured keyword-based
queries, SPARQL is not user-friendly, in the sense that it requires a certain degree
of technical expertise that is more distant from natural language. There is a need
for keyword-based retrieval over knowledge graphs, but also for the structured
data that knowledge graphs usefully provide to improve the effectiveness of docu-
ment retrieval. Furthermore, understanding graph-based models for representing,
retrieving or otherwise manipulating text and/or knowledge is an essential step
towards approximating a more general solution to information retrieval. On one
side, graphs are ideal for dealing with the problem of heterogeneity [147]. On the
other side, and perhaps more importantly, awareness about a diverse set of graph-
based models, from multiple application contexts, is essential to support the quest
for finding a joint representation model of terms, entities and their relations, along
with a universal ranking function that can be used for entity-oriented search and,
eventually, for information retrieval in general.

Many of the graph-based techniques currently applied to entity-oriented search,
were surveyed in 2005 by Getoor and Diehl [148], who grouped them into the area
of link mining1. They covered tasks from link analysis, community detection, entity
linking, and link prediction that, in some way, provide a workbench for developing
graph-based entity-oriented search. In this section, we survey the usage of graph-
based models for multiple retrieval tasks, from modeling documents as graphs, to
providing query-dependent and query-independent evidence of document or entity
relevance. In Section 2.2.1, we present classical link analysis approaches, covering
PageRank, HITS and heat kernel. In Section 2.2.2, we introduce graph-based rep-
resentations of documents, used for ad hoc document retrieval. In Section 2.2.3,
we present retrieval methods based on knowledge graphs, for improving or aug-

1 There is not much evidence of link mining as an area beyond this survey, which leads us to believe that,
albeit a good one, this showed no relevant adoption by the community.
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menting document retrieval, as well as for entity retrieval. In Section 2.2.4, we
explore approaches that rely on entity graphs built directly from text corpora, and
in Section 2.2.5 we cover tensor based approaches for representing entity graphs. In
Section 2.2.7, we provide an overview on hypergraph-based models, covering tan-
gential work with applications to entity-oriented search. Finally, in Section 2.2.8,
we focus on random walk based models, in particular covering applications of
PageRank to entity-oriented related tasks.

2.2.1 Link analysis

Classical graph-based models in information retrieval include HITS and PageRank,
two link analysis algorithms developed to rank pages in the web graph. In 1999,
Kleinberg [149] proposed the hypertext induced topic selection algorithm (HITS)
as a combination of an authority score, based on incoming links, and a hub score,
based on outgoing links. The computation of HITS is frequently done over a query-
dependent graph, built from a root set of pages that are relevant to the query. The
root set can be retrieved using a classical model like TF-IDF or BM25 and it is then
expanded into a base set that includes all outgoing links and a subset of incoming
links. While the number of outgoing links is usually small, the number of incoming
links can be too high for an efficient computation. Thus, a parameter d is used to
define a ceiling for the number of incoming links to consider. When the number
of incoming links surpasses d, then only a random sample of size d is considered,
otherwise all incoming links are considered. In its query-dependent application,
HITS is more expensive than PageRank for ranking, since it cannot be computed
offline. Like PageRank, HITS is also related to the leading eigenvector of a matrix
derived from the adjacency matrix. Interestingly, the authority and hub scores are
related to the leading eigenvectors of AAT and ATA, respectively, both sharing the
same eigenvalue [150, §3.2].

Also in 1999, Page and Brin [113] proposed PageRank as a way to measure the
importance of web pages. PageRank [151] is an elegant algorithm that offers multi-
ple interpretations and computation approaches. It can be seen as the solution to a
linear system [152, 153], or as the eigenvector of the Markov chain derived from the
graph — after adding a teleportation term to the transition probabilities, in order
to deal with sinks (i.e., pages without any links to other pages). It can be solved
through Gaussian elimination, power iteration or even Monte Carlo methods [154].
Conceptually, PageRank is a random surfer model, where the probability of visit-
ing a node reflects the behavior of a user that is randomly navigating the web by
clicking hyperlinks, while occasionally jumping to a new page. This model is re-
cursive, in the sense that it results in a centrality metric where the importance of
a node depends on the importance of its neighbors — the better connected a node
is, both through quantity (i.e., many nodes) and quality (i.e., nodes that are them-
selves well connected), the higher the PageRank. Research about PageRank has led
to many applications [155], exploring contextual information (e.g., Topic-Sensitive
PageRank [156]), combinations of features (e.g., Weighted PageRank [157]), alter-
native smoothing approaches (e.g., Dirichlet PageRank [158]) or historical evidence
(e.g., Multilinear PageRank [114]). One of the variants, Reverse PageRank [159],
consists of simply reversing the edge direction and computing PageRank for this
complementary graph. It is to PageRank what the hub score is to the authority score
in HITS. Bar-Yossef and Mashiach [160] have shown that the Reverse PageRank is
not only useful to select good seeds for TrustRank [161] and for web crawling, but
also, more interestingly, for capturing the semantic relatedness between concepts
in a taxonomy. According to Gleich [155, §3.2], Reverse PageRank can be used to
determine why a node is important, as opposed to simply identifying which nodes
are important, something that PageRank already solves. The success of PageRank
in complementing itself through different applications is a sign of the usefulness of
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random walks in solving diverse tasks, which is a useful characteristic in the design
of general models.

Node importance is generally measured based on the number of incoming links
(as we have seen with HITS authority and PageRank) or based on the favorable
structural position of a node (e.g., closeness [39], betweenness [44]). Besides node
importance, node relatedness can also be measured as a type of structural similarity,
usually based on whether two nodes share links to or from a common node. Van
and Beigbeder [162] explored the effect of node relatedness in the retrieval of scien-
tific papers based on a user profile. They experimented with bibliographic coupling
and co-citation as reranking strategies. In bibliographic coupling, two papers are re-
lated if they cite a common publication. In co-citation, two papers are related if they
are cited by a common publication. For measuring co-citation, they implicitly built
a graph based on Google search results for pairs of paper titles, as well as based on
data from the Web of Science. Based on the 20 content-only topics from INEX 2005,
each representing an information need of a user, the authors selected approximately
five papers per topic to establish a user profile. Using Zettair1, they then indexed the
collection of papers, ignoring those used to build user profiles. They retrieved 300

papers for the 20 topics, based on Dirichlet-smoothed language models, and used
this as the baseline. Results were then reranked based on bibliographic coupling,
co-citation using the Web of Science, and co-citation using Google. They obtained
a consistent improvement over the baseline only for the Google-based co-citation
reranking (P@10 increased from 0.62 to 0.68).

Link analysis can also be approached through kernels, supporting both the mea-
surement of importance and relatedness. Ito et al. [163] explored von Neumann
kernels as a unified framework for measuring importance and relatedness, using
different parameter configurations to go from co-citation or bibliographic coupling
(n = 1) to HITS (large values of n). They also identified two limitations of co-
citation relatedness: (i) two nodes are considered to be related only when they are
cited by a common node; (ii) relatedness only takes into account the number of
nodes commonly citing two nodes, as opposed to also considering the differences
in popularity of the two nodes (e.g., co-citing a generic web site and Google might
not be an indicator of relatedness, given the popularity of Google). As a solution,
they proposed the use of Laplacian and heat kernels, which enabled them to con-
trol the bias between relatedness and importance, while effectively mitigating the
identified limitations.

The heat kernel has also been studied as a type of PageRank [164, 165], establish-
ing an analogy with PageRank’s alternative notation [166, §1.5], frequently used for
personalization tasks. This is shown in Equation 2.1, for a personalization vector
E, the complement of the damping factor β = 1 − d, and the Markov matrix M

representing the graph.

PR = β

∞∑
n=0

(1−β)nEMn (2.1)

Converting to this notation requires knowledge of linear algebra and, in particular,
of the Neumann series [167, Eq.6] for solving matrix inversions. As an analogy,
Chung [164] proposed the heat kernel PageRank, illustrated in Equation 2.2.

HKPR = e−t
∞∑
n=0

tn

n!
EMn (2.2)

Comparing both equations, we find that β is analogous to e−t and, while 1−β 6= tn

n! ,
there is still an approximated correlation of 85% between both terms (calculated for

1 http://www.seg.rmit.edu.au/zettair/
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n ∈ [0, 150] using 0.001 increments). Chung found the heat kernel PageRank to have
graph partitioning applications. This is interesting in the sense that PageRank can
both be used to measure node importance if applied globally, as well as to cluster
nodes if applied locally. Relevance can be modeled as node importance (e.g., using
PageRank as query-independent evidence, or HITS authority as query-dependent
evidence), but we also know that the cluster hypothesis holds for entity-oriented
search (cf. Section 2.1.1 [73]), meaning that clusters around relevant nodes proba-
bly contain additional relevant nodes. Kloster and Gleich [165] also explored the
heat kernel as a community detection algorithm, comparing it with the push al-
gorithm by Andersen et al. [168] for approximating PageRank. They showed that
the heat kernel coefficients decay quicker than the analogous damping factor from
PageRank, ensuring shorter random walks. They solved the exponential of the
Markov matrix, in the heat kernel equation, via a Taylor polynomial approxima-
tion, defining the hk-relax algorithm as a linear system. They were able to obtain
consistently better results for hk-relax, when compared to the push algorithm, ac-
cording to the F-measure and the conductance, over multiple graphs with a varying
number of nodes and edges. More recently, Yang et al. [169] have also proposed
the TEA and TEA+ algorithms for a more efficient computation of the heat kernel
PageRank. They proposed an approximation based on Monte Carlo random walks
and a secondary algorithm to help reduce the number of required random walks.
They were able to outperform the original algorithm by an order of magnitude for
large graphs.

2.2.2 Text as a graph

For unstructured text, without hyperlinks, there are also models to represent docu-
ments as a graph of words. Blanco and Lioma [15] provide an in-depth exploration
of graph-based models for text-based retrieval. They defined two graph-based rep-
resentations of terms in a document, based on an undirected and a directed graph.
The undirected graph linked co-occurring terms within a window of size N. Sim-
ilarly, the directed graph also linked co-occurring terms within a window of size
N, but established a direction based on grammatical constraints. This required POS
tagging to be applied to terms and then, based on Jespersen’s rank theory [37], POS
tags were assigned a degree — 1st degree for nouns, 2nd degree for verbs and ad-
jectives, 3rd degree for adverbs (and 4th degree for other tags). Under this model,
higher rank words can only modify lower rank words. This relation was captured
using a directed edge in the graph. Two raw metrics were then defined over each
graph, using PageRank and the (in)degree to weight term nodes. This resulted in
TextRank and TextLink over the co-occurrence graph (undirected), and PosRank and
PosLink over the co-occurrence graph with grammatical constraints (directed). They
then combined each raw term weighting metric with IDF for ranking documents ac-
cording to the terms of a given query. This raw model was combined with several
individual graph-based features, using the satu method by Craswell et al. [170], and
retrieval effectiveness was assessed over TREC test collections (DISK4&5, WT2G
and BLOGS06). Graph-based features added to the raw model included: average
degree, average path length, clustering coefficient, and the sum of graph-based term
weights (which worked as a type of document length normalization). The graph-
based models were compared to the BM25 (the baseline), as well as TF-IDF, accord-
ing to MAP, P@10 and bpref (Binary Preference). The best results for graph-based
models were obtained for the BLOGS06 collection. Generically, the graph-based
features improved the raw model and there was always a graph-based model that
outperformed the baseline, although for some of them the difference was not sta-
tistically significant. They also measured the impact of the window size N, finding
that N = 10 performed well for MAP and bpref, and they measured the impact
on indexing time introduced by computing the graph-based features, finding that
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TextRank only introduced an overhead of a few milliseconds (∼50ms for 1,000 itera-
tions).

Building on the previous work, Rousseau and Vazirgiannis [16] proposed a novel
graph-based document representation, defying the term independence assumption
of the bag-of-word approach. They defined an unweighted directed graph (the
graph-of-word), where nodes represented terms, and edges linked each term to
its following terms within a sliding window of size N, in order to capture con-
text. Based on information retrieval heuristics [117, 118] and the graph-based term
weighting approach by Blanco and Lioma [15], they also defined a retrieval model
over the graph-of-word, based on the indegree of the nodes (TW-IDF). The goal of
the weighting model was to measure the number of contexts a given term appeared
in. They also introduced a pivoted document length normalization component, tun-
able with parameter b (analogous to BM25’s b). The graph-of-word was generated
per document, computing the TW metric and storing it within the inverted index,
to be used as a replacement for TF. This meant that the document graphs could
then be discarded without requiring persistence. They evaluated the TW-IDF rank-
ing function with and without regularization over document length, as well as with
and without parameter tuning for the pivoted document length normalization b
parameter. They found that only a small contribution of document length normal-
ization was required, thus settling on a constant value of b = 0.003. They also
experimented with parameterizing the window size N, but since they didn’t find
an improvement for any of the tested values, they used a default value of N = 4.
Finally, they did a comparison of TW-IDF with TF-IDF and BM25, as well as Piv+
and BM25+ (TF-IDF and BM25 with lower bound regularization [118]), showing
that TW-IDF consistently outperformed the other weighting functions, particularly
in realistic conditions, where parameter tuning is costly and is seldom an option.

In recent work, Dourado et al. [171] has come forth with a general graph-based
model for text representation, able to support both the tasks of classification and
retrieval. Their approach consisted of mapping text documents to a directed graph
of words, capturing term order, and assigning node weights based on the normal-
ized TF of the terms, and edge weights based on normalized TF of bigrams formed
by the two words represented by the linked nodes. This was done for the whole
collection, per document. For each document, subgraphs were then extracted, for
example based on segments within a given path length, and then a vocabulary
selection stage was carried based on a graph dissimilarity function and on graph
clustering. Each cluster corresponded to a word (a centroid) in a codebook, repre-
senting the vocabulary that will be used to represent the documents. The subgraphs
in each document graph were appointed to a centroid, either by hard assignment
(the closest centroid), or soft assignment (based on a kernel function). The out-
put of the assignment function was a matrix, where each vector represented the
assignment weight to each centroid. A final pooling function then collapsed this
matrix into a vector that represented the document graph, reaching the goal of
graph embedding. From this point on, the vector could be used both for retrieval
or classification, which the authors evaluated using multiple test collections. For
the task of classification, their bag of textual graphs approach (as they called it),
was able to outperform the remaining document representations for four of the
five test collections, according to macro F1, which ranged from 0.676 to 0.997. For
the task of retrieval, they experimented with the bag of textual graphs using three
distances: Euclidean, Jaccard index, and cosine. They were able to outperform all
baseline approaches, according to NDCG@10, when using the Jaccard and cosine
distances, and most of them when using the Euclidean distance. The best results
were obtained for the cosine distance. This work shows the reliance of graphs as
a data structure to support general models. In this doctoral thesis, we explore a
similar topic, but the application is to combined data, jointly representing corpora
and knowledge bases, with the goal of supporting multiple entity-oriented search
tasks.
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2.2.3 Knowledge graphs

Instead of issuing direct queries over a graph, either by ranking its nodes (Sec-
tion 2.2.1) or by matching subgraphs (Section 2.2.6), graph-based models can sim-
ply be used for the representation of knowledge in a retrieval process. We also
consider such approaches to be graph-based, as long as there is an obvious and
direct dependence on the entities and relations in a knowledge graph.

2.2.3.1 Augmenting entities with documents and vice-versa

Fernández et al. [172] showed that ontology-based semantic search can be used
for augmenting and improving keyword-based search. They proposed a system
architecture for question answering based on natural language queries over the se-
mantic web, using ranked documents to complement an answer given by ranked
triples. The system relied on an ontology index, a concept-based index and a doc-
ument index. The ontology index mapped terms to entities and was used both
to build the concept-based index (document annotation) and for query processing
(query annotation and triple matching). In particular, the PowerAqua system [173]
was used for mapping keywords in a natural language query into triples from the
indexed ontologies — they relied on WordNet to improve the matching between
query terms and entities. The document index mapped terms to documents and
was used for document ranking based on the retrieved triples and the concept-
based index. Evaluation was performed using the TREC WT10G collection and a
selection of 20 topics and their relevance judgments from TREC9 and TREC 2001.
They also relied on 40 ontologies, based on Wikipedia, that covered the domain of
the selected topics. Each TREC topic was expanded with an appropriate question
answering request and additional information on available ontologies. They exper-
imented with a baseline using a text-based approach over Lucene, semantic query
expansion based on PowerAqua, and their complete semantic retrieval approach.
When compared to the baseline, they obtained an improved effectiveness for 65% of
the evaluated queries, according to average precision and P@10, when using their
semantic retrieval approach, and 75% when considering only P@10 and either of
the semantic approaches.

Byrne [174] dedicated her thesis to exploring the unified representation of hybrid
datasets, combining structured and unstructured data, particularly in the domain of
digital archives for cultural heritage. She relied on RDF triples, with a subject, pred-
icate and object, to generate a graph that would integrate structured data from rela-
tional databases, unstructured data from entities and relations extracted from free
text, and even domain thesauri useful for query expansion. For relational databases,
each row in a table was instanced as a blank node of a class with the table name.
For domain thesauri, the SKOS ontology was used to represent concepts and their
relations of synonymy or hyponymy. For free text, 11 entity classes were considered,
along with 7 predicates, one of which had a higher arity, containing 6 subpredicates
that were used to establish binary relations. A classifier was trained for named en-
tity recognition, and another one for relation extraction. Finally, equivalent queries
were prepared to run over the RDF store as SPARQL, running either within Jena
or AllegroGraph, and over the relational database as SQL, running within Oracle
or MySQL. Byrne found that queries over RDF were considerably less efficient than
queries over relational databases. She also found a lack of aggregation functions like
count or average to query RDF, as well as the lack of graph theory functions to iden-
tify node degree or shortest paths. In this doctoral work, we also faced efficiency
issues, which led us to implement approximated approaches. Given the importance
of computing weights in information retrieval, we relied on graph and hypergraph
theory to support ranking tasks in entity-oriented search, which is a feature that
SPARQL does not support. Like Byrne, we are also interested in proposing a joint
representation model for corpora and knowledge bases for maximizing the oppor-
tunities for a relevant answer to be found within all available data. Unlike Byrne,

46



2.2 graph-based models

we took the approach of openly exploring graph-based strategies, rather than re-
stricting our work to RDF, exploring novel ways to represent text, entities, and their
relations, in a way that supports retrieval by design.

Balog et al. [175] presented the SaHaRa entity-oriented search system for search-
ing over news collections. For a given keyword query, SaHaRa used language
models to retrieve both documents and entities, displaying them in a two-column
interface. A document-centric view and an entity-centric view were also provided.
The document-centric view was used to display a news article along with links to
related articles and associated entities. The entity-centric view was used to dis-
play the entity, showing for example its Wikipedia summary, along with links to
related news and Wikipedia articles, as well as associated entities, either based on
the language model or the DBpedia relations. SaHaRa illustrates the benefits of aug-
menting documents with entities, as well as entities with documents, also showing
that language models can be used for documents as well as entities.

2.2.3.2 Text-based retrieval of entities

Blanco et al. [176] tackled the problem of effectiveness and efficiency in ad hoc
entity retrieval over RDF data. Their ranking approach was based on BM25F, ex-
perimenting with three representation models: (i) an horizontal index, where fields
token, property and subject respectively stored terms, RDF property names, and terms
from the subject URI; (ii) a vertical index, where each field represented a separate
RDF property name (e.g., foaf:name) containing terms from the respective literals;
and (iii) a reduced version of the vertical index where fields represented important,
neutral and unimportant values depending on the classification of the correspond-
ing RDF properties. Evaluation was carried over the Billion Triple Challenge 2009

dataset [177]. For measuring effectiveness, they used the 92 entity-oriented topics
and relevance judgments from the Semantic Search Challenge of 2010, obtained
from Microsoft Live Search query logs. They compared BM25 from MG4J1 with the
three proposed indexes, finding the horizontal index to be the least efficient for AND
and OR operators. Both the vertical and the reduced-vertical indexes were able to
obtain a lower but comparable performance to BM25 for the AND operator, but not
for the OR operator. Efficiency-wise, the best RDF index was the reduced-vertical.
Regarding effectiveness, they compared BM25F with the BM25 baseline, as well as
the best performing submission for SemSearch 2010. They found that, while the
BM25 baseline was worse than the SemSearch 2010 baseline, their BM25F approach
was able to improve MAP in 42% and NDCG in 52%. BM25F’s b, field weight and
document weight parameters were optimized using linear search and the promising
directions algorithm [178], increasing MAP in over 35% just for tuning the param-
eter b for each field. Increasing the weight of documents from important domains
(e.g., dbpedia.org) was also significant.

Neumayer et al. [179] presented an overview on entity representation approaches
for the text-based retrieval of entities. They covered the unstructured entity model,
where all textual evidence was aggregated as a field in a virtual document, as well
as the structured entity model, where textual evidence was aggregated in multiple
fields, one per predicate type, in a virtual document. In particular, the aggregation
into four predicate types was suggested: Name, Attributes, OutRelations and InRela-
tions. Language models could then be applied to either representation and used as
a ranking function, either over a single field or over the four individual fields. The
presented models did not, however, preserve or take advantage of the information
provided by individual predicates. Accordingly, the authors proposed the hierar-
chical entity model, where an entity was represented by the predicate types, as well
the corresponding predicates. Additionally, each predicate type was represented
both by its predicates and the text evidence for the type, and each predicate was
represented by the text evidence for the predicate. Keyword based relevance for the

1 http://mg4j.di.unimi.it/
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hierarchical entity model θe was then computed as illustrated in Equation 2.3, for
an entity e, a predicate type pt, a predicate p, and a term t.

P(t|θe) =
∑
pt

P(t|pt, e)P(pt|e)

=
∑
pt

(∑
p∈pt

P(t|p,pt)P(p|pt, e)

)
P(pt|e)

(2.3)

They also proposed four approaches for predicate generation P(p|pt,e) — Uniform
(inverse frequency of predicates of the given type), Length (number of terms per
predicate, normalized for the length of its predicate type), Average length (average
number of terms per predicate, normalized for the average number of terms of its
predicate type) and Popularity (fraction of triples with a given predicate, normalized
for the number of triples containing any predicate of the same type). They found
that the hierarchical entity model was able to outperform the unstructured entity
model, but not the structured entity model. Perhaps more interestingly is that fact
that it was able to fully capture the original semantic relations, without incurring in
a significant loss of performance.

2.2.3.3 Building knowledge graphs

Knowledge graphs have been powering mainstream web search engines since the
2010s. Bast et al. [92] highlighted DBpedia1, YAGO2 and Freebase3, as some of the
most relevant semantic web [2] resources.

dbpedia DBpedia is perhaps one of the most used public resources in the seman-
tic web, frequently exploited to support search. Auer et al. [50] described the ex-
traction process that transforms Wikipedia collaborative articles, as curated by the
community, into a multi-domain knowledge graph, available through a SPARQL
endpoint and interlinked with other open datasets. Examples of entity-oriented
search that rely on DBpedia include for instance entity list completion by Bron et
al. [128], or entity type ranking by Tonon et al. [180], as well as several examples
across ad hoc document retrieval [181, 182] and ad hoc entity retrieval [179, 183,
184].

yago Standing for Yet Another Great Ontology, YAGO [95] is a well-known se-
mantic web resource developed by the Max-Planck Institute for Informatics. Like
DBpedia, it relies on information extraction over Wikipedia to obtain structured
statements, but, through a set of rules and heuristics, it also integrates information
from the WordNet lexical database, and from the GeoNames geographical names
database. Like DBpedia, YAGO is frequently used to support several entity-oriented
tasks, such as the annotation of the INEX 2009 Wikipedia collection [112], which was
central in evaluating the graph-based models proposed in this doctoral work.

google knowledge graph Google announced Google Knowledge Graph4 in
May 2012. Formerly, it had been partly powered by Freebase but, in July 2010,
Google acquired Metaweb, the creators of Freebase, shutting down Freebase in Au-
gust 2016. Data dumps were then made available by Google to the public, under
the CC-BY license, and migrated to Wikidata5, as a community-maintained alter-
native to Freebase. Knowledge bases can be used to semantically enhance text,

1 http://dbpedia.org/ontology/
2 http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-

naga/yago/
3 https://developers.google.com/freebase/
4 https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
5 https://www.wikidata.org/
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supporting tasks like named entity recognition or entity linking. They are central
in entity-oriented search.

microsoft satori In March 2013, Microsoft Satori1 was announced. Then, in
2018, the Satori Group presented a tutorial on the 24th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining [185], where they described how the
knowledge graph was built. Steps included data ingestion, match & merge, knowl-
edge refinement and publishing & serve. They also proposed that the quality of
a knowledge graph should by measured by correctness, coverage, freshness and
usage.

microsoft academic graph Sinha et al. [186] described the latest release of the
entity graph used in the Microsoft Academic Service (MAS), after its integration
with the Bing infrastructure. This led to a growth from under 10 million indexed
papers to over 80 million indexed papers. Their heterogeneous graph was com-
prised of six types of entities: #field_of_study, #author, #institution, #paper, #venue
and #event. Papers and authors were mainly discovered using feeds from publish-
ers (e.g., ACM, IEEE), while venues, events and institutions were discovered from
semi-structured websites that served as conference hubs and that were indexed by
Bing. Practical applications of the described entity graph included: (i) serving con-
strained academic queries (e.g., [ fields of study about Artificial Intelligence ]), (ii)
suggesting queries with the same prefix (e.g., [ machine learning ] and [ machine learn-

ing algorithms ]), and (iii) academic entity recommendation — for example, people
related to a field of study (e.g., Andrew Ng would appear as an entity related to
Machine Learning), or entities central to related queries (e.g., Log-normal distribution
would appear as an entity searched along Machine Learning).

2.2.4 Entity graph from text

We have seen that both unstructured text and structured knowledge can be mod-
eled as a graph. Beyond these individual representations, there are also approaches
that focus on building entity graphs from text, establishing a direct relation be-
tween text and knowledge. This also helps to distinguish between knowledge that
is internal and knowledge that is external to the collection. Bordino et al. [187] ex-
plored the topic of serendipity in entity search, evaluating results based on surprise
and relevance, as well as based on interestingness. They created an entity network
from Wikipedia and Yahoo! Answers based on the similarity of entities profiles built
from the textual content citing an entity. In order to improve performance, they only
compared pairs of entities that co-occurred in at least one document, based on the
document similarity self-join algorithm by Baraglia et al. [188]. They then created
an edge between two entities when their similarity was above a given threshold.
For evaluation, they collected the most searched queries in 2010 and 2011 from
Google Trends2, identifying the entity associated with each query. The queries cov-
ered topics about people, places, websites, events, gadgets, sports, and health. They
then used a crowdsourcing platform to obtain relevance judgments and indicators
of interestingness, and they quantified surprise based on whether results appeared
on commercial search engines, according to different criteria. Finally, serendipity
was measured based on the normalized aggregated relevance of surprising results.
They found that 51% of the nodes in the Wikipedia network overlapped with the
nodes in the Yahoo! Answers network and also that both networks were nearly 95%
connected, through the presence of common concepts that bridged the gaps. Their
ranking method was based on the stationary (time-independent) distribution of lazy
random walks in the graph, with a λ = 0.9 probability to stay in the input entity

1 https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
2 Google Trends is identified in the paper as Google Zeitgeist, which was a previous designation.
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node, which at d = 0.85worsened the results1. They also introduced three main con-
straints based on: (i) quality (measured through readability); (ii) sentiment (based
on SentiStrength2 as applied to the associated textual documents); and (iii) topic
categories (using a proprietary classifier to identify 18 main categories). They then
measured the fraction of unexpected (surprising) and relevant recommendations,
over different runs, for unconstrained search, as well as considering topic, high sen-
timent, low sentiment, high readability, and low readability constraints. Overall,
they obtained the best results for topic constrained search and for high readability
constrained search. They showed that Wikipedia and Yahoo! Answers were good
datasets for promoting serendipitous search, as they returned relevant results that
were dissimilar to those found through other web search engines. Recommenda-
tion tasks as the one presented in this work are analogous to the entity-oriented
search task of related entity finding, although ignoring the target entity type and
experimenting with additional constraints.

Ni et al. [189] proposed a concept graph3 representation of a document and the
measurement of semantic similarity based on that graph. They used TAGME4 to
annotate documents with mentions linked to Wikipedia concepts. Then they built
a graph using concepts as nodes and three types of concept relations as edges —
:context (connecting concepts sharing incoming links from common Wikipedia arti-
cles), :category (connecting concepts belonging to similar categories in the Wikipedia
taxonomy), and :structure (based on the graph induced by the links within the Wiki-
pedia infobox of each concept and the shortest path between concepts). The :context
and :category edges are similar to the bibliographic coupling and co-citation ap-
proaches described in Section 2.2.1, based on the work by Van and Beigbeder [162]
to capture semantic relatedness. Each edge was weighted by a similarity metric
proposed for each specific concept relation type. The authors also assigned weights
to the nodes based on the closeness centrality for each node, using a custom dis-
tance metric defined by the inverse of a linear combination of the weights of the
three possible types of edges. An additional weight was associated with each node,
based on the TF-IDF similarity between the concept’s Wikipedia article and the
represented document. Then they defined a pairwise concept similarity, called Con-
cept2VecSim, where Concept2Vector was inspired by word2vec, and a document simi-
larity called ConceptGraphSim based on the best pairwise similarities of each concept
of either document, relative to the concepts in the other document, as well as the
weight of the concepts in the graph. They compared their methodology, optionally
combined with ESA [139], with several other state-of-the-art methodologies, both
through individual and combined applications. They concluded that their approach
outperformed the majority of the methodologies, with the exception of WikiWalk +
ESA [191] when compared with ConceptGraphSim alone, and ConceptsLearned [192]
when compared with ConceptGraphSim + ESA.

2.2.5 Entity graph as a tensor

Zhiltsov and Agichtein [75] captured the latent semantics of entity-relations based
on tensor factorization. They defined a tensor that described entity relations based
on different predicates, represented as multiple adjacency matrices, one per pred-
icate over the third dimension of the tensor. Tensor factorization was applied to
the tensor, using the RESCAL algorithm [193], in order to obtain a matrix of latent
entity embeddings and a tensor of latent factors. A listwise learning to rank ap-
proach, based on gradient boosted regression trees, was then used to optimize a
ranking function according to NDCG. They considered term based features, as well

1 Please notice that we normalized the notation to be consistent over the document. Here, λ = β and
d = 1−α, when compared to the original paper.

2 http://sentistrength.wlv.ac.uk/.
3 Not to be confused with conceptuals graphs [190].
4 https://tagme.d4science.org/tagme/.
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as structural features. Term based features relied on a multi-field document repre-
sentation of the entity, enabling the retrieval of entities based on keyword queries.
In particular, they did this based on a mixture of language models, as well as a
bigram relevance score per field. Structural features were based on the entity em-
beddings from the tensor. In particular, they computed the cosine similarity, the
Euclidean distance and the heat kernel between the embedding of a given entity
and the embeddings of each of the entities in the top-3 using a baseline ranking.
Their evaluation was based on 142 queries from the SemSearch Challenge from
2010 and 2011 and the Billion Triple Challenge 2009 dataset. They consistently ob-
tained an increased performance of nearly 5%, for NDCG, MAP and P@10, when
considering structural features.

2.2.6 Graph matching

One of the approaches to graph-based retrieval is the definition of graph queries
(e.g., translated from keywords or natural language), that can be issued over a text
graph or a knowledge graph. In the context of graph data management, Fletcher
et al. [194, §1.4.1] classified graph queries into four categories: adjacency queries,
pattern matching queries, reachability queries, and analytical queries. Adjacency
queries consider nodes linked by an edge, as well as edges that share a common
node, and they can even consider a k-neighborhood (i.e., linked nodes/edges at a
distance k). Pattern matching queries consist of finding values for variables in a
triple or sequence of triples (e.g., 〈?x, :friend, ?y〉 should return pairs of friends).
Reachability queries determine which nodes can be reached based on the given
traversal restrictions (e.g., 〈John, :friend+, ?x〉 will return friends of John, as well as
friends-of-friends of John, and so on). Finally, analytical queries include queries that
are based on aggregated computations over a graph, including average path length,
connected components, community detection, clustering coefficient, or PageRank.
Fletcher et al. [194, Ch.4] also covered the concepts of query relaxation and approx-
imation as a way to manipulate the path structure in a graph query to enable a
more flexible query processing. This is aligned with the need for better retrieval
techniques over knowledge graphs that, unlike text-based retrieval, do not yet pro-
vide adequate approaches based on keyword or natural language queries. Entity-
oriented search tackles this type of challenges, making search easier over unstruc-
tured and structured data.

Zhu et al. [58] and Zhong et al. [57] have proposed an approach to semantic
search for entity ranking, through the matching of a query graph and a resource
graph. The idea was developed based on conceptual graphs [190], having a direct
translation to RDF graphs1. The conceptual graphs were built from natural lan-
guage queries and documents via their prototype ALPHA [195]. They measured
the similarity between two conceptual graphs based on the similarity between their
nodes and edges. Node similarity was computed using WordNet2, based on the
distance to the closest common parent of two concepts. Concepts that subsumed
each other were considered to have distance zero and thus similarity one. Edge sim-
ilarity was computed as a binary value that was one, only when the edge from the
query graph subsumed the edge from the resource graph. For the computation of
graph similarity, they avoided the maximum subgraph matching problem, which is
NP-complete, by defining entry nodes that the user should identify in their queries.
As shown in Equation 2.4, graph similarity (SoG) was computed based on the node
similarity of entry concepts (cQ and cR) and on the edge similarity of the relations
directly associated with the entry concepts (rjQ and rjR) — recursion was then car-
ried over subgraphs under each individual relation, using the node linked by that

relation as the new entry node (c
r
j
Q

Q and c
r
j
R
R ). Optionally, user weights (w(cQ, ·))

1 https://www.w3.org/DesignIssues/CG.html
2 https://wordnet.princeton.edu/
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could also be assigned to relations between entry nodes and their children, other-
wise using a default value.
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) (2.4)

Minkov and Cohen [196] were concerned with personal information management
and the application of graph walks to derive entity similarity. They were able to use
queries to generalize multiple tasks over an entity-relation graph (e.g., modeling
e-mail as a graph of people who send and receive messages that contain terms). A
keyword query was first processed in order to identify corresponding nodes in the
graph, along with the target type of the output nodes. A response to the query
consisted of a ranked list of entities of the given target type. Different tasks were
defined based on the relations in the graph and could be specified along with the
query. User feedback was also considered for learning task-specific similarities.
This approach fits the tasks of related entity finding or entity list completion in
entity-oriented search. Graph walks were based on personalized PageRank and,
in particular, the alternative notation already presented in the context of the heat
kernels used by Chung [164] and Kloster and Gleich [165]. They considered intro-
ducing walk bias based on the learned edge weights on a per-task basis. They also
considered a reranking approach based on global features of the graph, such as
the reachability from seed nodes (i.e., the count of source nodes that link to target
nodes). They evaluated several personal information tasks, based on MAP and P@1,
modeling them as queries over the graph. This included name disambiguation for
people, grouping messages from the same thread, and finding e-mail aliases (based
on people or messages in the graph). For the task of name disambiguation, they
experimented with the Jaro similarity score [197] as a baseline, comparing it with
graph walks using uniform weights, learned weights and reranking. Overall, the
best results were obtained for the reranked version of the graph walks, with the
exception of one dataset where the learned weights version performed better. For
the threading task, they used the TF-IDF as the baseline, overall obtaining the best
results for the reranked version of the graph walks. Finally, for the alias finding
task, they also relied on the Jaro similarity score for the baseline, obtaining the best
results for the graph walk.

Zhong et al. [198] have worked on keyword-based search over knowledge graphs.
They combined content-based and structure-based features to score answer trees.
In particular, weights were manually assigned to nodes, depending on the context,
and then PageRank was used to balance and normalize the weights. Initial weights
were also assigned to edges, computing their final weight based on the weights of
the source and target nodes, as well as the initial weight. Answer trees were then
extracted from the graph based on whether they contained the query keywords,
and scored based on the distances between the root node and each query keyword.
The distances were multiplied by a penalizing factor, that increased with the num-
ber of previous trees with the same root node, and then they were summed. The
obtained score, where lower was better, was used to rerank the trees according to
compactness — this combined content-based features from node popularity with
structure-based features from graph relations. Evaluation was done over a DBLP1

graph with 840 thousand vertices, 1.3 million edges, 95 thousand terms, and edge
weights between 0.31 and 0.99. Their approach to evaluation was based on a man-
ually built collection of keyword queries and a manual assessment of the rankings,
with a focus on the diversity of the returned results.

Zhu et al. [199] proposed a natural language interface to a graph-based bibli-
ographic information retrieval system. Through named entity recognition and de-

1 https://dblp.org
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pendency parsing, they were able to generate a graph query that was capable of cor-
rectly interpreting 39 out of 40 natural language queries of varied complexities. The
approach relied on a graph database to store the bibliographic data. A natural lan-
guage query was then processed using named entity recognition to obtain the nodes
for the graph query to be issued over the graph database. Dependency parsing was
applied to extract relations between tokens (including entities), which were then
adapted to the database schema, for instance adding missing nodes (e.g., the depen-
dency 〈papers, happy university〉might be translated into 〈?author, paper〉, linked by a
:writes relation, and 〈?author, happy university〉, linked by a :is_affiliated_with relation).
This abstract graph query could then be instantiated into a graph query language
available for the graph database, where ?author is a node of type #author. Despite
the identified domain-dependent limitations of the model, this contributed to the
application of graphs as a tool for natural language understanding and question
answering.

Zhang et al. [200] explored graph-based document retrieval, by converting both
documents and queries to graphs consisting of words and POS tags as nodes, and
syntactic dependencies as edges. They segmented the documents into document
semantic units (DSU), representing the atomic unit of parsing (e.g., a sentence, or
a phrase within a sentence). They extracted graphs from each DSU, for each doc-
ument. Node weights were computed from TF-IDF. They repeated this process for
the query, considering it a single DSU. They then computed the maximum common
subgraph between query and document graphs, taking into account that two nodes
are the same if they share the same pair of word and POS tag. Node weights were
combined based on the square root of the product, and edge weights were assigned
based on whether the edge was present in both original graphs (1 if true and 0.5 if
false). They calculated the similarity of a query graph and DSU graph based on a
linear combination of the normalized sums of node and edge weights. The score for
a document was computed based on the average of the similarities for all graphs
representing document DSUs, or alternatively in a variant that assigned a higher
weight to the title DSU. They prepared two datasets, one for Chinese and another
one for English, by randomly selecting topics from the Sogou or Wikipedia top vis-
ited pages, and issuing those queries over Baidu or Google, in order to obtain result
documents. Those documents were then graded for relevance by five human judges
to form a test collection. Evaluation was done using DCG (Discounted Cumulative
Gain) and the best results were obtained with the title-biased score function. The
graph-based approach outperformed the vector space model for both the Chinese
and English test collections, and it even outperformed the Google algorithm.

2.2.7 Hypergraph-based models

Hypergraphs [40] are a generalization of graphs, where edges (or hyperedges) can
connect an arbitrary number of nodes — undirected hyperedges are represented by
a set of nodes, while directed hyperedges are represented by a tuple of two sets of
nodes. When all hyperedges in a hypergraph contain the same number k of nodes,
the hypergraph is said to be k-uniform. In that case, it can be represented as a
tensor of k dimensions, each of size |V |. In Section 2.2.5, we had covered tensor
factorization over a tensor of entity relations for different predicates. Exploring
analogous methods based on hypergraphs might also wield interesting results. A
non-uniform hypergraph is called general. This is a family of hypergraphs that is
rather hard to represent using tensors. CERN (Conseil Européen pour la Recherche
Nucléaire) and the University of Geneva have recently been tackling this problem,
focusing on undirected general hypergraphs [115], as well as hyperedges based on
multisets instead of sets [201]. A hypergraph can also be called mixed [202, §4],
when it contains both directed and undirected hyperedges, sometimes referred to
as hyperarcs and hyperedges, respectively. In this thesis, we work with general
mixed hypergraphs, using the designation of directed and undirected hyperedges.
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Since, to our knowledge, there is no adjacency tensor representation for this family
of hypergraphs, our implementations rely on existing data structures and software
libraries, rather than linear algebra approaches that depend on an adjacency tensor.

Hypergraphs have also been explored outside of mathematics. In information
science, topic maps [203, 204] have been used to jointly represent multiple indexes.
Conceptually, topic maps are hypergraphs where nodes are topics or occurrences,
and hyperedges are binary connections between topics and occurrences, or n-ary
connections between topics. Garshol [203] has showed that topic maps can be used
as a common reference model to represent metadata and subject-based classifica-
tion, including controlled vocabularies, taxonomies, thesauri, faceted classification
and ontologies. This means that, not only can topic maps be used to merge in-
dexes, but also to extend the indexes with external knowledge, in order to improve
search. While information retrieval was identified by Garshol as one of the main
applications of topic maps, to this date not many actual applications can be found
outside of information science. Yi [204] compared thesaurus-based information
retrieval with topic-map-based information retrieval, by measuring the recall and
search time of 40 participants over the two systems. He distinguished between
queries based on a single concept (fact-based) and queries based on two or more
concepts (relationship-based). They found that the topic-map-based system out-
performed the thesaurus-based system, both regarding recall and search time, for
relationship-based queries.

While hypergraphs have been previously used in information retrieval, they still
don’t play a major role in well-known tasks, despite their potential, as identified for
instance in topic models. Perhaps the most notable work on hypergraphs for infor-
mation retrieval is the query hypergraph proposed by Bendersky and Croft [14]. In
the query hypergraph, nodes represent concepts from the query, and edges repre-
sent the dependencies between subsets of those nodes and a document. The query
hypergraph is therefore able to represent higher-order term dependencies, captur-
ing the “dependencies between term dependencies”. Two types of hyperedges were
defined: local, between individual concepts and the document; and global, between
the entire set of concepts and the document. In order to obtain a score for a doc-
ument and query, they relied on a factor graph representation of the hypergraph
— a bipartite graph, where each hyperedge was represented by a factor node. The
ranking function was then computed based on the local and global factors, that
worked as document-dependent hyperedge weights. The approach is similar to
other log-linear retrieval models, such as the Markov network model or the linear
discriminant model, however higher-order term dependencies are easier to incorpo-
rate into the model. Their methodical approach can be regarded as a fundamental
step in supporting hypergraph-based work in information retrieval.

In entity-oriented search, we frequently deal with combined data or, at the very
least, we separately work with corpora and knowledge bases. Accordingly, finding
a joint representation for this kind of unstructured and structured data represents
added value for designing general solutions that solve information needs. Menezes
and Roth [205] have recently introduced semantic hypergraphs, proposing an ap-
proach to represent knowledge extracted from corpora based on recursive ordered
hypergraphs. On one side, such extension of hypergraphs means that nodes, rep-
resenting terms, can now have an order in the hyperedge they belong to, enabling
for instance the representation of an entity mention to be stored using the cor-
rect sequence of words. On the other side, recursivity means that higher-order
dependencies are explicitly stored rather than being exclusively verifiable, enabling
a hyperedge to be defined over nodes but also over hyperedges. This work is also
available as a Python library called Graphbrain1, which can be used to manipulate
semantic hypergraphs for natural language understanding, and knowledge infer-
ence and exploration.

1 https://graphbrain.net
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Recently, Dietz [103] has also proposed ENT Rank, a hypergraph-based approach
for entity ranking, where text was used to inform and improve entity retrieval.
The hypergraph was then converted into an entity co-occurrence multigraph and
several features were considered to train a learning-to-rank-entities model: neigh-
bor features, relation-typed neighbor features, and context-relevance features. The
model was inspired by random walks with restart, where training consisted on op-
timizing two weight vectors, ~ψ and ~θ, as part of an equation similar to PageRank’s,
which acts as the ranking function for a given entity. In this equation, the features
for the scored entity corresponded to the teleport or restart term, while the features
from the neighbors and context corresponded to the the navigation term. The au-
thor’s evaluation was based on the entity retrieval task from the TREC Complex
Answer Retrieval track. It relied on the CAR dataset, with 5.41 million Wikipedia
pages, along with a large corpus of paragraphs with hyperlinks to Wikipedia pages.
DBpedia-Entity v2 was also used, with relevance judgments from SemSearch ES,
INEX-LD, List Search and QALD-2. ENT Rank was able to achieve first or sec-
ond best ranking model for all experiments, showing, in multiple cases, the best
performance for unsupervised ranked aggregation.

Hypergraphs have also been recently used for summarization [206], as an XML
alternative for the semi-structured representation of text as a graph [76] or to model
folksonomies, promoting the serendipitous discovery of new content [207]. Even
in 1981, in the area of social network analysis, Seidman [208] had noticed the
inability of anthropologists and sociologists to study social networks based only
on dyadic relationships, proposing hypergraphs as a way of better modeling non-
dyadic relationships, such as group membership. Moreover, hypergraphs have al-
ready been particularly useful in music recommendation [83, 209–211] through uni-
fied approaches for modeling heterogeneous data or through the use of random
walks. Given their ability to represent polyadic relations that group multiple nodes,
hypergraphs have also been used as a way to compress semantic graphs [212].

Assuming that we would be able to effectively represent text and entities us-
ing a hypergraph, then we might be able to take advantage of both set theory,
using metrics like the Jaccard index to measure similarities, or random walks in
hypergraphs [55], where we might rely on hyperedge weights, but also on node
weights to control the traversal. While hypergraphs are a flexible data structure,
they still present some limitations, when applied to more complex representation
needs. For instance, weights associated with nodes and hyperedges might not
be enough to represent all types of bias — e.g., we can define node weights, but
not node weights per hyperedge. There are, however, extensions of hypergraphs,
like fuzzy hypergraphs [213], intuitionistic fuzzy hypergraphs [214] or hypergraphs
with edge-dependent vertex weights [215], that provide increased flexibility in es-
tablishing bias. According to Canfora and Cerulo [216, Fig.1], this would in fact
mean that such a model would simultaneously provide reasoning with logic (graph
theory) and uncertainty (fuzzy set theory). Besides hypergraphs, there are also
other higher-order data structures, like higraphs [217], hypernetworks [218, 219] or
metagraphs [220], that might be worth exploring in information retrieval.

In prior sections of this chapter, we have already seen that graphs can be used
to represent both unstructured text (e.g., graph-of-word [16]) and structured knowl-
edge (e.g., DBpedia [50]). Hypergraphs can go even further, capturing for instance
synonyms as undirected hyperedges. Moreover, approaches like hypergraph em-
beddings [221] can also be used to further reduce search complexity. The expres-
siveness and viability of hypergraphs make it a useful data structure to be explored
in entity-oriented search. This doctoral work largely relies on hypergraphs to pro-
pose a general model for several retrieval tasks in entity-oriented search.
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2.2.8 Random walk based models

Traversing a graph can be done through algorithms like breadth-first or depth-first
search. For large graphs, however, the cost of using such strategies can be pro-
hibitive. There are other less expensive traversal strategies, like random walks [222],
that are still able to capture structural properties, but rely on a sampled view
of the graph [223]. For example, while breadth-first search has time-complexity
O(|V |+ |E|), a random walk has time-complexity O(`), for a given length `, while
also being easily parallelizable [224]. Accordingly, random walks frequently pro-
vide a more efficient way to estimate network properties. They can be used for mea-
suring node importance, when applied globally (e.g., PageRank [113]), but also for
community detection, when confined to local neighborhoods (e.g., Walktrap [225],
push algorithm [168]), and they can even be used for entity linking, when applied
to graphs of mentions and entities [226][227, §3.2.4].

PageRank is perhaps the most well-known and versatile graph-based metric that
relies on random walks. It first surfaced in 1997, in a working paper by Larry Page
and Sergey Brin [33], but it is usually cited using the 1998 article describing the
Google search engine [151], or the 1999 technical report from Stanford InfoLab [113].
Since then, PageRank has been extended and reimagined by different researchers,
who proposed their own improvements, as we have shown in Section 2.2.1. Ex-
periments included measuring the importance of web pages based on a given
topic [156], or considering a weighted approach based on network, semantic and
visual features [157], or even introducing higher-order dependencies for modeling
historical surfing information [114]. For further information, Appendix A provides
an in-depth analysis of diverse PageRank variants and applications. There are also
multiple available surveys about PageRank, namely from Chung [228] and from Gle-
ich [155]. Chung [228] focused on approximated approaches for the computation
of PageRank, also covering the applications and generalization of PageRank. Gle-
ich [155] provided an in-depth survey with a good coverage on existing PageRank
variants and applications, discussing the mathematics of PageRank and its gener-
alizations. Our appendix section attempts to directly provide the calculations to
obtain the Markov matrix necessary for computing each PageRank variant using
power iteration. There are, however, multiple approaches for efficient PageRank
computation, either based on speeding up power iteration [229, 230], parallel com-
puting [231–233] or Monte Carlo methods [154, 234].

Due to its popularity, there are multiple applications of PageRank to entity-
oriented search [62, §4.6.2]. In the remainder of this section, we present ReConRank,
ObjectRank, HubRank and HopRank, with applications over RDF graphs or general
labeled graphs. We present PopRank and DING, with applications over the seman-
tic web, combining a web or dataset graph with an object or entity graph. Finally,
we cover a semantics-aware personalized PageRank that explores PageRank for rec-
ommendation tasks, while considering RDF triples for improved performance.

reconrank Inspired by PageRank, Hogan et al. [66] proposed ResourceRank,
ContextRank, and a combination of the two approaches called ReConRank. Using
a similar strategy to the base set selection in HITS [149], a query dependent graph
was built by matching RDF literals and returning their neighborhood graph. Equa-
tion 2.5 was then applied over multiple iterations t, until convergence, to rank an
RDF resource i ∈ V , using information from the outdegree deg+(v), as well as the
set of incoming neighbors N−(v), for a node v.

mint =
1− d

|V |

∑
j∈{v|deg+(v) 6=0}

rcrt−1(j) +
1

|V |

∑
j∈{v|deg+(v)=0}

rcrt−1(j)

rcrt(i) =
∑

j∈N−(i)

(
d

deg+(j)
rcrt−1(j)

)
+mint

(2.5)
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The resource graph was induced by the nodes that appeared at least once as a
subject in the retrieved RDF quads, while the context graph was induced by the
fourth elements in the same set of RDF quads. In practice, each graph represented
different projections of the original graph. ReConRank was then proposed as a
metric computed over the combined graph of resources and their contexts, which
represented an enriched connectivity over either individual graph. Equation 2.5
was used for the computation of either of the three metrics. We could say that these
are representation-driven approaches, since the ranking function is unchanged, but
applied to different graphs.

objectrank Balmin et al. [65] proposed an adaptation of PageRank for keyword
search over a database modeled as a labeled graph. Like HITS, ObjectRank was com-
puted over a base set to generate a topic-induced graph. Their approach consisted
on precomputing the Global ObjectRank (same as PageRank) and the ObjectRanks
for all term-based graphs, according to Equation 2.6, where S(w) represents the
base set for term w and s is the corresponding binary personalization vector.

ORw =
1− d

|S(w)|
s+ dM ORw (2.6)

The keyword-based ObjectRank computed for a term could then be affected by the
Global ObjectRank, ORG, based on Equation 2.7, where the exponent g controls its
weight.

orw,G(i) = orw(i) (orG(i))g (2.7)

For a query with multiple keywords, we can compute the product of individual
ObjectRanks as the logical AND or, for pairs of keywords, the sum of ObjectRanks
minus their product as the logical OR. It is also easy to derive the computation of
ObjectRank for any combination of these boolean operators. A relevant difference
between the computation of PageRank and ObjectRank, besides its query depen-
dence according to the base set, is that the sum of outgoing weights, used to gener-
ate matrix M, might be less than one. Weights are defined according to an authority
transfer schema graph, where they are established for particular edge labels and
between specific source and target node labels. Given that these weights might not
add to one, the authors use the analogy of a random surfer that eventually disap-
pears. For computational purposes, each weight is then divided by the weighted
outdegree over edges with the same label, ensuring stochasticity and convergence
(this normalization is similar to the one used in Equations A.9 or A.12).

poprank Nie et al. [235] have proposed a link analysis metric with applications to
entity ranking, namely in academic search engines like Libra [236] — know, since
2011, as Microsoft Academic Search. PopRank acknowledged the importance of
both the web graph (based on hyperlinks) and the object graph (based on hetero-
geneous relations between different types of objects). It combines web popularity,
as well as transitions over the object graph, according to a popularity propagation
factor. The popularity propagation factor γYX was defined for links between two
specific entity types Y and X (similar to the authority transfer schema graph in Ob-
jectRank). The web popularity WebPopX was calculated based on the PageRank
of the pages that contained the object, as well as based on the importance of web
blocks (visual fragments of a web page). Equation 2.8 illustrates the calculation of
PopRank PopRX for all nodes of type X.

PopRX = (1− d)WebPopX + d
∑
Y

γYX MYX PopRY (2.8)
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Notice that matrix MYX might not be square and therefore cannot be considered
stochastic. However, it behaves quite similarly to a stochastic matrix, except it mod-
els the transitions from nodes of type Y to nodes of type X. Nevertheless, when
multiplied by PopRY , the resulting vector will always be of size |X|. According to
the equation, PopRank measures the popularity of a given object or entity by taking
into consideration its popularity in the web, as well as the influence from different
types of nodes, based on their specified propagation factor.

hubrank Chakrabarti [67] proposed an efficiency improvement over ObjectRank,
where the personalization vector was only computed for a set of hub nodes selected
based on query logs. They proposed a TypedWordGraph, where they introduced
word-to-entity relations, thus enabling mixed word and entity queries. Each vec-
tor was approximated using precomputed fingerprints — i.e., the end nodes from
random walks of various lengths, as sampled from a geometric distribution, and ini-
tiated from each node — as described by Fogaras et al. [237]. In order to compute
HubRank, a subgraph limited by boundary nodes was first prepared. The boundary
was established by a subset of hub nodes called blockers, and by loser nodes that
were too far to significantly influence the personalized PageRank of the word nodes.
Personalized PageRank was then estimated for the remaining active nodes and iter-
atively computed using dynamic programming, while fixing the value of boundary
nodes. Fingerprinting and computation over a smaller graph provided improved
efficiency, while the word-to-entity relations provided a more flexible model for
entity-oriented search.

ding (dataset ranking) Delbru et al. [72] proposed a hierarchical link analy-
sis approach based on the computation of a PageRank variant called DatasetRank,
applied over a two-layer model of the semantic web. DatasetRank combines a local
entity rank, indicative of the importance of an entity within the current dataset, with
the the probability of jumping to another dataset, which is dependent on its size.
Equation 2.9 illustrates the computation of DatasetRank for dataset Dj ∈ D, based
on its entities EDj and incoming neighbors Dj. Each DatasetRank for neighbor
datasets is then weighted based on a Link Frequency × Inverse Dataset Frequency
(LF-IDF) computed over the set of links Lσ,i,j with label σ, source node i and target
node j.

wσ,i,j = LF(Lσ,i,j)× IDF(σ) =
|Lσ,i,j|∑
Lτ,i,j

Lτ,i,j
× log

|D|

1+ freq(σ,D)

dsrt+1(Dj) = (1− d)
|EDj |∑
D |ED|

+ d
∑
Lσ,i,j

wσ,i,j drst(Di)

(2.9)

semantics-aware personalized pagerank Musto et al. [238] have experi-
mented with personalized PageRank for recommendation over different user prefer-
ence graphs, adding to the user-item relations with external knowledge from linked
open data. Their contribution was focused on finding the best representation model
for semantics-aware recommendation using personalized PageRank, rather than
proposing changes to PageRank as a ranking function. They experimented with
the bipartite user-item graph, as well as the tripartite user-item-resource graphs,
based on all DBpedia triples, as well as on a subset of triples selected using PCA
or information gain. They also experimented with different weighting schemes for
each node type. They found slight benefits to the extension of user-item graphs
with linked open data, particularly for graphs that were originally sparser.

hoprank Espín-Noboa et al. [239] proposed HopRank to model human naviga-
tion on semantic networks. Based on the analysis of user behavior in the BioPortal
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Table 2.1: Chronological summary of entity-oriented PageRank variations.

PageRank Year Highlights

ObjectRank [65] 2004

• Keyword search over databases modeled as labeled graphs.
• Each node contains properties used for keyword matching.
• Computed over a query-dependent graph like HITS.
• Precomputed for graphs based on individual keywords.
• Also precomputed for the whole graph.
• Edge weights defined in an authority transfer schema graph.
• Both directions are considered; might have different weights.
• Relevance score from global and keyword-based ObjectRanks.
• Boolean AND/OR operators defined for multi-keyword queries.

PopRank [235] 2005

• Used for link analysis in Libra (Microsof Academic Search).
• Object-level ranking.
• Based on the web graph and the object graph.
• Edge weights defined for predicates (single direction).
• Web popularity based on PageRank and web block importance.
• Transition matrices between nodes of different types.

ReConRank [66] 2006

• ResourceRank over a resource graph.
• Based on links between entities used as a subject.
• ContextRank over a context graph.
• Based on links between the context given by quads.
• Contexts linked when they mention a common entity.
• ReConRank over a unified graph.

HubRank [67] 2007

• Designed to improve the performance of ObjectRank.
• Computed for a set of hub nodes selected from query logs.
• Based on a typed word graph.
• Considers term-entity and entity-entity relations.
• Identifies boundary nodes (blockers and losers).
• Uses fingerprints based on random walks to estimate scores.

DING [72] 2010

• Dataset rankING combines a DatasetRank and a local entity rank.
• Described as hierarchical link analysis.
• Two levels: dataset graph and entity graph.
• Local entity rank as the fraction of entities per dataset.
• Combines with the weighted influence of incoming datasets.

Semantics-Aware
Personalized PageRank [238] 2017

• Recommendation over preference gaphs.
• Bipartite user-item graph.
• Tripartite user-item-resource graph.
• Extended with DBpedia triples.
• Node-based weighting scheme.

HopRank [239] 2019

• Used for ranking ontology classes.
• Teleportation studied over k-hops.
• HopPortation probabilities based on clickstream transitions.
• Transition matrices for each k-hop.
• Ignores ontology edge direction.
• Defines one teleportation term.
• And d′ k-hop elements, for an ontology with diameter d′.

website1, a repository of biomedical ontologies, they found that, instead of teleport-
ing to random ontology nodes, users showed a bias toward jumping to nodes at
a particular distance k. They called this a k-hop, naming the probabilities of tele-
porting to k-hops as HopPortation. Given the diameter d ′ of the ontology (ignoring
direction), consider the HopPortation vector ~d of size d ′ + 1, where dk ∈ ~d repre-
sents the probability of a k-hop happening. The authors computed dk based on the
clickstream transitions in the BioPortal website, using add-one smoothing to ensure
each available k-hop was considered. Also consider d ′ matrices Mk containing the
transition probabilities for the corresponding k-hops, based on the undirected on-
tology links. HopRank is then calculated based on the Markov matrix M̂ described
in Equation 2.10.

M̂ =
d0
|V |

+ d1M1 + d2M2 + . . .+ dkMk (2.10)

Table 2.1 provides a chronological overview of PageRank adaptations and applica-
tions to entity-oriented search and related tasks. As we can see, each approach uses
different nomenclature. Overall, however, the majority of the approaches are based

1 https://bioportal.bioontology.org/
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on a combination of entity graphs (resource graph, labeled graph, object graph)
and dataset graphs (context graph, web graph, dataset graph). There are also cases
where the ontology graph (not unlike an entity graph) is directly used, or where a
combined graph of users, items and resources (again, similar to an entity graph) is
used. These last two cases represent work that, while not directly applied to entity-
oriented search, can be easily adapted, given the usage of underlying graphs with
semantic characteristics.

2.3 evaluation methods and resources
Traditionally, information retrieval follows an empirical approach to research, rely-
ing on experimentation over test collections to assess the quality of retrieval mod-
els [240]. Evaluation forums, such as TREC, INEX (INitiative for the Evaluation of
XML Retrieval), or CLEF (Conference and Labs of the Evaluation Forum) also bring
the community together to prepare these datasets, offering multiple evaluation mo-
ments, under the same conditions, for registered researchers. Each event usually
has a list of tracks, available to participants — tracks approach specific retrieval
tasks, usually providing a dataset or system for evaluation. In this section, we be-
gin by covering contributions that illustrate archetypal evaluation approaches, and
we cover some of the most relevant test collections and evaluation forums for the
assessment of information retrieval tasks, in particular focusing on entity-oriented
search.

2.3.1 Evaluation approaches

In entity-oriented search, evaluation approaches are in line with the overall infor-
mation retrieval research methodology, relying on test collections, where topics can
either be used to build keyword or entity queries, and relevance judgments are spe-
cific to the tasks, where either documents or entities are graded. In this section, we
illustrate two evaluation approaches for entity ranking tasks.

Komninos and Arampatzis [241] presented a web application for entity ranking
that receives a query in natural language and identifies the most relevant entities
associated with the query. For evaluation, they used the topics from the entity
ranking tracks from INEX 2009 and TREC 2010. They tested the effectiveness of
eleven ranking alternatives, discovering that the number of documents that cite an
entity is more relevant than the number of times the entity is cited in the documents.
They also found that in the top-n retrieved documents, when considering a small n,
document rank information has little influence over entity relevance. They verified
that the best results were achieved when using the maximum entropy algorithm
with a scoring function that combined the logarithmic entity frequency with the
document frequency.

Blanco et al. [242] created a standardized evaluation setting for entity search,
based on three test collections: (i) Billion Triples Challenge 2009 dataset; (ii) a
subset of the Yahoo! Search Query Tiny Sample v1.0 dataset, where 50 queries con-
taining an entity were handpicked; and (iii) crowdsourced relevance assessments
from Amazon Mechanical Turk, where human evaluators were given a keyword
query along with an entity ranking, displayed as a table representation of the RDF
triples about the entity, judging it based on a three-point scale as irrelevant, some-
what relevant, or relevant. This evaluation setting was applied in the context of the
2011 SemSearch Challenge [243] — queries were targeted at structured data in RDF
rather than text in unstructured web pages, like TREC 2010 Entity track [69].
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Table 2.2: Datasets for entity-oriented search: corpora, knowledge bases, and combined data.

Dataset Description

Unstructured data: corpora (e.g., plain text, hypertext)

AQUAINT
2002/2008

Collectively consists of almost two million English news articles, from sources
that include New York Times, the Associated Press, or the Xinhua News
Agency newswires, spanning from 1996-2000 and 2004-2006.

BLOGS06
Blog posts collected from 100k RSS and Atom feeds, spanning from 2005 to
2006.

ClueWeb 2009/2012 Nearly 1 billion web pages, spanning from January to Feburary 2009.

CommonCrawl
2007

Petabytes of data for a period of seven years. Contains web pages, along with
extracted metadata and plain text.

KBA Stream
Corpus 2014

Consists of timestamped data for links (unshortened bitly URLs), social (blogs
and forums), and news. It contains over 5.4 million links, 322.6 million social
documents, and 134.6 million news.

TREC Washington
Post Corpus (2017)

Contains 608,180 news articles and blog posts from January 2012 through Au-
gust 2017 in JSON. Topics are provided for the Common Core track, covering
the ad hoc document retrieval task, as well for the News track, covering the
tasks of background linking, and entity ranking.

Structured data: knowledge bases (e.g., triples)

BTC
2009/2010/2012

Billion Triples Challenge dataset. The 2009 version contains over 1.14 billion
statements, consisting of over 1.46 billion nodes, 866 billion resources, 352

billion blank nodes, and 246.7 billion literals.

Combined data: corpora and knowledge bases (e.g., annotated text)

ClueWeb09 FACC,
ClueWeb12 FACC

Freebase annotations of the ClueWeb Corpora, as done automatically by
Google researchers. Annotations represent entities with a high level of confi-
dence. On average, there are 15 entity mentions for ClueWeb09 and 13 entity
mentions for ClueWeb12.

INEX 2009

Wikipedia collection

Over 50 GiB of uncompressed XML files representing Wikipedia articles an-
notated with over 5,800 entity classes. This dataset is accompanied by a set
of topics from 2009 and 2010, along with the respective user assessments, for
multiple entity-oriented search tasks. Given it is also publicly accessible, it is
one of the best datasets available for evaluation, despite its age.

INEX Wikipedia
LOD Collection

Dataset of combined data, with over 12.2 million XML articles, accompanied
by a list of DBpedia URIs for included articles.

Other datasets

Wikipedia, Wikidata, DBpedia, FAKBA1, Web Data Commons (WDC) 2012, WordSim353, SimLex-
999, MEN, Rare words, Freebase Easy, Free917, WebQuestions, Mondial, IMDB, WDC / SemSearch
Challenge 2010 queries, MusicBrainz.

2.3.2 Test collections

Datasets are a fundamental resource for the testing and development of entity-
oriented search. Campinas et al. [244] provided a dataset called Sindice–2011, with
over 230 million documents and 1.7 billion entities. While the dataset seems to have
gained popularity within the community, official web sites1 are down at the time
of the writing of this document and have been down at least from the beginning of
the ANT2 project (June 2015).

Bast et al. [92] covered several datasets useful to the overall area of semantic
search. Table 2.2 presents a list of relevant information retrieval test collections, cov-
ering corpora and knowledge bases, as well as combined data, which is of special

1 http://data.sindice.com/trec2011/ (broken link)
2 http://ant.fe.up.pt/about
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Table 2.3: Events and respective tracks, tasks or challenges relevant to entity-oriented search.

Event Track / Task / Challenge

TREC Text REtrieval Conference
(1992-ongoing)

KBA Knowledge Base Acceleration Track (2012-2014)
– Entity Track (2009-2011)
QA Question Answering Track (1999-2007)
Live QA Live QA Track (2015-2017)

INEX2
INitiative for the
Evaluation of XML
retrieval (2002-2014)

– Ad Hoc Track (2007-2010)
– Entity Ranking Track (2007-2009)
– Linked Data Track (2012-2013)
– Jeopardy! Task (2012-2013)

CLEF

Workshop of
Cross-Language
Evaluation Forum /
Conference and Labs of
the Evaluation Forum
(2000-ongoing)

QA Multilingual Question Answering Task (2003-2008)
WiQA Wikipedia Question Answering Task (2006)
WSD QA Word Sense Disambiguation for Question Answering

(2008)
WePS Searching Information about Entities in the Web

(2010)
Web People Search Task (2010)

QA4MRE Question Answering for Machine Reading Evalua-
tion (2011-2013)

ER Entity Recognition Challenge (2013)
QALD1 Question Answering over Linked Data (2011-2014)
INEX2 INitiative for the Evaluation of XML retrieval (2012-

2014)
BioASQ Biomedical Semantic Indexing and Question Answer-

ing (2015)

TAC Text Analysis Conference
(2008-ongoing)

KBP Knowledge Base Population Track (2009-2018)
QA Question Answering Track

SIGIR
Special Interest Group
on Information Retrieval
(1978-ongoing)

ERD Entity Recognition and Disambiguation Challenge
(2014)

QALD1 Question Answering over
Linked Data (2011-2018)

– Hybrid Question Answering (2014,2017-2018)
– Multilingual Question Answering (2013)
– Ontology Lexicalization (2013)
– Multilingual QA over Linked Data (2014)
– Biomedical QA over Interlinked Data (2014)
– Multilingual QA over RDF Data (2016)
– Hybrid QA over Both RDF and Free Text Data (2016)
– Statistical QA over RDF Data Cubes (2016)
– Multilingual QA over DBpedia (2016-2018)
– English QA over Wikidata (2017)
– Large-Scale QA over RDF (2017)

SemSearch Semantic Search Workshop
(2008-2011) – SemSearch Challenge (2010-2011)

1,2 Same event.

interest to entity-oriented search. In particular, we highlight the INEX 2009 Wiki-
pedia collection, which is a combined data test collection that was used for several
tasks in the Ad Hoc track and the Entity Ranking track from INEX. As we show
further along, this dataset became a fundamental resource for experimenting with
a universal ranking function over multiple retrieval tasks.

2.3.3 Evaluation forums

Bast et al. [92] also covered several evaluation forums that support the area of se-
mantic search. Table 2.3 lists the most relevant evaluation forums, along with a
selection of tracks and tasks of special interest to entity-oriented search. In particu-
lar, we highlight TREC Entity track, which ran from 2009 to 2011, and INEX Entity
Ranking track, which ran from 2007 to 2009. In the following sections, we delve
into further detail on two of the most relevant evaluation forums in the community,
TREC and INEX, establishing a parallel between the entity tracks in the two events.

2.3.3.1 TREC – Text REtrieval Conference

The Text REtrieval Conference (TREC) began in 1992 and it has ever since brought
together the Information Retrieval (IR) community to participate in several research

62



2.3 evaluation methods and resources

tracks. Each research track represents a different open challenge in the area. Tracks
can be discontinued when a problem has been solved or interest has faded, and
new tracks are frequently created or transformed to better represent new or rele-
vant challenges. TREC participants are expected to choose one or multiple tracks,
each providing specific resources (e.g., document collections, relevance judgments,
APIs, etc.), in order to develop a search engine that will be evaluated on a common
framework. The event is organized as an evaluation forum rather than a typical
conference. As the result of a TREC participation, a research paper must be sub-
mitted to publish in a NIST Special Publication dedicated to TREC, describing the
approach taken and the obtained results. The focus is on using traditional IR met-
rics, such as Mean Average Precision (MAP) or Normalized Discounted Cumulative
Gain (NDCG), to measure the quality of different models or different parameter val-
ues based on human relevance judgments. Most tracks also provide an overview of
the occurrence, where the quality of the participants’ runs is compared (e.g., Balog
et al. [142], for the 2011 Entity track). This works as a state-of-the-art assessment of
a particular information retrieval task. Next, we present an overview of the tracks
that we have identified as relevant for entity-oriented search in Table 2.3.

knowledge base acceleration Knowledge Base Acceleration (KBA) ran con-
secutively from 2012 to 2014 and was succeeded by the Dynamic Domain track in
2015, which also ran in 2016 and in 2017. KBA1 describes their mission as follows:
“Given a rich dossier on a subject, filter a stream of documents to accelerate users
filling in knowledge gaps.”. This track tackled the challenge of increasing the speed
at which a news article is cited in a knowledge base from the moment of its pub-
lication. In 2014, the median number of days a news article waited to be cited in
Wikipedia was 356 days (nearly a year!)2. The KBA track dealt with this issue by
focusing on improving entity-oriented filtering of large streams, in order to help
human curators fill in the knowledge gaps more quickly. Tasks relied on the TREC
KBA Stream Corpora 2012-2014

3 for experiments.

entity track The Entity track4 ran consecutively from 2009 to 2011 and it con-
sisted of two main tasks. The first task, Related Entity Finding (REF), was based on
the ClueWeb09

5 dataset, as well as the Billion Triples Challenge datasets (BTC-2009
6

and BTC-2010
7). The second task, Entity List Completion (ELC), was also based on

the BTC-2009 and BTC-2010 linked open data. The overall problem tackled by the
Entity track consisted of taking one (REF) or several (ELC) entities as a query and
returning a ranked list of related entities.

question answering track The Question Answering track8 is one of the
longest running tracks organized by TREC, starting in 1999 and running until
2007. It was based on several static datasets shared by other tracks, such as
TREC disks 4&5

9, together with a set of test questions, either manually created,
or taken from search logs donated by Microsoft or AOL. The track was inactive for
eight years, until 2015, when it was revived as the Live QA track. The Live QA track
also ran in 2016 and in 2017. The Live QA track was different from its precursor in
the sense that it is required answers to be found for questions submitted to Yahoo
Answers and pushed to participants as a data stream.

1 http://trec-kba.org/
2 http://trec-kba.org/data/2014-11-19-TREC-KBA-track-overview.pptx
3 http://s3.amazonaws.com/aws-publicdatasets/trec/kba/index.html
4 https://web.archive.org/web/20110811014305/http://ilps.science.uva.nl/trec-entity/
5 https://lemurproject.org/clueweb09/
6 https://km.aifb.kit.edu/projects/btc-2009/
7 https://km.aifb.kit.edu/projects/btc-2010/
8 http://trec.nist.gov/data/qamain.html
9 http://trec.nist.gov/data/docs_eng.html
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open search track While most tracks provide a golden collection, with docu-
ments, topics and manually annotated relevance judgments, the OpenSearch track
tackles the problem from a different angle. Participants are equally provided with
documents and topics, but the assessment is done in a real-world scenario, via team-
draft interleaving [245], an approach that combines the site’s search results with the
search results provided by the participant. Evaluation is then done based on the
implicit feedback given by clicked results, accounting for the fraction of wins of the
participant over the site (a result of 0.5 would represent an equivalent approach,
while a higher result would represent a better approach). This is done through
the Living Labs API1, where users are given access to documents from well-known
academic search engines, like CiteSeerX or Microsoft Academic Search. These doc-
uments must be indexed, using whatever strategy the participant chooses. Then, a
list of frequently issued queries is provided to the participants, who must run them
through their retrieval model for ranking and then submit the results to the Living
Labs platform. This infrastructure is integrated with the real-world search engines
that initially provided the documents. The search engines dedicate a small part of
their traffic to evaluating runs from participants. Whenever a real user issues one of
the supported queries, participant’s results are interleaved with the search engine’s
results and shown to the final user. Feedback is sent back to the participant with in-
formation on which results (theirs or the search engine’s) were clicked. This implicit
feedback can then be used to evaluate the system or even to train a learning-to-rank
approach, during a train stage of the track.

Living Labs Balog et al. [246] presented the first practical methodology and imple-
mentation of the Living Labs2 for IR benchmarking, focusing on two use cases: local
domain search on the website of the University of Amsterdam, and product search
in the webshop of a toy retailer operating in Hungary. Living labs represents a
central and shared experimental environment that replaces individually setup eval-
uation infrastructure. This infrastructure can be used by different research groups,
avoiding the hassle of preparing it themselves, and enabling them to compare evalu-
ation metrics within a similar platform. This is different from the classical approach
of evaluating retrieval models through test collections and instead takes advantage
of interleaving in real-world search engines. Therefore, it confers the approach a
unique degree of feedback, which is frequently only available to commercial or in-
stitutional search engines, due to the challenges of finding a representative set of
test subjects in a lab environment.

Table 2.4 provides a summary of the most relevant TREC tracks, their datasets
and mission, in the context of entity-oriented search. One way to look at KBA is
to interpret it as document ranking for an entity query, while the entity track can
be seen as entity ranking for a query with one or multiple entities. The QA tracks,
however, focus on query and document understanding, using this to improve the
matching to specific passages. This is usually done through syntactic parsing and
semantic tagging, identifying dependencies between parts of speech that include
entities. Finally, the Open Search track illustrates a problem where a keyword query
is used to retrieve a specific type of entities (publications), usually providing entity
rich queries (e.g., authors, subjects). There are regularities in these retrieval tasks,
which usually involve a text part (documents or passages), an entity part (in queries
or results), and the inter and intra links between them. This poses the question and
establishes the motivation to whether a general model can be found that is capable
of solving a large number of these tasks using a universal approach. This is part of
what we explore in this thesis with graph-based entity-oriented search.

1 http://doc.trec-open-search.org/en/latest/api-participant.html
2 https://bitbucket.org/living-labs/ll-api
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Table 2.4: Overview of TREC tracks relevant to entity-oriented search.

Track Datasets Mission

Knowledge Base
Acceleration track1

TREC KBA Stream Corpora
2012-2014

3

Improve the retrieval of documents about a
particular entity from a stream, in order to ac-
celerate manual knowledge base population.

Entity track ClueWeb09
5, BTC-2009

6, BTC-2010
6

Improve the retrieval of related entities based
on one or multiple entities.

Question
Answering track8

TIPSTER1, TREC disks9, MSN Search
logs, AskJeeves logs, The AQUAINT
Corpus of English News Text2

Improve the retrieval of document passages ca-
pable of directly answering user questions.

Live QA track3 Yahoo! Answers4

Similar to the Question Answering track, but
questions are received directly from a socket,
as a stream, in real-time.

Open Search track5
CiteSeerX6, Microsoft Academic Search7,
Social Science Open Access Repository8

The Academic Search Edition consists of im-
proving literature retrieval for a given a key-
word query, which might include entities (e.g.,
authors).

2.3.3.2 INEX – Initiative for the Evaluation of XML retrieval

The INitiative for the Evaluation of XML Retrieval (INEX) began in 2002 aiming
its attention at focused retrieval, over test collections provided in XML. The goal
was to improve on directly solving the user’s information needs. Instead of simply
providing a ranking of documents, in focused retrieval we also rank passages or
entities that could more directly answer user questions. INEX followed the same
configuration of TREC, organizing into tracks for different focused retrieval prob-
lems, many of them relying on semantically annotated collections of documents, as
well as datasets of linked open data. While some of the tracks relied on classical
evaluation metrics like MAP (e.g., Ad Hoc track), others relied on variations of this
metric. This included xinfAP (eXtended INFerred Average Precision), where the
average precision was inferred based on a sample of relevant documents from the
collection, selected using stratified sampling over different ranking positions. It also
included MAiP (Mean Average interpolated Precision), which relied in the interpo-
lated precision over different intervals of recall. Like TREC, INEX also provides an
overview of each track’s occurrence, with the evaluation metrics for the runs sub-
mitted by participants (e.g., Demartini et al. [247], for the 2009 Entity Ranking track).
Next, we present an overview of the tracks that we have identified as relevant for
entity-oriented search in Table 2.3.

ad hoc track The Ad Hoc track ran from 2007 to 2010, with the goal of explor-
ing the internal structure of documents to retrieve relevant information, usually as
individual passages, or sometimes as a way to improve the retrieval of entire doc-
uments (document-level qrel were provided for the 2010 occurrence). Three main
tasks were maintained throughout all occurrences of the Ad Hoc track: (i) the Fo-
cused task, where a ranked list of XML elements or passages was returned; (ii)

the Relevant in Context task, where non-overlapping elements or passages were re-
turned, grouped by their article of origin; and (iii) the Best in Context task, where
a single element or passage was returned along with its article of origin. In 2009,
the Thorough task was revived and introduced into the Ad Hoc track and, in 2010,
the Efficiency task was introduced, along with modifications to the original tasks,
introducing restrictions based on a maximum number of characters per article, or
per topic, affecting the returned results. In 2007 and 2008, runs were based on a
XML version of the English Wikipedia, with over 500k articles from the beginning
of 2006. In 2009 and 2010, a new XML dataset was used instead, with over 2.5M
Wikipedia articles from 2009, that were semantically annotated based on the YAGO
ontology. Using as reference the last occurrence in 2010, as well as article retrieval
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Table 2.5: Overview of INEX tracks relevant to entity-oriented search.

Track Datasets Mission

Ad Hoc track
2006 English Wikipedia (XML),
INEX 2009 Wikipedia collection (XML,
annotated with YAGO classes)

Explore the internal structure of docu-
ments to retrieve relevant information.

Entity Ranking track
2006 English Wikipedia (XML),
INEX 2009 Wikipedia collection (XML,
annotated with YAGO classes)

Explore the direct retrieval of entities as
a way to solve information needs, either
based on a keyword query or a multiple
entity query.

Linked Data track Wikipedia-LOD v1.1, Wikipedia-LOD v2.0 Explore retrieval techniques over a combi-
nation of text and linked data.

with document-level relevance [248, Table 13], we found values of MAP ranging
from 0.3177 to 0.4294.

entity ranking track The Entity Ranking track ran from 2007 to 2009, offering
two different tasks to their participants: (i) the Entity Ranking task, where the
query was expressed in natural language; and (ii) the List Completion task, where
the query was expressed as a set of example entities. Both tasks returned a list of
ranked entities, based on either a text query or an entity query. This track relied on
the same Wikipedia collections as the Ad Hoc tracks occurring in the corresponding
years. This is an advantage for exploring general retrieval models, since a universal
ranking function could rely on an indexing of the same collection to be assessed.
Using as reference the last occurrence in 2009, we found values of xinfAP ranging
between 0.082 and 0.517 for the Entity Ranking task, and between 0.100 and 0.520
for the List Completion task.

linked data track The Linked Data track ran in 2012 and 2013. It focused on
combining the information from textual Wikipedia articles structured as XML, with
associated semantic relations from RDF properties based on DBpedia and YAGO2.
Three tasks were considered for the Linked Data track: (i) the Ad Hoc Retrieval
task, similar to the prior Ad Hoc track, but using leaf topics from a three-level hier-
archy generated based on random topics using Google suggestions; (ii) the Faceted
Search task, which also relied on the same three-level hierarchy using the non-leaf
topics; and (iii) the Jeopardy task, where topics provided a clue, a keyword query,
and a SPARQL query proposing a full-text search operator FTContains that was not
supported by SPARQL. For the Jeopardy task, participants were motivated to pro-
pose solutions for indexing RDF and textual content, a goal that we also explore in
this thesis by proposing graph-based general representation models. Using as refer-
ence the last occurrence in 2013, we found values of MAiP ranging between 0.1302
and 0.3128 for the Ad Hoc track over the Jeopardy topics, and between 0.7010 and
0.7491 for the Jeopardy task.

Table 2.5 provides a summary of the most relevant INEX tracks, their datasets and
mission, in the context of entity-oriented search. In this doctoral work, we focus on
proposing a general representation and retrieval model for entity-oriented search
tasks. As such, it is of special interest to use a common test collection that provides
relevance judgments for multiple tasks. This is the case of the datasets used in
the Ad Hoc and Entity Ranking tracks. In particular, the INEX 2009 Wikipedia
collection is used in both tracks, providing relevance judgments for three entity-
oriented search tasks, while being easily accessible online.
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Table 2.6: Characterizing the entity tracks in TREC and INEX by their input and output.

Input Output (entities)
Track Task Keywords Source

entity
Example
entities

Target
entity type

Relation Homepages Linked
Data URIs

Wikipedia
pages

TREC REF

ELC

INEX ER

LC

2.3.3.3 Comparing the entity tracks in TREC and INEX

The entity tracks from both TREC and INEX contain similar tasks, that rely on a
very similar set of input and output elements. We analyze the definition of each
task, as provided by its first occurrence in the respective overview documents.

Balog et al. [70] described the Related Entity Finding task, from the TREC Entity
track, as follows:

Given an input entity, by its name and homepage, the type of the target entity,
as well as the nature of their relation, described in free text, find related entities
that are of target type, standing in the required relation to the input entity.

In the 2011 occurrence, linked open data URIs were used to replace homepages in
the representation of input entities. In 2010, the Entity List Completion task, from
the TREC Entity track, was also introduced [69] and defined as follows:

Given an information need and a list of known relevant entity homepages, re-
turn a list of relevant entity URIs from a specific collection of Linked Open
Data.

INEX also provided two tasks in their Entity Ranking track. In 2007, Vries et al. [68]
introduced the Entity Ranking task, defining it as follows:

The motivation for the Entity Ranking task is to return entities that satisfy
a topic described in natural language text. [. . . ] An Entity Ranking topic
specifies the category identifier and the free-text query specification. Results
consist of a list of Wikipedia pages [. . . ].

Also in 2007, they introduced the List Completion task, from the INEX Entity track,
defining it as follows:

In the List Completion task, instead of knowing the desired category (entity
type), the topic specifies between one and three correct entities (instances) to-
gether with a free-text context description. Results consist again of a list of
entities (Wikipedia pages).

Table 2.6 organizes the definitions of the previous four tasks, from TREC and
INEX, in a comprehensive manner. We identify the input and output elements so
that it becomes clear what each task has in common. This information is particularly
helpful in distinguishing between the TREC and INEX versions of the entity list
completion task, but also in understanding the commonalities between all tasks.
We consider such approach to be a fundamental step when designing a general
model in any area of information retrieval. As expected, the output for all task
is a ranking of entities, although different entity representations are used, either
relying on their homepages, a URI identifying the entity in a knowledge graph, or
a Wikipedia page about the entity. Regarding input, both TREC tasks rely on a
source entity, a target entity type and a relation, while both INEX tasks rely on a
keyword query instead. Both entity list completion tasks (TREC ELC and INEX LC)
take advantage of example entities that can be used as relevance feedback to further
specify the information need. Almost all tasks rely on a target entity type, with the
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exception of INEX LC that only relies on the example entities, as an alternative to
the target entity type. Despite the different inputs that each task takes, they have
a lot in common, if we increase the abstraction level, as both attempt to reach and
rank entities, either through free-text or an entity identifier, providing a greater or
lesser level of restrictions through examples, target types or relations.

2.4 discussion
In this section, we present several observations, identifying possible trails leading
to the future of graph-based entity-oriented search. We end the section with an
overview on the overall classes of graph-based models presented in this survey.

2.4.1 Observations

We present several remarks surrounding graph-based entity-oriented search, its
relation to semantic search and the exploration of higher-order dependencies
with hypergraphs, proposing future directions towards hypergraph-based quantum
search1.

The relation between entity-oriented search and semantic search

One particular source of confusion is the definition of semantic search and how
it relates to entity-oriented search. Most of the work we reviewed either refers
to semantic search as document retrieval leveraging entities, or as entity retrieval
over linked data. In its broader definition [62, Def.1.6], semantic search subsumes
entity-oriented search. However, when considering any of the described tasks, we
might say that semantic search is instead subsumed by entity-oriented search. In
practice, detaching the semantic search classification from any specific task might
be the most adequate approach, thus promoting the use of the broader and more
abstract definition, and instead more clearly describing the tasks as ad hoc docu-
ment retrieval and ad hoc entity retrieval, respectively. In this survey, we complied
with the definitions proposed by Balog [62], except when the cited paper specifically
mentioned a semantic search task, in which case we clearly stated which definition
the authors adhered to.

What is and isn’t a graph-based model?

We defined graph-based models as any approach that relied on a graph, at whichever
stage of the process. This included graphs for representing:

• Text (e.g., linking terms within a window, or with similar embeddings);

• Entities, their attributes and relations (i.e., knowledge graphs);

• Relations between documents (e.g., hyperlinks, similarity).

While many probabilistic models might also be considered graph-based, namely
Bayesian or Markov networks, we opted to classify them as probabilistic, unless
they were clearly operating over a specific graph (e.g., web graph, similarity graph).
PageRank might be the most evident example of a probabilistic graph-based model,
since it is clearly applied to the web graph to rank web pages by importance. This
is why it was relevant to cover overall probabilistic models, before delving into
graph-based models.

1 Please note that quantum approaches to information retrieval have already been explored in the past,
for instance with the quantum language models by Sordoni et al. [249]
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As an area, graph-based entity-oriented search still has a lot of unexploited po-
tential, in particular regarding approaches developed in network science. This in-
cludes PageRank, which as been abundantly used, but also other centrality metrics
like closeness or betweenness, as well as community detection or motif discovery.
Graph connectivity can be studied from three main perspectives: microscale (node
or edge properties), mesoscale (community or motif level) and macroscale (global).
There are still many unexplored approaches, at all scales, that might be useful to bet-
ter understand information in the context of search (e.g., graphlet-orbit transitions
as a way to establish graph similarity [250]).

From binary dependencies to higher-order dependencies

A current trend in machine learning is the application of tensors for representing
higher-order dependencies, particularly popularized by Google’s TensorFlow [251].
Similarly, hypergraphs are able to elevate the expressiveness of a graph’s binary
dependencies to higher-order dependencies. In Section 2.2.7, we have seen that
there some hypergraph-based approaches for indexing, representing and querying
documents. However, there hasn’t been much work specifically directed at entity-
oriented search. We argue that further exploring hypergraphs, without falling back
to the domain of graphs, might lead to useful and novel strategies to better solve
information needs. A possible approach is the application of PageRank to “knowl-
edge hypergraphs”, where a random surfer would, at each step, randomly select a
hyperedge and then randomly select a node from that hyperedge [55]. As the com-
plexity of the hypergraph increases, particularly for memory-based hypergraphs
(i.e., that explicitly store information statements), even random walk based ap-
proaches become inefficient for real-time computation. However, we know that
random walks in graphs can be modeled using Markov chains, which are stochastic
models whose simulation is being studied in quantum computer [252]. In turn, im-
plementing random walks in hypergraphs using a quantum computer would also
require a Markov process to be defined over a hypergraph [253]. We also argue
that, for this reason, the complexity of such models and the overall predicted ineffi-
ciency should not be reasons to discard it as a viable approach, worthy of study. It
is this holistic view, leading to general models for information retrieval, based on
hypergraphs, that we introduce in this thesis.

2.4.2 An overview on entity-oriented search approaches

Entity-oriented search is a naturally heterogeneous area, where documents and enti-
ties are combined to better solve the information needs of the users. When querying,
users can take advantage of keyword or natural language queries, as well as entity
queries, obtaining results that can either include documents, entities, or both. How-
ever, techniques for document and entity representation have been quite disjoint,
with the inverted index taking the lead to represent multi-field documents, and the
triplestore taking the lead to represent entities, their types, attributes and relations.
Some of the first approaches to tackling entity-oriented search tasks, were based
on translating the problem to the domain of classical information retrieval. Please
refer to Table C.1 for an overview of these approaches, based on virtual documents,
combined data and probabilistic graphical models. Other approaches integrated in-
formation from documents and entities based on learning to rank models. That way,
signals from different representations (e.g., inverted index and triplestore) could be
combined based on a learned ranking function, trained for instance using a support-
vector machine or a neural network. Table C.2 can be used as a reference for the
learning to rank models that we covered, illustrating semantic-driven, virtual docu-
ment, and representation learning approaches.

Graph-based models can also be used as a way to integrate information from doc-
uments and entities, harnessing techniques developed through years of research
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on information retrieval and network science (e.g., PageRank [113]), as well as
graph-based representations developed individually for either type of data (e.g.,
graph-of-word [16] for documents and RDF1 for entities). While graphs have been
prevalent in information retrieval, using them to solve the representation mismatch
between documents and entities is fairly recent. Table C.3 provides a reference
for graph-based approaches, both general and specific to entity-oriented search. In
particular, we covered general link analysis approaches. We also covered text as a
graph, which, despite no entities being considered, provided a common ground for
integration with entity graphs. We then covered knowledge graphs and how they
are built and used for document and/or entity search. We examined text to entity
graph approaches, where information extraction was used to acquire a structured
graph to represent the document by its entities and relations. We then covered
graph matching approaches, where a query graph is matched against subgraphs
in an entity graph. Finally, we considered hypergraph-based models, with poten-
tial applications to entity-oriented search, and we closed with random walk based
models, that are based on PageRank adaptions to an entity-oriented context.

Table 2.7 provides a comprehensive view of the surveyed approaches for each of
the three models — classical IR, learning to rank, and graph-based models — along
with the tasks that they support.

The four main entity-oriented retrieval tasks that we considered were:

• Ad hoc document retrieval (leveraging entities);
• Ad hoc entity retrieval;
• Related entity finding;
• Entity list completion.

Other related entity-oriented and semantic retrieval tasks included:

• Sentence retrieval;
• Answer tree ranking;
• Attribute retrieval;
• Relation retrieval.

Knowledge graph related tasks included:

• Knowledge graph construction and modeling;
• Node importance;
• Node relatedness;
• Graph partitioning.

And we also included:

• Topic modeling;
• Text classification;
• Joint representation;
• Document representation.

As we can see, the task with the highest coverage was ad hoc entity retrieval.
Combined data approaches are able to support all of the four main entity-oriented
search tasks that we considered. The reviewed graph matching and random walk
based approaches are able to support three out of the four tasks, with ad hoc docu-
ment retrieval missing. However, graph-based models were used to represent text
as a graph, to structure knowledge bases, to convert text to an entity graph, and
in hypergraph-based approaches for ad hoc document retrieval. This supports our
thesis that the graph data structure might be viable as a joint representation model,
able to support the four retrieval tasks, and providing a framework to develop a
universal ranking function. One example of a basis for such a function would be
the heat kernel PageRank, which is able to measure node importance and node
relatedness, as well as a to obtain a graph partition.

1 https://www.w3.org/RDF/
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Table 2.7: Categorization of entity-oriented search approaches and applications.
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Virtual Documents [3, 4, 132] 3 3 3

Combined Data [74, 123, 128,
130] 3 3 3 3 3

Probabilistic Graphical Models [124–126] 3 3

Cluster Hypothesis [73] 3
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143]
3 3 3

Virtual Documents [144] 3

Representation Learning [86] 3
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Link Analysis [113, 149, 151,
162–165, 169] 3 3 3

Text as a Graph [15, 16, 171] 3 3 3

Knowledge Graphs
[54, 172, 174–
176, 179, 185,
186, 254]

3 3 3 3 3

Text to Entity Graph [187, 189] 3 3

Entity Graph to Tensor [75] 3

Graph Matching [57, 58, 196,
198, 199] 3 3 3 3

Hypergraph-Based [14, 76, 103,
203, 204] 3 3 3 3

Random Walk Based [65–67, 72,
238, 239] 3 3 3 3

2.4.3 An automated analysis of the bibliography

We carried an automated analysis of the literature collected during the state of
the art survey process. We prepared a Jupyter notebook based on the R kernel1

to derive several statistics and plots from the BibTeX file included in this disserta-
tion, and from several entries added to the doctoral wiki about a subset of selected
publications (see Section 3.2 for further details on this systematic documentation
approach).

We first built two CSV files, one by parsing the BibTeX file and another one
by scraping the doctoral wiki pages within the phd:bibliography namespace. Each
generated CSV file contains the following fields, which are empty when unavailable:
title; author (multiple authors were separated by ‘|’); year; conference; core (conference
rank based on CORE 2018 data); journal; scimago_h_index, scimago_sjr and scimago_-
quartile (journal h-index, SJR and SJR quartile, as extracted from SCImago 2018

data); institution; publisher; and review (only available for some of publications in the
doctoral wiki).

In the BibTeX file, we used simple heuristics based on common expressions to
obtain the conference name from the booktitle field corresponding to the proceedings
entry. We then used the Jaccard index to match the conference name with an entry
in CORE 2018, in an attempt to normalize it. We also used this approach to obtain
the core ranking and the SJR quartile for all conference and journal entries from both
BibTeX and wiki bibliographical data. In the following two sections, we present the
results that we obtained.

2.4.3.1 BibTeX based statistics

According to Table 2.8, we our analysis of the BibTeX file covers 499 publications,
with an average of 2.28 authors, out of 1,140 distinct authors. Publications range
from 1847 to 2019, covering 182 conferences with ranks between A∗ and C, as well
as 123 journals with SJR from 0.131 to 16.345 and h-indexes from 12 to 1,096, 8

1 https://irkernel.github.io/
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Table 2.8: BibTeX: Publication statistics.

Number of Publications 499

Number of Authors 1,140

Authors per Publications 2.28

Year Coverage 1847–2019

Number of Conferences 182

CORE 2018 Coverage A*–C
Number of Journals 123

SCImago SJR 0.131–16.345

SCImago H-index Range 12–1,096

Number of Institutions 8

Number of Publishers 42

Gerhard Weikum

Giovanni Tummarello

Oren Kurland

David F. Gleich

Renaud Delbru

Roi Blanco

Jamie Callan

W. Bruce Croft

others

Krisztian Balog
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Figure 2.1: BibTeX: Top 10 most cited authors.

institutions (usually universities associated with master or doctoral theses), and 42
publishers.

Figure 2.1 shows the number of papers for the top 10 most cited authors (ignoring
repeated citations per paper). In that list, we can identify several well-known au-
thors from relevant areas to this thesis. Among them, we find Krisztian Balog, who
has been distinguished with the Karen Spärck Jones award for his scientific con-
tributions to information retrieval, which were greatly focused on entity-oriented
search [62] and evaluation [246]. We also find W. Bruce Croft who has put for-
ward several innovative and central ideas like language models for information
retrieval [35], a reflection on the similarities of information filtering and informa-
tion retrieval [87], or the modeling of term dependencies through Markov random
fields [120] or query hypergraphs [14]. Jamie Callan was considered for his contri-
butions with the Lemur toolkit [255] and INQUERY retrieval system [256], to which
W. Bruce Croft also contributed. Callan has also more recently worked on with
Chenyan Xiong, developing work on joint representation models for words and en-
tities [257, 258], as well as for entity-oriented search using learning to rank [144],
even contributing with a test collection based on DBpedia [184]. Roi Blanco has
contributed with the groundwork for graph-based information retrieval, propos-
ing several approaches for modeling documents as graphs and computing term
weights from this representation [15]. David F. Gleich has done strong contributions
in the area of PageRank, both providing an excellent survey on the subject [155],
and proposing the Multilinear PageRank [114] as a higher-dimension generaliza-
tion of PageRank applicable to tensors. Renaud Delbru has also contributed with
PageRank approaches, applied to entity-oriented search, or more specifically the
web of data [72, 259]. He was also one of the creators, along with Balog and
Tummarello (also on the top 10), of the Sindice Dataset [244], an historical test
collection from entity-oriented search that is no longer available sensibly since the
creation of the SindiceTech startup company. Oren Kurland explored the cluster hy-
pothesis for entity-oriented search [73], as well as document retrieval using entity-
based language models [260], or Markov random fields applied to entity-oriented
search [124]. He also explored PageRank with language models [261]. Finally, Ger-
hard Weikum was involved in the creation of the YAGO ontology [95], as well entity
disambiguation tasks [262, 263] and RDF graph querying approaches based on lan-
guage models [264].

Figure 2.2 shows the distribution of cited literature over the publication years
(left), as well as the top most cited years (right). As we can see, there are a few
outliers that include citations from the 1800s, however research is mostly focused
on the first and second decade of the 2000s, with 2012 and 2007 being the top two
cited years, covering work about graph-based approaches, entity-oriented search
and the semantic web.

Figure 2.3 shows the top 10 most cited conferences along with the distribution of
all ranked conferences according to CORE 2018. As we can see, the top 3 confer-
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Figure 2.2: BibTeX: Publications distribution per year (top 5 years on the right).
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Figure 2.3: BibTeX: Top 10 most cited conferences (CORE 2018 rank distribution on the right).

ences included SIGIR (conf.), which is the main conference in information retrieval,
with A∗ rank, CIKM, which is also a relevant conference, with A rank, that cov-
ers information retrieval as well as knowledge management topics, both central to
this doctoral work, and WWW, with A∗ rank, which covers topics like link anal-
ysis or semantic web aspects like RDF, microformats or the YAGO and Wikidata
knowledge bases. As we can see on the core ranking distribution, most of the cited
work is from conferences with A∗ and A ranking, with only a few B and C rank
conferences.

Figure 2.4 shows the top 10 most cited journals along with the SJR (SCImago Jour-
nal Rank) quartile distribution of all ranked journals according to SCImago 2018

data. As we can see, the most cited journal is the non-peer-reviewed Computing
Research Repository (CoRR) from arXiv. During our literature review process, we
prioritized the peer-reviewed versions of archived preprints, when available. Even
after carefully reviewing the BibTeX to account for this, the number of considered
citations from CoRR was still high. This is, in part, due to the fact that some of the
approaches that we explore in this thesis, namely based on hypergraphs, are still
quite novel and only now beginning to trend [105, 115, 201, 205]. In second place
we find ACM Transactions on Information Systems, with work on signature files, a
classical indexing model [26], or graph-based ranking approaches [158, 196]. Tied in
third and fourth places, we find Foundations and Trends in Information Retrieval,
along with Communications of the ACM. In fifth place, we find Internet Mathemat-
ics, because its in-depth work on PageRank. The remaining top journals cover the
information science, knowledge management, the semantic web, and information
systems. As we can see from the SJR quartile distribution, most of the cited journals
are in the first quartile (Q1), progressively including fewer journals as the quartile
moves from Q2 to Q4. This is the expected behavior, as higher quality content is
usually present in higher ranked journals.
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Figure 2.4: BibTeX: Top 10 most cited journals (SJR quartile distribution on the right).
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Figure 2.6: BibTeX: Top 10 publishers.

Figure 2.5 shows the 8 institutions mentioned in citations, usually regarding mas-
ter or doctoral theses, or technical reports. As we can see, we cited Stanford InfoLab
twice for their technical reports on the original PageRank [113] and approaches for
its efficient computation [229]. Figure 2.6 shows the top 10 cited publishers, with
ACM, Springer and Elsevier, as the most cited publishers, which is expected, given
their prevalence in computer science collections.

Finally, we also looked at the most frequent terms (unigrams and bigrams) used
in the titles of the cited publications, without highly common stopwords. While
most of the terms are quite predictable (e.g., search, entity, information retrieval, or
semantic), there are also some terms that are indicative of the particular interests in
this thesis, like pagerank, graph, or hypergraphs. While for this thesis, the analysis
we have presented so far is enough to illustrate the explored literature, it would
be interesting to extend this work, for instance considering a better approach than
term frequency to measure term importance in publication titles. Perhaps maximal
k-core extraction using graph-of-word would be and interesting approach [111].

2.4.3.2 Doctoral wiki based statistics

We used a DokuWiki instance for a systematic documentation of the work devel-
oped throughout this thesis (see Section 3.2 for further details). A part of this
doctoral wiki was dedicated to keeping reading sheets for reviewed literature. In
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Figure 2.7: BibTeX: Top 25 most frequent unigrams and bigrams in titles.

Table 2.9: Wiki: Publication statistics.

Number of Publications 119

Number of Authors 375

Authors per Publications 3.15

Year Coverage 1957–2019

Number of Conferences 28

CORE 2018 Coverage A*–C
Number of Journals 30

SCImago SJR 0.146–3.658

SCImago H-index Range 12–180

Number of Institutions 14

Number of Publishers 3

Alistair Moffat

ChengXiang Zhai

Christina Lioma

Chenyan Xiong

Jamie Callan

Justin Zobel

Laura Dietz

Michael Bendersky

W. Bruce Croft

Krisztian Balog
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Figure 2.8: Wiki: Top 10 most cited authors.

this section, we repeat the analysis carried over the BibTeX file, this time using
wiki information as the data source. Literature covered in the wiki represents a
focused selection of central contributions, that usually cover topics that are clos-
est to this thesis. This means they are different from those in the BibTeX, greatly
overlapping, almost as a small subset, but also containing unused work collected
during the initial stage of exploration. Additionally, the wiki does not include most
of the well-known references from information retrieval, since these were not very
often examined in detail due to having been already explored in the past, or con-
tinuously consulted throughout this work. Our analysis focuses particularly on
the bibliographic differences between the BibTeX and the wiki, and it reflects the
interest and relevance assigned to the selected publications.

As we can see in Table 2.9, the doctoral wiki contains only 24% of the publications
in the BibTeX, which corresponds to 119 reading sheets. The number of considered
authors was reduced to 375, but the average number of authors per publications
slightly increased to 3.15. The oldest publication added to the wiki was from 1957,
corresponding to Luhn’s work that led to first statistical approaches for informa-
tion retrieval [8]. In the wiki, we covered 28 conferences, from ranks A∗ to C, 30

journals, with SJR ranging from 0.146 to 3.658 and h-index ranging from 12 to 180,
14 institutions, and 3 publishers. The increased number of institutions in the wiki,
when compared to the BibTeX, can be explained by the fact that not all reviewed
literature was necessarily cited.

Figure 2.8 shows the top 10 most cited authors in the wiki. When compared to
the BibTeX, there are three authors in common, Krisztian Balog, W. Bruce Croft, and
Jamie Callan, which further reinforces their relevance. Additionally, we find other
central authors to the topic of this thesis, namely Michael Bendersky, who proposed
the query hypergraph model, Laura Dietz, who proposed the ENT Rank model, also
based on a hypergraph, or Chenyan Xiong, who focused on joint representations
for words and entities, and unified models for query entity linking and ad hoc
document retrieval (leveraging entities).
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Figure 2.9: Wiki: Publications distribution per year (top 5 years on the right).
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Figure 2.10: Wiki: Top 10 most cited conferences (CORE 2018 rank distribution on the right).

Figure 2.9 shows a similar behavior for the yearly distribution of publications
in the wiki, when compared to the BibTeX. However, there is a clear bias towards
recent content, with 2017 corresponding to the year with the highest number of
publications.

Figure 2.10 illustrates the top 10 conferences corresponding to publications added
to the doctoral wiki. We find similarities between the BibTeX and the doctoral wiki
entries, with SIGIR (conf.) and WWW still in the top 3, but we also find KDD as
a new entry to the top 3. The increased relevance of ECIR and ACL also become
more evident, since they are now tied with CIKM and WSDM. We also notice the
entrance of “Balisage: The Markup Conference” to the top 10, a slightly obscure
and unranked conference, where we found interesting approach at modeling struc-
tured documents through a hypergraph [76]. Regarding the core ranking, we find
a slightly stronger bias towards publications from A∗ conferences and a relative
decrease of publications from C ranking conferences.

Figure 2.11 illustrates the top 10 journals corresponding to publications added to
the doctoral wiki. There is a clear bias towards “Foundations and Trends in Informa-
tion Retrieval”, although in practice we only reviewed one of these publications [92],
finding others interesting for future reference and review. Tied in the first position,
we find arXiv, which is analogous to the CoRR entry from the BibTeX (Figure 2.4),
since all articles are classified as Computer Science. However, this entry aggregates
several publications that were later published in peer-reviewed conferences, and
some of them were even renamed. While we updated the BibTeX to reflect this new
information, the doctoral wiki only retained the information available at the date
of review. Tied, in second place, we find JASIST (Journal of the Association for
Information Science and Technology), which increased in relevance for wiki entries,
along with the Information Retrieval Journal, and the ACM Computing Surveys.
The SJR distribution based on SCImago data from 2018 shows a similar behavior to
the BibTeX, with most of the journal publications being in the first quartile. On the
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Figure 2.11: Wiki: Top 10 most cited journals (SJR quartile distribution on the right).
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Figure 2.12: Wiki: Top 25 most frequent unigrams and bigrams in titles.

other hand, the number of journals from the remaining three quartiles is negligible,
showing that only high quality publications were selected to be reviewed in the
wiki.

Figure 2.12 shows the top 25 most frequent terms (unigrams and bigrams) used
in the titles of articles with entries in the doctoral wiki. As we can see, they are
quite similar with the previously analyzed terms for titles in the BibTeX file (cf. Fig-
ure 2.7), however top terms reflect more accurately the domain of research, includ-
ing information retrieval at a higher (relative) frequency, as well as knowledge, entity,
and graph. We also find that bigrams like entity linking and entity search have now
entered the top 25, and pagerank has significantly decreased in rank according to fre-
quency. Overall, we find that the keywords show a better alignment with the area
of research, which is information retrieval, and particularly entity-oriented search.

0

100

200

300

se
ar

ch
en

tity

en
titi

es
qu

er
y

inf
or

m
at

ion ca
n

tex
t

kn
ow

led
ge

ba
se

d
da

ta

do
cu

m
en

t

qu
er

ies

re
tri

ev
al e 

g

m
od

el

gr
ap

h
te

rm

do
cu

m
en

ts

se
m

an
tic

us
ing

us
ed

ind
ex

lan
gu

ag
e

inv
er

te
d
te

rm
s

Term

F
re

qu
en

cy

Figure 2.13: Wiki: Top 25 most frequent unigrams and bigrams in reviews.
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Figure 2.13 illustrates the top 25 most frequent terms (unigrams and bigrams)
used in the 20 reading sheets containing review notes. When comparing Figures 2.7
and 2.12, we find new terms that help us understand the literature on the topic, in-
cluding query, text, biased, document, index, or language. Apart from these new terms,
overall we find a similar distribution of terms, focused on search, entity/entities, and
knowledge. We also include several examples in our notes, which we can confirm
through the frequent usage of e.g.

2.4.4 A view of the future

While no explicit solutions have been put forward by the scientific community so
far, the literature shows that graph-based approaches have the ability to support
the definition of general models for information retrieval. We propose this could be
done through a joint representation of units of information, and a universal ranking
function reliant on that representation.

Looking at the future, graph-based models for entity-oriented search have the po-
tential to represent both corpora and knowledge bases in a unified manner. When
compared for instance with linear or log-linear models or learning to rank ap-
proaches, which can also consider a mix of signals from text and entities, graph-
based models can go well beyond the integration of weights. That is, a well de-
signed model should be able to harness the combined power of information within
structured and unstructured data, at a low level of granularity, to better solve the
user’s information need. If properly abstracted as nodes or edges in a graph, text
and entities become identical units of information, transforming into clues whose
connections can be used to gather the elements that answer a user’s question. Either
way, not only can graphs provide a more unified approach to ranking, they can also
be used to implement multiple retrieval tasks, without the need for a different com-
bination of signals or a newly trained model, given the large number of individual
tasks that can already be solved with similar graph-based models.
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summary
With the increasing relevance of entity-oriented search, it makes sense to look at
graph-based models for information retrieval in a new light. We started this survey
by providing context, presenting some historical perspective along with basic con-
cepts and models from information retrieval. We covered general entity-oriented
search approaches and general graph-based approaches, as well as a combination
of both. Given the growing potential of the area, this survey focused on identifying
a diverse set of representative methods, rather than doing an exhaustive research
of all existing applications in each category. Our goal was to provide a map of
opportunities in graph-based entity-oriented search, supporting not only this doc-
toral work, but also the future research on general models and universal ranking
functions for information retrieval.

We surveyed the usage of classical information retrieval models, as well as learn-
ing to rank models, for entity-oriented search. Then, we provided a wide cov-
erage on graph-based models, introducing classical link analysis approaches, like
PageRank, HITS and kernel-based methods. We also described approaches for rep-
resenting text as a graph, capturing discourse properties like context (e.g., graph-
of-word). We described knowledge graph construction and modeling, along with
its applications, either for improving ad hoc document retrieval or for supporting
ad hoc entity retrieval. We studied approaches based on extracting entity graphs
from text and using them as a complement for the representation and retrieval
of documents. We also covered the usage of tensors to represent entity graphs
and to obtain entity embeddings. We explored graph matching for querying with
graphs — usually generated from natural language queries. We examined general
hypergraph-based models for document representation, joint representation and
ad hoc document retrieval, showing the potential for applications in entity-oriented
search as well. We closed the graph-based section with random walk based models,
mostly derived from PageRank and applied to entity graphs over a given context
(e.g., web graph, dataset). We also provided a section on evaluation forums and
datasets, useful for assessing a wide range of entity-oriented search tasks. Finally,
we presented a discussion that covered several individual observations, providing
an overview on entity-oriented search approaches, commenting on the results of
an automated bibliographical analysis carried during the literature review process,
and closing with a view of the future leading to the contributions in this thesis.
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The scientific method has been used since the 17th century. Information retrieval
research follows this empirical cycle, frequently relying on community resources
like evaluation forums, public test collections, or online evaluation approaches that
integrate with real-world systems. Experiments either involve the measurement
of effectiveness or efficiency, frequently focusing on a single one of these aspects.
Methodology-wise, there is also a lot to be said about the documentation process
of the research process itself, including reviewed literature, carried experiments,
generated or exploited datasets, or even produced communications.

The structure of this chapter is organized as follows:

• Section 3.1 covers the research methodology for information retrieval, based
on the empirical cycle, that we follow in this thesis.

• Section 3.2 provides an in-depth description of our systematic approach to
documenting the doctoral work, based on a wiki content management system.

3.1 empirical research based on test collections
Robertson [265] has described a methodology for information retrieval research
compiled from 20 years of history. He covered central concepts such as the existence
of a system, documents and requests, and the measurement of performance based
on relevance judgments assigned by human evaluators. Traditionally, the area of
information retrieval has been assessed through empirical demonstrations based on
the comparison of models over test collections [240]. Evaluation forums like TREC
or INEX have, over time, provided several tracks, with their own test collections,
focusing on particular challenges of information retrieval, such as entity retrieval
or question answering (see Section 2.3.3.1). Each collection usually contains a set
of documents and/or entities to be indexed, a set of topics expressing information
needs, and a set of relevance judgments for each topic and associated documents
selected from the collection. Topis usually provide a short title, a description, and
sometimes also a narrative. Other entity-oriented search tasks, like entity ranking
(e.g., from TREC 2018 News track), or list completion (e.g., from INEX 2009 XML
Entity Ranking track) might also require topics containing sets of entities or target
entity types. Relevance judgments, associated with topics, are usually expressed as
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Observa�on Induc�on Deduc�on Tes�ng Evalua�on

Empirical	Facts
-	En��es	are	relevant	in	search
(Bau�n	&	Skiena,	2007).

-	Text	and	knowledge	are
frequently	combined,	but
represented	separately,	which	is	a
limita�on	(Bast	et	al.,	2016).

-	Graphs	support	the
representa�on	of	knowledge
(Sowa,	1992).

-	Graphs	support	the
representa�on	of	text	(Rousseau	&
Vazirgiannis,	2013).

Hypothesis
Text	and	knowledge	can	be
represented	in	a	common	data
structure,	without	the	need	for
virtual	documents	that	represent
en��es	in	an	inverted	index,	or	the
need	to	preprocess	text	and	map	it
to	a	knowledge	graph.

The	graph-of-word	(Rousseau	&
Vazirgiannis,	2013)	can	represent
text	based	on	a	graph.	RDF	already
represents	knowledge	using	a
graph.	It's	probable	that	the	two
can	be	merged.

Outcome
A	unified	graph-based	model	of
text	and	knowledge	will	unlock
novel	weigh�ng	strategies	and
improve	retrieval	effec�veness.

Test	Collec�ons
-	INEX	2009	Collec�on:
		-	Combined	Data;
		-	Topics;
		-	Relevance	Judgments;
		-	Covers	mul�ple	tasks:
				-	Ad	hoc	document	retrieval;
				-	Ad	hoc	en�ty	retrieval;
				-	En�ty	list	comple�on.

-	Obtain	search	results	for	topics.

Metrics
-	Compare	search	results	with	the
ground	truth	provided	by	relevance
judgments.

-	Calculate:
		-	MAP
		-	P@n
		-	GMAP
		-	NDCG@p

-	Compare	with	baseline	models.

Collect	small
observa�ons.

Infer	larger
theory.

Propose
consequences
of	theory.

Establish	a
tes�ng
approach.

Measure
performance.

Figure 3.1: Empirical cycle applied to graph-based entity-oriented search.

grades between zero and three, assigned by human evaluators to each document,
based on its relevance to the given query.

Test collections are a fundamental part of the empirical cycle and, in particular
for this thesis, the requirements are demanding. On one side, we need to consider
collections with documents, as well as information about entities (i.e., we require
combined data). On the other side, in order to explore the general representation
aspect provided by graph-based models, we also require relevance judgments for
multiple retrieval tasks over the same test collection. Figure 3.1 instantiates the
empirical cycle for the problem of improving retrieval effectiveness within entity-
oriented search tasks, over graph-based retrieval models. The cycle includes the col-
lection of small observations (empirical facts), an induction process where a larger
theory is inferred (an hypothesis is formed), a deduction process where particu-
lar consequences of the theory are proposed, a testing stage (the experimentation
strategy), and an evaluation stage (the interpretation of statistical evidence gathered
during the testing stage).

3.1.1 Observation, induction and deduction

The main motivation for this doctoral work had its origin in a simple observation,
which is described in Figure 3.1 as the first step of the empirical cycle. While
doing prior research in entity-oriented search, we had noticed the disconnect be-
tween unstructured data from corpora and structured data from knowledge bases.
Through induction we then formulated the hypothesis that a graph could solve the
heterogeneity problem of representing documents and entities, and their relations,
thus providing a joint indexing strategy that would be beneficial for harnessing all
available information and providing a means for cross-referencing information in-
dependently of their representation. We deduced that, through such a graph-based
model, we would be able to unlock new possibilities for cross-referencing informa-
tion, providing novel ranking strategies that could improve retrieval effectiveness.

During the course of this work, and following the first iterations of the empirical
cycle, we observed that the graph-based solution we proposed would scale poorly,
regarding the growth in number of edges in relation to the number of nodes. Ac-
cordingly, we proposed a new hypothesis, that a hypergraph could be a solution to
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3.1 empirical research based on test collections

Table 3.1: Baselines for evaluating entity-oriented search tasks.

Task Index Ranking

Ad hoc
document retrieval

Lucene index with doc_id, title and text from original
document.

TF-IDF / BM25k1=1.2,b=0.75

Ad hoc
entity retrieval

Lucene index with uri, label and text, where text con-
tains an entity profile built from all sentences in the
collection containing the entity label. Building the en-
tity profile depends on the index used for ad hoc doc-
ument retrieval, for retrieving documents containing
the entity label.

TF-IDF / BM25k1=1.2,b=0.75

Entity list
completion Same index used for ad hoc entity retrieval.

Query: concatenated entity pro-
files for all input entities, identi-
fied by their labels.
TF-IDF / BM25k1=1.2,b=0.75

reduce the number of edges, by grouping similar nodes and largely reducing the
number of (hyper)edges — instead of limiting our modeling approach to binary re-
lations, we focused on expressing n-ary relations instead (e.g., synonyms). We then
repeated the testing and evaluation stages and continued relying on the empirical
cycle throughout this work.

3.1.2 Testing and evaluation

In order to support the research and development, as well as the testing and evalua-
tion of innovative solutions for entity-oriented search (graph-based or not), we have
built a workbench called Army ANT, that we describe in Section 5.2. This system is
provided as an open source solution and as central code repository for this doctoral
work. It supports the full cycle of experimentation, including test collection reading,
indexing, searching, learning about the ranking function, and evaluating the system
by launching runs for multiple parameter configurations. Initial steps included the
implementation of an adapted version of graph-of-word model by Rousseau and
Vazirgiannis [16] along with the graph-of-entity model, that we propose as an alter-
native for combined data (Chapter 6).

While test collections can be used for offline evaluation, there are also options
for online evaluation. In particular, there is A/B testing [266], where different
groups of users are assigned to two different search engine versions, the original
and the experimental version. This enables the measurement of the impact of in-
troduced innovations. As an alternative, there is also team-draft interleaving [245],
which combines results from the original search engine with results from an ex-
perimental search engine, measuring the outcome as the ratio between clicks in
results provided by the experimental version (wins) and the total number of clicks
(wins+losses). The first approach (A/B testing) enables an assessment of any search
engine component, including the user interface, while the second approach only
measures the difference in quality of the ranking function. In this doctoral work,
we mostly focus on offline evaluation, but we also take advantage of team-draft
interleaving.

baselines Our tests involved issuing queries built from the provided topics, usu-
ally relying on the title of the topic, or the entities or target entity types, depending
on the task. In order to position our proposed graph-based models in regard to the
state of the art, for each change or tweak to the system, we always computed one
or more of the baselines described in Table 3.1, according to the task or tasks being
tested. Overall, we rely on simple baselines supported on Lucene indexes, using
TF-IDF and BM25 as the ranking functions.
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3.1 empirical research based on test collections

datasets During the initial development stage, we relied on a small collection
without qrels, that we used only for the manual testing of Army ANT and the
initial implementations of retrieval models. Wikipedia Relation Extraction Data
v1.01 was created by Culotta et al. [267] to experiment with probabilistic relation
extraction. As such, it provides passages for Wikipedia articles, annotating entity
mentions with their official Wikipedia page name and a relation between the entity
represented by the source article and the target annotated entity. As combined data,
this dataset provided text, entities and their relations. As such, it could be used
to create a graph, through the graph-based text and knowledge representations, al-
ready identified at the observation stage. We were able to build Army ANT around
this data, however, since no relevance judgments were available for entity-oriented
search tasks, we switched to INEX 2009 Wikipedia collection2 [112] as our main test
collection, which provided all the required relevance judgments for the different
tasks that required evaluation. In Chapter 4, datasets are described in further detail,
covering the subsets that we prepared, as well as the associated sampling strategies.

trec runs We also took advantage of the TREC evaluation forum to experiment
with our retrieval models, both taking advantage of offline and online evaluation. In
particular, we participated in TREC 2017 OpenSearch track [268], where team-draft
interleaving was used to compare graph-of-word [16] and graph-of-entity [269]. We
also participated in TREC 2018 Common Core track [270], where offline evaluation
based on the new TREC Washington Post Corpus3 was used to compare a text-only
version of the hypergraph-of-entity with a version that also contained entities and
relations. Further details about the TREC participations can be found in Chapters 6

and 9. The test collection used in TREC 2018 is described in Chapter 4.

metrics Our goal was to optimize effectiveness, while monitoring efficiency. We
did this by measuring the Mean Average Precision (MAP) and the Precision at a
cutoff of n (P@n), which we used as the main effectiveness indicators. Both met-
rics have a comprehensive definition and they provide the required granularity for
a retrieval model that is still in the design stage, as opposed to the fine-tuning
stage. Additionally, we included the Geometric Mean Average Precision (GMAP),
which we used as an indicator of outliers driving MAP up or down, given the
lower sensitivity of the geometric mean to outliers, as well as arguments against
comparing relative improvements of arithmetic means [271, §2.4]. Despite argu-
ments against using average precision, specifically regarding the fact that it is not
an interval scale [271], we decided to focus on this metric, not only because of its
comprehensive definition, but also because it provides results that are comparable
to past participations in evaluation forums, or to work relying on the same public
test sets. We also included the Normalized Discounted Cumulative Gain at a cutoff
of p (NDCG@p) in order to account for non-binary relevance grades, which some
relevance judgment files supply (e.g., for document retrieval, INEX 2010 Ad Hoc
track relevance judgments only provide binary relevance grades of 0 or 1, while,
for entity ranking and for list completion, INEX 2009 XER track provides relevance
grades of 0, 1 or 2). Table 3.2 describes the effectiveness metrics that we mentioned,
providing their aggregated formulas, using a normalized notation, for a set of topics
with relevance judgments.

In order to monitor efficiency, we simply measured indexing and search time. In
particular, we collected the average indexing time per document, as well as the total
indexing time for the collection. We also collected the average query time and the
total query time for a set of topics. Additionally, and specifically in the context of
graph-based models, we sometimes also used the relation between the number of
nodes and the number of edges as an indicator of efficiency. For example, when

1 http://cs.iit.edu/~culotta/data/wikipedia.html
2 http://inex.mmci.uni-saarland.de/data/documentcollection.html
3 https://trec.nist.gov/data/wapost/
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Table 3.2: Retrieval effectiveness metrics.

Metric Description Formula

MAP [272]

For each query q ∈ Q, with |L| returned results,
compute P@n for n = (1,2, . . . , |L|− 1, |L|) and
then calculate the average precision by summing the
P@n values and dividing by the total number of
relevant documents in the collection. Repeat this
for all queries and then aggregate using the mean.

MAP =
1

|Q|

|Q|∑
q=1

APq

P@n
Relative precision that accounts for the fraction of
R@n relevant documents within the top n results. P@n =

1

|Q|

|Q|∑
q=1

|Rq@n|
n

GMAP [273]

Same as MAP, but the geometric mean is instead
used to aggregate average precisions. Average pre-
cisions are still calculated using the arithmetic mean.

GMAP =

 |Q|∏
q=1

APq

 1
|Q|

NDCG@p [274]

DCG@p is computed for a query based on the sum
of the relevance grades affected by an exponential
decay factor from rank 1 to rank p. Normalization
is then achieved by ordering the relevance grades
in descending order and recomputing the IDCG@p
for that ideal ranking (hence the ‘I’), which becomes
the denominator in NDCG@p. The NDCG@p can
then be averaged over all queries.

DCG@p =

p∑
i=1

2ri − 1

log2(i+ 1)

IDCG@p =DCG@p, ri ∈ desc(R)

NDCG@p =
1

|Q|

|Q|∑
q=1

DCGq@p
IDCGq@p

considering the same collection, if we created a graph with 10 times more edges
than nodes and another one with 5 times more edges than nodes, we considered
the latter model to have the potential to be more efficient due to lower complexity.

3.2 systematic documentation
We relied on DokuWiki1 for documenting this doctoral work. We systematically or-
ganized information about literature, collections, and experiments, providing tem-
plates for reading sheets, collection descriptions, and experiment note-taking and
result archival. We thoroughly exploited links and backlinks, establishing relations
between authors or conferences and their publications, or collections and their men-
tions in other pages. We also linked subsets to their original dataset, or related
experiments among themselves.

In Section 3.2.1, we cover the literature review methodology, describing the read-
ing sheet creation process. In Section 3.2.2, we cover a lightweight approach to
documenting collections based on a description sheet template, which includes in-
formation about subsets and evaluation results taken from the literature. Finally, in
Section 3.2.3, we describe a note-taking and archival strategy for experiments.

3.2.1 Literature review for information retrieval

We relied on an exploratory literature review approach, focusing and refining along
the process, as concepts became clearer. We used academic search engines to issue
queries in an attempt to solve our information needs about entity-oriented search or
network science approaches that could be useful for graph-based models. Resulting
publications were selected by reading the title, the abstract, the conclusions, and
sometimes a part of the introduction, in this order. Selected publications were then
added to the DokuWiki, along with a list of specific goals in the form of to-do tasks,
to be reviewed in order of priority regarding ongoing research work, or based on the
overall relevance and informational value to the thesis. A reading sheet was created
for each publication, containing a standardized table of information, as well as
reading notes organized according to the structure of the sections of the publication.
We frequently included block quotes highlighting important information, and we

1 https://www.dokuwiki.org/
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always finished with a summary paragraph of the work. Next, we describe this
strategy in further detail, step by step.

1. Search Google Scholar1 and Semantic Scholar2 based on queries like:

• [ entity retrieval ]

• [ graph-based information retrieval ]

• [ entity-based ranking ]

• [ semantic search ]

• [ entity-oriented search ]

2. Follow Google Scholar alerts for queries like:

• [ “Entity-Oriented Search” OR “Entity Ranking” OR “Entity Search” OR “Entity Re-

trieval” ]

• [ intitle:“Semantic Search” ]

• [ intitle:PageRank ]

• [ text entity graph hypergraph ]

• [ “hypergraph embedding” ]

And Semantic Scholar alerts for the “Information Retrieval” topic.

3. Do a quality assessment, selecting publications based not only on the title,
abstract and conclusions, but also on whether they are indexed by well-known
bibliographic databases:

a) DBLP

b) ACM Digital Library

c) IEEE Xplore Digital Library

d) Scopus

e) Web of Science

4. Review priority publications on the broad subjects of the thesis, including
relevant surveys, and conference or journal articles, that cover relevant or
similar approaches (i.e., graph-based approaches to search, or the combination
of corpora and knowledge bases).

a) Each reviewed publication is added to a DokuWiki, and a reading sheet
is created in a page named with the lowercase, dash-separated title of the
publication, discarding non-alphanumeric characters.

b) Each reading sheet contains a table with links to author pages, a biblio-
graphic collection page (i.e., journal, conference, institution) and a year
page, following the same naming convention as described above.

c) Each author, collection and year page contain a list of all backlinks to that
page (i.e., all the entries by an author, in a collection, or published in the
given year). Optionally, these pages can also include relevant information
about the author, the collection or even the year (e.g., a summary of the
discoveries or state of the art in that year).

d) Below the reading sheet table, we replicate the publication’s sections and
take notes on each section during reading.

e) After reading a publication, we insert a written summary of the whole
publication below the reading sheet table (and above the notes).

1 https://scholar.google.pt/
2 https://www.semanticscholar.org/
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(a) Reading sheet.

(b) From the first author.

(c) From the second author.

(d) From the same conference.

(e) From the same year.

Figure 3.2: Systematic documentation of reviewed literature.

f) Links to reviewed publications are displayed in bold, while links to on-
going or short-term reviews are prefixed with a bold label for either
[In Review] or [To Review].

Figure 3.2 illustrates the type of content created during the review process.

5. Group selected publications into relevant subjects and briefly summarize all
publications, delving into more detail as deemed relevant.

a) Compile written summaries into a logical sequence.

b) Contextualize each publication in regard to the thesis.

wiki changes for phd:bibliography Given the nature of a wiki, we have ac-
cess to the changelog, which we analyzed for the phd:bibliography namespace, in
order to better understand the process of note taking during literature review. As
we can see in Figure 3.3, most of the activity is condensed around the beginning
of the doctoral work, around 2016/2017, progressively decreasing for 2017/2018,
where a more experimental stage began, and slightly increasing again at the begin-
ning of 2018/2019, carrying light activity up to 2020, the date of writing of this
thesis. Overall, this is what is expected from the research process. In the begin-
ning, we had less information about the topic of research, thus we were required
to research more. Then, there was enough information for experiments, leading to
a new, less intensive cycle of research and another stage of experiments. Nearing
the end of the work, we still follow the literature of the area closely, sometimes
complementing with additional publications or further researching historical topics
within the domain.
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Figure 3.3: Doctoral wiki changes over time for the phd:bibliography namespace.
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(a) Main description. (b) Evaluation from the literature.

Figure 3.4: Systematic documentation of the INEX 2009 Wikipedia collection.

3.2.2 Collections: description sheets, subsets and evaluations

We created a page in the collections section of the wiki for each dataset that we
used, created, or otherwise explored. In order to ensure consistency in the descrip-
tion, we prepared a template containing a table of metadata to be filled about each
collection, along with a longer textual description. The fields that we considered
were the following: Source, Paper, Date, and Size. We also added fields for statistics
specific to test collections within the domain of entity-oriented search: Documents,
Entities, Topics, and Assessments. For other types of data, these statistics were ig-
nored or replaced. For example, for network data, we used Nodes and Edges instead.
Figure 3.4a illustrates the template that we have just described, in its application to
the INEX 2009 Wikipedia collection.

Due to scalability issues, we also relied on multiple subsets of our main test
collection. Each subset was described in the wiki as any other collection, assigning
to the Source descriptor a link to the page of the original dataset, instead of a URL
to the source website or similar resource. Sampling strategies are further described
in Chapter 4, along with a list of all the generated subsets that we used.

Whenever they were available, we also included evaluation metrics found within
the literature, if applied to one of the entity-oriented search tasks that we listed
in Section 1.3.2, for the same dataset. This information is usually available in the
overview papers [68–70, 142, 247, 248, 275, 276] from the evaluation forums that
provided the test collection. Figure 3.4b shows the effectiveness evaluation metrics
for the ad hoc document retrieval task in INEX 2010 Ad Hoc track [248].

wiki changes for phd:collections We described seven datasets in the wiki,
categorizing them as Combined Data (four datasets), Networks (two datasets),
and Query Logs (one dataset). We also prepared five subsets of our main test col-
lection, INEX 2009 Wikipedia collection, which we describe in Section 4.1.1. Dataset
information was organized over time in the wiki as shown in Figure 3.51. As we
can see, the effort of providing basic dataset descriptions was low. At the begin-
ning of 2017/2018, we introduced the first significative amount of metadata, with
minor updates throughout the academic year. At the beginning of the 2018/2019

and 2019/2010 academic years, there were noticeable updates to the phd:collections
namespace, probably corresponding to evaluation results based on the documented
test collections, that we only added at a more final stage.

1 In order to make the volume of changes over time comparable, we used the same scale as Figure 3.3 for
all the doctoral wiki plots.
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Figure 3.5: Doctoral wiki changes over time for the phd:collections namespace.

3.2.3 Experiments: taking notes and archiving results

Following a similar philosophy to the literature review and collection description,
we also established a template for the documentation of experiments in the wiki.
Each experiment page contains a metadata table (Figure 3.6a) with the following
fields: ID (e.g., “Experiment 1”), Start date (e.g., “2017-10-24 16:38”), End date (e.g.
“Ongoing”), Why do it? (motivation; usually in the sequence of a previous experi-
ment), Main strengths (expected improvements), Main weaknesses (expected issues),
and Test collection (a link to a wiki collection page). One weakness of this approach
is the lack of structure for follow-up or sub-experiments, which we suboptimally
documented through research logs.

Each experiment also included a to-do list, a description table of the model ver-
sions explored (Figure 3.6d), and an evaluation section with performance metrics
for each of those versions. We also added tables to describe predicted or identified
challenges, dependencies that would block the execution of the experiment, and
trace logs from Army ANT’s ranking function learn mode, which are be described
in Section 5.2. Over time, the challenges and dependencies sections were mostly
deprecated in favor of the to-do list, and the archival of trace logs proved cumber-
some and with little utility, thus being increasingly ignored over time.

On the other side, the archival of results from Army ANT’s evaluation tasks
(Figure 3.6b) was particularly useful, for instance for verifying the calculation of
effectiveness metrics through trec_eval1. We stored a metrics summary file in
CSV and TeX formats, representing a table of runs and effectiveness metrics. When
downloading these table files from Army ANT, we used 10 decimal places and
included all available metrics and additional columns. We also stored a ZIP file per
run, containing additional detailed information, such as average precisions used in
the calculation of MAP, or efficiency statistics, such as average query time. We also
stored the output of index inspections, for instance covering information about the
number of paths established between documents for a given hyperedge type (e.g.,
synonyms and context).

Finally, we created a section for research logs (Figure 3.6c), where we added links
to wiki pages under the hierarchy of the current experiment. Each research log
entry represented a reflection on parts of studied models, possibly branching into
follow-up or sub-experiments.

wiki changes for phd:experiments Figure 3.7 depicts the experimental ac-
tivity over time. Most of the experimental activity, according to the doctoral wiki’s
changelog for the phd:experiments namespace, occurred during the academic years
of 2017/2018 and 2018/2019, with a few activity at the beginning of 2019/2020.
We can see that experimental activity peaked at the beginning of 2017/2018, con-
sistently decreasing, while interpolating with lower activity periods, and it also
peaked at the beginning of 2019, until it almost completely stopped. We also com-
pare the experimental activity with the literature reviewing activity (Figure 3.3). We

1 https://github.com/usnistgov/trec_eval
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(a) Main description.

(b) Evaluation results archive.

(c) Research log entries.

(d) Model versions considered for the experiment.

Figure 3.6: Systematic documentation of the hypergraph-of-entity experiments (detailed in-
formation about these experiments can be found on Chapters 7, 8 and 9).
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Figure 3.7: Doctoral wiki changes over time for the phd:experiments namespace.

find that both activity depictions fit in the continuity of time, with literature review
leading to experimental activity and complementing it, as expected.
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summary
In this chapter, we described the research methodology applied in this thesis. We
covered the empirical cycle based on test collections, that is so often employed
for offline information retrieval evaluation. We also covered online evaluation ap-
proaches, where we included A/B testing, as well as team-draft interleaving, out of
which only the latter was explored in this thesis. We presented details on the base-
lines for the different entity-oriented search tasks, we briefly introduced the specific
datasets that we relied on, as well as the TREC runs that we participated in, and we
listed and briefly described the effectiveness metrics that we used to evaluate the
tested models.

Another central element of our research methodology was the systematic docu-
mentation approach supported by a DokuWiki instance, that we prepared for this
purpose. In particular, we described the literature review methodology, including
the reading sheets that we created and added to the doctoral wiki, applied to a
limited selection of publications that required a deeper reading or benefited from
a more organized reviewing approach. We also described the structure we formu-
lated to store basic information about data collections, as well as the documentation
workflow applied to our experiments, which included a research log, an archive
of evaluation results, and information about the different model versions that we
tested. Finally, in each of the corresponding sections, we included statistics about
the changes made to the doctoral wiki over time, illustrating the flow of execution
of the detailed methodology.
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Information retrieval evaluation is traditionally based on test collections, many of
them prepared and provided through the collaboration of the community over eval-
uation forums (see Section 2.3 for more information on evaluation forums and
Section 3.1.2 for a better understanding on the testing and evaluation methodol-
ogy). Data can also be provided directly through web services, usually as a part
of an online evaluation endeavor. Moreover, during the research process, there are
newly created datasets, either as a byproduct of developed systems and experi-
ments, based on established collaborations, or simply to respond to specific evalua-
tion needs. Finally, there are also secondary datasets, that are used for small-scale
testing during software development, or for training auxiliary classifiers, to name a
few examples.

The structure of this chapter is organized as follows:

• Section 4.1 describes the test collections used to evaluate the performance
of retrieval models, either through a set of topics and relevance judgments
provided a priori, or through a set of topics used to generate results to be eval-
uated a posteriori, online and through team-draft interleaving. It covers INEX
2009 Wikipedia collection [§4.1.1], TREC Washington Post Corpus [§4.1.2], and
the data from the Social Science Open Access Repository used in TREC 2017

OpenSearch track [§4.1.3].

• Section 4.2 covers contributed datasets prepared throughout this thesis, and
specifically the Simple English Wikipedia Link Graph with Clickstream Tran-
sitions 2018-12 [§4.2.1], which we prepared to evaluate link analysis metrics,
like Fatigued PageRank that we propose in this thesis.

• Section 4.3 presents secondary or auxiliary datasets used for diverse tasks.
It covers Wikipedia Relation Extraction Data v1.0 [§4.3.1], which is a small
dataset that we used to support the development of Army ANT and the initial
retrieval models. It also covers the BBC Dataset [§4.3.2], which was used to
train a query classification model for supporting the query log analysis task
based on the two previous datasets.
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4.1 test collections
In this section, we describe the test collections used for the assessment of the graph-
based models that we introduce in this thesis (Chapters 6 and 7), against the pro-
posed baselines (Section 3.1.2). Each of the test collections that we considered con-
tains unstructured data in the form of text, as well as structured data representing
entity mentions and/or relations. This type of data is fundamental for the evalua-
tion of entity-oriented search systems, in particular to support the evaluation of the
four tasks that we previously identified (Section 1.3.2). A test collection also con-
tains a set of topics describing information needs, that can be used to issue keyword
or entity queries, depending on the task. Relevance judgments must be provided
for each of the assessed tasks, which represents an effort for human contributors.
One of the challenges in evaluating a general model for entity-oriented search is the
availability of assessment data for different tasks over a common collection. This is
why some of the test collections that we use are over ten years old. In the following
sections, we briefly describe each of the test collections that we considered, in order
of relevance to this work, from the most to the least relevant.

4.1.1 INEX 2009 Wikipedia collection

The INEX 2009 Wikipedia collection [112] is a snapshot of the English Wikipedia,
from October 8, 2008. It contains 2,666,190 articles in XML format with 101,917,424
XML elements. Documents were annotated with semantic information from the
2008-w40-2 version of the YAGO ontology, assigning labels based on one or mul-
tiple of the 5,800 available classes (e.g., person, movie, city). This resulted in a
dataset that requires 50.7 GiB of space when uncompressed, and 5.5 GiB when
compressed in four gzipped tar archives of 1.4 GiB each.

Despite being a 10-year-old test collection, INEX 2009 Wikipedia collection is still
one of the few datasets that simultaneously provides relevance judgments for ad
hoc document retrieval, ad hoc entity retrieval, and entity list completion. It is also
adequate for experimenting with a combination of unstructured and structured
data, since it contains both text, usually representing an entity, and links among
these entities. Furthermore, while we do not take advantage of it in this work, the
semantic annotations are also useful for identifying entity types, supporting for
example type queries [3, §2.1].

Knowledge bases like Wikipedia (semi-structured), DBpedia (structured), or Wiki-
data (structured) are frequently used to augment a corpus. A typical preprocessing
pipeline in entity-oriented search is to annotate documents through named entity
recognition and disambiguation, linking each entity to its entry in the knowledge
base. This can then be used to improve document, or entity retrieval. However,
when working with an encyclopedic test collection like INEX 2009 Wikipedia col-
lection, the corpus and the knowledge base are, in practice, the same. On one
side, this means that it is harder to improve retrieval effectiveness through external
knowledge, which is sparser as it is limited to extending local views of the collec-
tion. On the other side, it means that the collection doesn’t need to be augmented,
but rather preprocessed so that text, entities and their relations can be extracted
directly from the structure of the XML document.

For assessment, the INEX Ad Hoc track provides 115 topics from the 2009 occur-
rence, with 50,725 individual relevance judgments [275], and 107 topics from the
2010 occurrence, with 39,031 individual relevance judgments [248]. Each individual
relevance judgment contains the query identifier, the document identifier, the num-
ber of relevant characters, the offset of the best entry point (usually the first relevant
passage) and offset–length pairs for the relevant passages.

For the INEX 2009 and 2010 Ad Hoc tracks, both the topics and the relevance judg-
ments were produced by participants of the evaluation forum. In 2010, only a frac-
tion of the topics (52 out of 107) had associated relevance judgments. Furthermore,
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INEX	2009	Wikipedia	Collec�on	-	"North	Lincolnshire"

Text Block
Corresponding to the traditional structure
of a text document as indexed in an
inverted index, such as Apache Lucene.

Knowledge Block
A set of entities and triples with information
associated with the document. There can
be redundancy among different
documents. Information can be
automatically extracted from the text or
hyperlinks in the document, linked to
external knowledge bases, etc.

doc_id: 158001

North Lincolnshire is a unitary authority area in the region of
Yorkshire and the Humber in England. For ceremonial purposes it
is part of Lincolnshire. The 846 km² council area lies on the south
side of the Humber estuary and consists mainly of agricultural land,
including land on either side of the River Trent. It borders onto
North East Lincolnshire, Lincolnshire, South Yorkshire,
Nottinghamshire and the East Riding of Yorkshire. [...]

(North Lincolnshire, related_to, unitary authority area)
(North Lincolnshire, related_to, Yorkshire and the Humber)
(North Lincolnshire, related_to, ceremonial purposes)
(North Lincolnshire, related_to, Lincolnshire)
[...]

Unique Identifier

Figure 4.1: Extended document definition for combined data. Example from INEX 2009

Wikipedia collection, for the XML representing the Wikipedia article about North Lincolnshire.

only seven topics were judged by more than one individual, with the remaining
topics being judged by a single individual. Despite the reduced number of judges
per topic, it is important to notice that individual passages (not documents) were
the main object of judgement. This means that every considered document was
explored in detail, which was somewhat transposed to the relevance judgments,
since we know exactly which passages led to each judge assigning relevance to the
document.

4.1.1.1 Document and query construction

In our experiments, we extracted from each XML document its textual content along
with links to other documents and three attributes: doc_id, title, and url. XPath was
used to extract this information. The doc_id was given by //header/id/text(), the
title was given by //header/title/text(), and the url was built from the entity’s Wiki-
pedia page, based on http://en.wikipedia.org/?curid=<doc_id>. Textual content was
extracted based on //bdy/descendant-or-self::*[not(ancestor-or-self::template)and

not(self::caption)]/text(). Links leading to other documents in the collection
were extracted based on //link/@xlink:href. This enabled us to map outgoing se-
mantic relations from each document, obtaining a set of triples to accompany the
textual content.

Figure 4.1 illustrates the extracted elements from each XML document, forming
what we call an extended document for combined data. A regular document usu-
ally contains multiple text fields (e.g., title, content, etc.), which corresponds to the
text block in the extended document. However, an extended document also in-
cludes a knowledge block, which can contain single entities, as well as triples, that
are usually available as structured data in the original document. For the INEX col-
lection, the knowledge block was directly extracted from the XML (we used links
to other documents, in order to implicitly build the triples), but in other collections
this could be obtained as the result of an information extraction pipeline. There is
no restriction about the source of the knowledge block, except that it should repre-
sent a set of entities and/or triples related to the document. For example, the triples
might represent co-occurring entities in a sentence or paragraph, or statements ob-
tained from a dependency parser, or they could represent external knowledge about
identified entities, from an external knowledge base. The knowledge block purely
depends on the target application.

For evaluating ad hoc document retrieval, we used the title of each Ad Hoc track
topic as a keyword query. This was given by //topic/title/text() when applied
over the 2010-topics.xml file. We then assessed effectiveness based on whether or
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not retrieved documents contained relevant passages, according to the provided rel-
evance judgments (inex2010.qrels). For evaluating ad hoc entity retrieval and entity
list completion we relied on the inex09-xer-topics-final.xml file from the Entity Rank-
ing track, using a concatenation of the title and the categories, respectively given
by //inex_topic/title/text() and //inex_topic/categories/category/text(), to issue
a keyword query for the ad hoc entity retrieval task. For the entity list completion
task, we relied on the entities specified under //inex_topic/entities/entity/text()

to issue an entity query.

4.1.1.2 Subsets and sampling approach

Due to our focus on generalization and effectiveness, many of our experimental
retrieval models were inefficient and impractical to evaluate over the complete INEX
2009 Wikipedia collection. Thus, we were required to scale down our experiments,
relying on smaller subsets of the collection. Our sampling method was based on
the topics used for relevance assessment in the 2010 Ad Hoc track. The remaining
tasks were evaluated over the complete collection and thus did not require the
preparation of subsets. Furthermore, generating separate subsets for each task,
while relying on the approach we proposed, would result in different collections
being used for evaluating each task, which defeated the purpose of running all
experiments over a common representation model (i.e., over a single index), by
simply reconfiguring the universal ranking function.

In order to create the subset, we first selected n topics, uniformly at random, from
a total of 52 topics with available relevance judgements (out of the 107 topics for
2010). Then, we filtered the relevance judgments, keeping only those regarding the
selected topics. Finally, we filtered out documents that were not mentioned in the
relevance judgments from each of the four archives (pages25.tar.bz2, pages26.tar.bz2,
pages27.tar.bz2 and pages28.tar.bz2). Our sampling method also provided the option
to include all documents linked from the selected documents directly mentioned in
the relevance judgments. However, this would significantly increase the size of the
subset, defeating the purpose of lowering the scale.

Each subset of the INEX collection was identified by the prefix “INEX 2009” fol-
lowed by the number of sampled topics (e.g., “10T”) and whether or not linked
documents were included (“NL” for ‘no links’ and “WL” for ‘with links’). For ex-
ample “INEX 2009 10T-NL” contains the documents evaluated for 10 random topics,
excluding the documents linked to the evaluated documents (unless they were also
a part of the same subset of relevance judgments). We prepared the following sub-
sets that we rely on throughout this thesis:

inex 2009 10t-nl Contains 7,487 documents and 7,504 individual relevance
judgments for the following 10 topics:

• [ Monuments of India ]

• [ composer museum ]

• [ retirement age ]

• [ japanese ballerina ]

• [ dinosaur ]

• [ President of the United States ]

• [ European fruit trees ]

• [ Einstein Relativity theory ]

• [ famous chess endgames ]

• [ predictive analysis +logistic +regression model program application ]

inex 2009 52t-nl Contains 37,788 documents with the whole 39,031 individual
relevance judgments for the complete list of 52 topics in the collection. This
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Table 4.1: TREC Washington Post Corpus content types and their frequency per collection.

contents.type News Articles Blog Posts

“author_info” 147,189 327,422
“byline” 187,322 358,337
“date” 236,649 358,379
“image” 178,124 477,949
“kicker” 236,649 357,878
“sanitized_html” 5,462,872 6,355,698
“title” 236,649 358,232
“video” 31,014 120,260
“gallery” 26,266 22,613
“list” 349 27,928
“deck” 2,065 7,378
“tweet” 367 170,625
“instagram” 68 9,807
“pull_quote” 0 231

“inline_story” 0 23

“ar-wikitude” 0 2

“top_deck” 0 5

“animated_video” 0 1

subset is partially complete, in the sense that it only excludes non-assessed
documents, including all topics and relevance judgments.

4.1.2 TREC Washington Post Corpus

The TREC Washington Post Corpus1 was first used during TREC 2018 in the Com-
mon Core and News tracks. It contains 608,180 documents collected from the Wash-
ington Post between January 2012 and August 2017. Out of these documents, we
only used the subset of 595,037 documents (236,649 news articles and 358,388 blog
posts), that resulted of the removal of duplicates by id that had been a part of the
initial release of the collection. Multiple duplicates by title still exist in the collection.
However, the TREC Common Core track evaluation data available for the Common
Core and News tracks was prepared over this subset.

The news article or blog post text is split by paragraphs, which are stored as
content items, including HTML tags. Resources like images, video, or embedded
media are also identified as separate content items, distinguished through a type
attributed. In total the collection requires 1.5 GiB of compressed space for storage,
or 6.9GB when uncompressed.

The documents are stored as JSON and include the following fields:

• id – a unique document identifier;

• title – the title of the blog post or news article;

• author – author(s), as extracted from the byline of the publication;

• published_date – UNIX timestamp corresponding to the date of publication;

• type – collection identifier, either “blog” or “article”;

• article_url – hyperlink pointing to the web page of the publication;

• source – fixed value, “The Washington Post”;

• contents – objects containing information for the given type (see Table 4.1).

1 https://trec.nist.gov/data/wapost/
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As we can see in Table 4.1, the most frequent element is “sanitized_html”, which
usually corresponds to paragraphs (5,116,047 out of 5,462,872 for news articles and
5,978,278 out of 6,355,698 blog posts). When considering the frequency of content
of type “tweet” and “instagram”, we also verify that social media shares are more
frequent in blog posts than in news articles. Only blog posts contain content of type

“pull_quote”, “inline_story”, “ar-wikitude”, “top_deck”, and “animated_video”, despite
its overall low frequency.

Topics and relevance judgments were also provided for this collection during
the Common Core and News tracks occurring in 2018. For the ad hoc document
retrieval task, 50 topics were provided in the context of the Common Core track,
comprised of 25 topics from the 2017 occurrence, and 25 new topics prepared by
NIST assessors in 2018. Along these topics, 26,233 individual relevance judgments
were also provided with grades ranging from 0 to 2, out of which 85% corresponded
to non-relevant documents (i.e., with grade 0). The News track also provided topics
and relevance judgments for a background linking task and an entity ranking task.
The background linking task had the goal of retrieving similar documents that pro-
vided useful background information for a given document. For this task, 50 topics
in the form of documents represented by their docid and url were provided, along
with 8,508 individual relevance judgments, where the relevance score (rel) ranged
between 0 and 4, as usual, however the provided grade in the qrels file was 2rel (i.e.,
0, 2, 4, 8 or 16), with non-relevant documents being the exception, as their grade
was set to zero. The entity ranking task had the goal of ranking a set of entities
previously extract from a document in the collection, according to their usefulness
as background information to that document. For this task, 50 topics were provided
in the form of documents represented by their docid and url, accompanied by a list
of entities represented by their id, mention and link. For assessment, 82 individual
relevance judgments were provided, with entities graded from 0 to 4, from least to
most useful in the context of the given document. Since no explicit keyword query
was used to rank the entities (besides the document’s text), it was not straightfor-
ward to adapt this data for the evaluation of ad hoc entity retrieval, although we
considered it an option.

4.1.2.1 Link graph

Some of our experiments also relied on a link graph from TREC Washington Post
Corpus. In order to build the link graph, we translated each hyperlink into the
corresponding document id, which acted as a node identifier, otherwise ignoring the
hyperlink when it did not point to a valid document in the corpus. This resulted
in a graph with 159,228 nodes and 319,985 edges, with an average outdegree of
2.01±2.63 and an average indegree of 2.01±7.87. For news articles, the average
outdegree was 1.43±2.28 and the average indegree was 2.39±9.57, while, for blog
posts, the average outdegree was 2.22±2.71 and the average indegree was 1.87±7.15.
Overall, there was a lower number of outgoing links departing from news articles.
On the other hand, news articles also received the highest number of incoming
links.

4.1.3 TREC 2017 OpenSearch SSOAR

The TREC 2017 OpenSearch SSOAR dataset was prepared using the Living Labs
API1 to collect documents, queries, and document lists pre-ranked for those queries,
for the Social Science Open Access Repository (SSOAR) site. In the evaluation
forum, there were several rounds where participant teams could submit runs with
their results for the given set of topics (the queries). Evaluation was based on

1 Living Labs is an open source framework for the evaluation of information retrieval systems based on
an interleaving approach where the participant’s results are combined with the results provided by the
site. Living Labs is available at https://bitbucket.org/living-labs/ll-api.
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team-draft interleaving [245], where results for the participant (e.g., FEUP) and site
(e.g., SSOAR) were interleaved for new searches over the provided queries. These
queries frequently corresponded to the top issued queries in the site, so that they
could have a high chance of being reissued. This created evaluation opportunities,
without the need for a web service infrastructure provided by participants, which
could jeopardize the normal activity of the site, efficiency-wise. This way, each time
an interleaving from a participant was shown to a user, it formed an impression.
During this impression, the user could: click no results (tie), a higher number of
participant results (win) or a higher number of site results (loss). Wins, losses and
ties were accounted for each participant, providing a final outcome value, that could
be used for evaluation, representing the fraction of participant wins over the total
clicks.

In the dataset that we prepared, we also included the detailed feedback, with
all of the displayed results, identifying individually clicked results, as well as the
aggregated outcome provided for our runs. Our locally organized version of the
API data, which only required 28 MiB, was prepared during our participation in the
evaluation forum. It resulted in a MongoDB database with the following collections:
docs, queries, feedback, dead_period_feedback, and extra_round_feedback. This included
32,492 documents with publication dates ranging from August 29, 2012, to May 26,
2017, as well as 1,165 queries, out of which 676 were labeled as “train” and 489 were
labeled as “test”. It also included three sets of feedback impressions for the runs that
we submitted as team FEUP: 59 for official rounds (18 with clicks); 4,683 for a dead
period (29 with clicks); and 97 for an extra round (25 with clicks). The dead period
and the extraordinary round were provided by the organization due to a technical
issue that we further detail in Section 6.3.2.1. The dead period corresponded to a
time between July 17, 2017 and July 31, 2017, where no official rounds were taking
place. The extraordinary round corresponded to an official round added to the
track due to the technical issues, and it occurred during October 2017, resulting in
feedback over a period ranging from July 25, 2017 to November 13, 2017.

4.1.3.1 Data collection details

Data was provided to participants through the Living Labs API in JSON format.
In particular, an array of documents could be accessed through a GET request to
/api/v2/participant/docs. Each document contained a site_id (“ssoar” for the 2017

occurrence of the OpenSearch track), a doc_id, a creation_time, a title, and a content ob-
ject. The content object contained relevant metadata about the document, including
the abstract and other fields like subject or type. We divided all available metadata
into a text block (title and abstract), and a knowledge block (author, language, issued,
publisher, type, subject and description). This resulted in a total of 223,749 entities,
obtained from the fields selected for the knowledge block.

We also retrieved the train and test queries from /api/v2/participant/query, gen-
erating rankings for each query based on our implementation of the graph-of-word
and graph-of-entity (detailed in Chapter 6). Finally, we added any missing docu-
ments to the end of the results list, based on the provided rankings for each query,
available at /api/v2/participant/doclist/<qid>. The doclist rankings corresponded
to candidate documents, provided by the site, that could be used for instance for
reranking and should be a part of the submitted runs (our approach did not, how-
ever, take advantage of this information). Run submission was done through a PUT

request, per query, to /api/v2/participant/run/<qid>. Feedback could then be ac-
cessed through a GET request to /api/v2/participant/feedback/<qid>, per query and,
optionally, for a specific run. We were also directly offered a dump with data from
the dead period, due to the technical issue that we have already mentioned.
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4.2 contributed datasets
In this section, we describe the link graph that we prepared for an in-memory, lower
scale evaluation of link analysis approaches like PageRank. This test graph, built
from Wikipedia hyperlinks and weighted based on clickstream data, replicated the
evaluation approach by Dimitrov et al. [157].

4.2.1 Simple English Wikipedia Link Graph with Clickstream Transitions 2018-12

The Simple English Wikipedia Link Graph [277] was built from the page1 and
pagelinks2 SQL dumps of the Simple English Wikipedia from January 1st, 2019, us-
ing page names as node identifiers and considering only pages within the article
namespace, with links from other pages. The SQL query used to prepare the graph
was the following:

SELECT p1.page_title AS SOURCE, pl_title AS target

FROM pagelinks

JOIN page AS p1 ON pl_from = p1.page_id

WHERE pl_namespace = 0 AND pl_from_namespace = 0

The graph was then stored as a gzipped GML file. Given no clickstream data was
directly available for the Simple English Wikipedia, we used the clickstream data for
the English Wikipedia from December 2018

3, adding a transitions attribute to each
edge, that would be zero whenever information was unavailable. This resulted
in a graph with 897,577 nodes and 6,986,460 edges, with an average outdegree of
7.78±49.52 and an average indegree of 8±62, based on information not only from
existing pages at the date, but also from deleted pages that had been linked to those
active pages. This justifies the direct usage of pl_title instead of a page_id attribute
in table pagelinks, since these entries would not have a corresponding entry in the
page table.

4.3 other datasets
In this section, we briefly describe secondary or auxiliary datasets that we used
throughout this doctoral work. In particular, we describe the following datasets:

• Wikipedia Relation Extraction Data v1.0 [§4.3.1], which we used during the
development stage to test the Army ANT evaluation framework and the first
implemented retrieval models;

• BBC Dataset [§4.3.2], which we used to train a query classifier based on five
news categories.

4.3.1 Wikipedia Relation Extraction Data v1.0

Wikipedia Relation Extraction Data v1.04 [267] is a dataset created in June 10, 2006

by the University of Massachusetts and Google. It contains 1,110 paragraphs for
entities described in 441 Wikipedia articles. The top 5 entities with the most para-
graphs are: George W. Bush, Charles Darwin, Prescott Bush, Dick Cheney, and Kurt
Cobain. Each paragraph contains anchors that were annotated with an additional

1 https://dumps.wikimedia.org/simplewiki/20190101/simplewiki-20190101-page.sql.gz

2 https://dumps.wikimedia.org/simplewiki/20190101/simplewiki-20190101-pagelinks.sql.gz

3 https://dumps.wikimedia.org/other/clickstream/2018-12/clickstream-enwiki-2018-12.tsv.gz

4 http://cs.iit.edu/~culotta/data/wikipedia.html
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relation attribute, establishing the type of dependency between the source entity,
from where the paragraph was extracted, and the target entity, pointed to by the
anchor. In total, there are 4,681 annotated relations, based on 53 different relation
types, out of which the top 5 were: job_title, visited, birth_place, associate, birth_year.

Despite lacking topics and relevance judgments, this dataset provided sufficient
information for initial tests with graph-based retrieval models at a small scale. It
only required 980 KiB of storage space, making it easily manageable, and it easily
provided an indexable combined data collection that we could issue queries over.

4.3.2 BBC Dataset

The BBC dataset1 [278] contains BBC news from 2004 and 2005, distributed among
five categories: business, entertainment, politics, sport, and tech. There are 2,225 news
articles in total, with each category containing between 386 and 511 plain text doc-
uments, each ranging between 89 and 4,432 words. This dataset was used to train a
query classifier based on these five news article categories.

1 http://mlg.ucd.ie/datasets/bbc.html
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summary
In this chapter, we presented the datasets that supported or were created during
this doctoral work. We used different levels of detail, depending on the importance
of the dataset to our work. In particular, we presented test collections used to eval-
uate information retrieval tasks, focusing on describing the INEX 2009 Wikipedia
collection, which is the main dataset that we used for evaluating entity-oriented
search tasks, based on a general retrieval model, and TREC Washington Post Cor-
pus, which is a more recent and promising dataset with surrounding work tackling
similar tasks. We then described contributed datasets, covering the Simple English
Wikipedia Link Graph with Clickstream Transitions 2018-12, which we prepared for
the small-scale evaluation of link analysis algorithms. Finally, we described other
datasets that we have used during this work, usually with auxiliary or secondary
functions, to support the development of our evaluation framework, Army ANT,
and our initial implementations of retrieval models.
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During this doctoral work, we produced two main software artifacts, ANT and
Army ANT. ANT is an entity-oriented search engine that we developed as prior
work leading to this thesis, where we learned about entity-oriented search and the
challenges in the area. In particular, it became evident that there was no clear way
to integrate corpora and knowledge bases during indexing, without losing informa-
tion. On the other hand, integrating signals during ranking, as computed based
on each representation model, did not offer a way to cross-reference information
from text and entities. This provided focus to our work, on one side supporting
the pursuit of a joint representation model for text, entities and their relations, and
on the other side presenting an opportunity to explore a more general approach
to retrieval, with the creation of a universal ranking function for multiple entity-
oriented search tasks. Army ANT was created as an evaluation platform built to
support such innovation in entity-oriented search, centered around the indexing of
the extended documents introduced in Chapter 4 and illustrated in Figure 4.1. Our
aim was to provide an environment where combined data could be loaded into a
common data structure, so that joint representation models could be created, and
novel ranking functions based on these models could be evaluated and compared
to classical baselines.

The structure of this chapter is organized as follows:

• Section 5.1 describes the ANT search engine, its system architecture [§5.1.1],
the event ranking approach used to select the top three events presented in the
landing page [§5.1.2], and the query understanding system used to segment
and classify queries that were then rewritten for improved performance, based
on the identified semantic information [§5.1.3].

• Section 5.2 describes Army ANT, documenting its system architecture [§5.2.3],
command line and web interfaces [§5.2.4], and describing a typical workflow,
supported on a simple use case [§5.2.5].
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Figure 5.1: ANT system architecture: overview.

5.1 ant: entity-oriented search at the univer-
sity of porto

ANT1 is an entity-oriented search engine and research prototype that indexes enti-
ties from SIGARRA, the information system at the University of Porto. While the
development of the search engine technology, at the backend level, was our full re-
sponsibility, ANT also benefitted from the contributions of several postgraduate stu-
dents2, who worked on the design and development of the web interface, provided
user experience studies, and contributed towards the unofficial mobile application.
The search engine indexes seven entity types: #student, #staff, #room, #department,
#programs, #courses, and #news. It also supports the five query categories proposed
by Pound et al. [3]: entity, type, attribute, relation, and keyword. While #news
entities could have been indexed as documents, the search engine purely provides
entity search, rewriting the query based on the detected category, in order to im-
prove effectiveness. It also provides an attribute decorator, that directly fetches
entity attributes represented by literals in the knowledge base, and a relationship
decorator, that fetches entities and attributes common to the entities in a relation

query.
In the following sections, we describe the system architecture, based on the com-

bination of an inverted index and a triplestore, the ranking approach for the selec-
tion of events displayed in the landing page, and the query understanding strategy
that we implemented to take advantage of available linked data, originating from
information extracted from SIGARRA.

5.1.1 System architecture

The ANT search engine follows a simple high-level architecture, as shown in Fig-
ure 5.1. It begins by collecting and extracting data from the web, which is initially
stored in a relational database. This data is then parsed into triples, following sim-

1 https://ant.fe.up.pt/
2 Visit https://ant.fe.up.pt/about for detailed information on the ANT’s contributors.
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Figure 5.2: ANT system architecture: data collection.

ple rules based on a custom ontology that we designed1. Albeit internal to the
collection (i.e., no external information is added), this source of linked data results
in a knowledge base capable of providing supporting information to tasks like event
ranking (Section 5.1.2) and query understanding (Section 5.1.3). Finally, we issue
an SQL query for each entity type, in order to build a document that can be added
to the entity index, and we issue a SPARQL query from the union of basic entity
attributes that are common to all types of entities, in order to build the auxiliary
query analysis index.

data collection Figure 5.2 illustrates the data collection approach based on the
Scrapy Python library2. We start from a SIGARRA web page — in the figure, we
use the page for room I123 as an example — and we define a spider per entity
type, where we configure the allowed domain, the list of start URLs, and the link
extraction rules based on regular expressions matching relevant links to process or
traverse. When a web page is matched for processing, a spider uses CSS and/or
XPath selectors to extract specific elements that are then instanced as an object of
the model and stored in the relational database through the pipeline. A single table
is usually defined for representing one entity type, with a few auxiliary tables used
to model secondary elements, like the different professional positions available to
staff members. We rely on a common JSON schema to represent the entities that
will be displayed in the frontend. In order to improve performance, we pre-cache
this data using a materialized view, usually updated during indexing, given that
entities only become searchable at that time.

1 https://ant.fe.up.pt/ontology/ant.owl
2 https://scrapy.org/
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semantic modeling Figure 5.3 illustrates the semantic modeling stage, where
we rely on the defined ontology — depicted by the corresponding OWL opened in
Protégé1 — to establish complex relations between the data stored in the relational
database. This transformation results in instances of a given class (i.e., entities)
linked by object properties among themselves (entity-entity relations), as well as
literals (i.e., attributes) linked by data properties to the entities they describe (entity-
attribute relations). The process requires issuing SQL queries to fetch the flattened
relational data, which is then filtered and selected in order to be converted into
semantic triples, that are stored in a quad store.

entity-oriented search engine Figure 5.4 describes the core module of the
search engine, where indexing and querying are detailed.

Entity-oriented indexing As we can see, we rely on four low-level indexes to query
the text, entities and relations that we collected. The entity index contains entity
metadata, based on a selection of attributes from the relational database. The query
analysis index contains fields for entity label, entity URI, type URI (i.e., the class),
and associated semantic category, for supporting query understanding. Both of
these indexes are inverted files created using Apache Lucene. This means that
they are represented through a finite state transducer that stores inverted document
frequencies for terms2, and a skip list to help navigate and intersect the postings3,
which contain statistics like term frequency, or the positions of the term, for each
document containing it. Our semantic index was, in practice, abstracted by our
triplestore, OpenLink Virtuoso, which was supported by a SPOC index and a POSC

1 https://protege.stanford.edu/
2 https://issues.apache.org/jira/browse/LUCENE-2792
3 https://issues.apache.org/jira/browse/LUCENE-866
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Figure 5.4: ANT system architecture: entity-oriented search.

index, where ‘S’ stands for subject, ‘P’ stands for predicate, ‘O’ stands for object
and ‘C’ stands for context (sometimes equivalently replaced by ‘G‘, which stands
for graph). A Lucene index can be queried through its own syntax that supports
field constraints, wildcards, term boosting, boolean operators, grouping, and field
grouping, as well as fuzzy, proximity, and range search1. On the other hand, the
semantic index, OpenLink Virtuoso, can be queried through SPARQL.

Entity-oriented querying While we are required to sequentially query both Lucene
indexes for each search, we only query the semantic index to create the query anal-
ysis index (offline), or to obtain an attribute or relationship decorator (online). The
final ranking is provided by the entity index, based on a query that is formulated
according to a set of rules supported on the output of the score hypergraph, as
described in Section 5.1.3. Depending on the query category identified during the
semantic tagging step, one or both of the decorators might be run. For a rela-
tion query, a list of entity identifiers, taken from the top n results, with n being
the number of identified entities in the query, is passed to the relationship deco-
rator. Similarly, for an attribute query, a list of entity identifiers, as well as a list
of attribute identifiers is passed to the attribute decorator. Each decorator builds
a SPARQL query from the provided identifiers, that either returns a list of entities
that establish a neighboring connection between the input entities (e.g., a shared
department), or the requested attributes for the input entities (e.g., the room and
department for two staff members).

A REST API is provided for multiple services, covering: entity search, semantic
decorators, search query and result click logging, query autocompletion (experi-

1 https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
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mental), and analytics. An API console1 is also available through the OpenAPI
specification from Swagger2.

5.1.2 Information extraction for event ranking

Combining corpora and knowledge bases is frequently used to improve search re-
sults, but it can also be used for related tasks, like query-independent event ranking.
In order to support this task, we built a complete information extraction pipeline
for the Portuguese language, covering all stages from data acquisition to knowledge
base population. Accordingly, in this section, we describe a practical application of
the automatically extracted information, to support the ranking of upcoming events
displayed in the landing page of the institutional search engine, where space is lim-
ited to only three relevant events. The approach consists of manually annotating
a dataset of news from SIGARRA, covering event announcements from multiple
faculties and organic units of the institution. We use this datasets to train and eval-
uate a named entity recognition module. We then rank events by taking advantage
of identified entities, as well as :partOf relations, in order to compute an entity
popularity score, as well as an entity click score based on implicit feedback from
clicks within the institutional search engine. We combine these two scores with the
number of days to the event, obtaining a final ranking for the three most relevant
upcoming events.

In particular, the goal is to rank news that cover event announcements, in order
to display the three most relevant upcoming events of general interest to the local
academic community. This is illustrated in Figure 5.5, where we show the landing
page for the ANT search engine, highlighting the upcoming events widget. Our
approach to event relevance scoring is based on three factors: (i) the overall popu-
larity of the mentioned entities, (ii) the overall popularity of the mentioned entities
from clicked event news, and (iii) the number of days left until the event starts.
Despite lacking an innovative facet, we present a complete implementation of an
information extraction pipeline, for the Portuguese language, describing the whole
process from data acquisition to the final application, where we solve a ranking
problem from a real-world search engine with the knowledge base we automati-
cally constructed.

5.1.2.1 An overview on information extraction

Information extraction consists of uncovering information from unstructured data.
While it can be applied to different types of data, we only focus on textual content.
Natural language expressed as text is an extremely rich source of information and
the most common means of sharing knowledge among humans. Machines, how-
ever, rely on the identification of structure within this kind of unstructured data
in order to be able to find answers to increasingly complex questions. Therein lies
the goal of information extraction. Given a text, a typical pipeline would consist
of named entity recognition (e.g., José Devezas or InfoLab) and classification (e.g.,
#person or #Organization), followed by the extraction of relations between identi-
fied entities, usually based on patterns centered around verbs (e.g., :worksAt). So,
given a text with the sentence “José Devezas works at InfoLab.”, an information
extraction pipeline would be able to build a machine-understandable statement for
the 〈#Person, “works at”, #Organization〉 relation, identifying José Devezas as a #Per-
son, InfoLab as an #Organization and :worksAt as the relation between José Devezas
and InfoLab. This type of relations is usually stored in a triplestore. A triplestore
contains statements (or triples) in the format 〈subject, :predicate, object〉, which, as
a whole, form a knowledge base. The knowledge base is a semantic network that

1 https://ant.fe.up.pt/api-console/
2 https://swagger.io/
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Figure 5.5: ANT: entity-oriented search engine for the University of Porto. Upcoming events
widget is highlighted, illustrating the target application of the entity-based ranking strategy.

links concepts and provides a structured way of accessing information — individual
statements represent information that, when combined, can provide knowledge.

Information extraction can be classified as closed or open, regarding the domain
of application. When the domain is closed, we can easily take advantage of hand-
crafted rules or gazetteers (dictionaries of entities) in order to link chunks of words
to a particular entity, via a regular expression or through string matching, respec-
tively. Open information extraction is used when the domain is unknown or too
extensive to cover manually, as is the case of the web. Banko et al. [107] focus on the
extraction of relational tuples from the web, without any human input, taking into
account issues like automation, corpus heterogeneity and efficiency. They present
TextRunner, which uses a self-supervised learner to measure the trustworthiness of
candidate tuples, along with a single-pass extractor to identify each candidate tuple,
using a redundancy-based assessor module to decide on which trustworthy tuples
to keep, with a given probability. Their system is also able to be queried, in a dis-
tributed manner, supporting complex relational queries that go beyond a traditional
search engine.

The typical result of an information extraction pipeline is a knowledge base.
Google is currently supported on their own well-curated knowledge base, Knowl-
edge Graph, which evolved from Freebase. However, while perhaps less well-
known, they are also working on Knowledge Vault [279], an automated approach
to build the automated equivalent of Knowledge Graph. Knowledge Vault does in-
formation fusion based on supervised learning and prior knowledge derived from
existing knowledge bases, associating a probability with each extracted statement.
Their goal is to enable question answering and entity-oriented search systems, with
fewer dependence on manual labor.

Having built such a knowledge base, and in order to support entity-oriented
tasks, entity linking [227] is usually required. First, there is the need to identify
entities in a text, for instance with resource to techniques like Conditional Ran-
dom Fields [280], which is the approach we use in our pipeline. Then, named
entity disambiguation is usually required to be able to identify the entity associated
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with a given word or sequence of words. Nebhi [281] proposed a named entity
disambiguation strategy based on entity popularity and syntactic features, trained
using a Support-Vector Machine (SVM) classifier. Entities extracted from text were
matched with entities in a knowledge base (in this case Freebase was used) and the
disambiguation module determined which candidate entity was more likely to be
associated with that particular textual representation. Entity popularity was used
as fallback, while syntactic features were responsible for providing richer indicators
than a bag-of-words approach, being able to capture dependencies between words
in a sentence and, in a way, providing additional context. For our event ranking ap-
proach, we rely on scores computed over a query analysis index, which are similar
to entity popularity.

tools There are several tools for natural language processing, implementing
named entity recognition, as well as relation extraction. The tool we decided to
use was the Natural Language ToolKit (NLTK) [282]. NLTK is a Python library that
integrates well with other tools such as MaltParser [283], a dependency parser writ-
ten in Java, or Stanford NER1, a named entity recognition Java command line tool
and library, based on Conditional Random Fields (CRFs). NLTK directly provides
access to corpora in multiple languages, to train for instance a POS tagger. POS
tagging can be used as a feature for named entity recognition or relation extrac-
tion. We use Stanford NER without POS tags to extract entities, but build regular
expressions based on words and their POS tags to extract relations.

In order to learn a CRF for the Portuguese language, able to support a custom set
of entity types, we first needed to annotate our own dataset. One of the easiest ways
to annotate a dataset is to use BRAT (BRAT Rapid Annotation Tool) [284]. BRAT is
a web application, built in Python, that requires little configuration and a corpus of
plain text documents to annotate. We provide additional detail on the configuration
and usage of BRAT in Section 5.1.2.3.

Other relevant tools include LemPORT [285], a lemmatizer for the Portuguese lan-
guage. Lemmatization can be useful for instance to resolve multiple verbal forms
of the same verb into a single word, enabling better relation extraction. This is less
efficient but more effective than stemming, where the suffix of the word is trimmed
with the goal of obtaining common prefixes for similar words. Also regarding
the Portuguese language, a well-known tool is REMBRANDT [286], a framework
for semantic information extraction, trained with the Second HAREM Portuguese
corpus [287] and achieving first place in the HAREM evaluation forum, with an
F-measure of 0.625. Finally, for the English language, there is also GATE [288], a
General Architecture for Text Engineering, and, in particular Mímir [289], a multi-
paradigm indexing and retrieval framework, which is capable of searching over
heterogeneous data sources, like text, annotations, ontologies and knowledge bases.
GATE Mímir shares many of the goals of the ANT search engine, combining infor-
mation extraction and retrieval in a single framework.

corpora There are at least two Portuguese corpora, available through NLTK,
with annotated POS tags: Mac-Morpho [290] and Floresta [291]. These datasets
are also called treebanks, which are corpora annotated with syntactic or semantic
sentence structure. In this particular work, we only rely on Floresta treebank to
train a POS tagger based on its (word, tag) tuples. The POS tags can be useful for
named entity recognition and for relation extraction, but we only use this feature
during relation extraction to build regular expressions.

While there are several tools for the English language, with pre-trained models
for multiple tasks, the Portuguese language has been less explored, despite having
its own particular challenges. These include dealing with European and Brazilian
Portuguese, or even capturing the changes from the latest Portuguese orthography

1 http://nlp.stanford.edu/software/CRF-NER.shtml
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reform (1990)1. More importantly, the lack of resources for the Portuguese language
is of great concern. One of the main, or perhaps the only publicly available dataset
with annotated entities and relations for the Portuguese language is HAREM [287].
There are two versions of this dataset, but only the second version includes annota-
tions regarding semantic relations between entities. While there are other datasets,
their availability is a challenge. One way to provide a larger amount of annotated
data is simply to push for the semantic web and to motivate people to annotate
their web sites using RDFa or Microdata. Were this to happen, it would represent a
valuable resource for the information extraction community. For now, however, the
best approach is to either annotate our own dataset or to use HAREM. In this work,
we describe a way to easily annotate our own dataset, with a set of entity types of
our choice, based on BRAT.

5.1.2.2 Approaching event ranking

We rank academic events based on the news articles that announce them. In particu-
lar, we use an information extraction pipeline for named entity recognition, as well
as relation extraction, over institutional news. We then build a knowledge base, con-
taining event information, but also :partOf relations between pairs of organizations
and locations. This enables us to rank events based on historical information on en-
tity popularity and news article clicks, while also propagating popularity through
:partOf relations. It means that our ranking function captures the following infor-
mation: if events about Information Retrieval are popular and events at Faculty of
Engineering of the University of Porto are also popular, then an event at Department
of Informatics Engineering about Information Retrieval will have a high probability of
being relevant to the community and should have a higher rank. While the link to
Information Retrieval was directly established, Department of Informatics Engineering
indirectly received a high popularity weight because it is :partOf Faculty of Engineer-
ing of the University of Porto.

Since our system does not do entity disambiguation, whenever the same de-
partment naming is used across different universities, popularity is be propagated
through all :partOf links. In order to improve this, entity disambiguation would be
a solution, but we could also assign an uncertainty weight proportional to the num-
ber of target nodes in the :partOf relation, similar to IDF — the more target nodes
would be reached, the less reliable the information would be. For our particular do-
main, however, we predict this to be of low impact — in fact, considering this type
of relations without disambiguation might be a way of avoiding popular venues to
control the ranks, giving a chance to similar events, happening at different venues,
of receiving a higher rank.

5.1.2.3 Data acquisition, model training and evaluation

The ANT search engine periodically collects and processes data from SIGARRA,
the information system at the University of Porto. As we have seen in Section 5.1.1,
data is extracted using a combination of XPath and CSS selectors and stored in a re-
lational database. While most of the data, like student or staff profiles, is structured,
there is also some unstructured data from SIGARRA news. We are particularly in-
terested in extracting information about events, locked within SIGARRA news as
natural language text. News announcing events can be identified based on whether
there is an associated event start or end date in the database. We only retrieve and
process news articles with at least one event date associated and skip articles in
languages other than Portuguese. The complete name entity recognition approach,
from data acquisition to model training and evaluation, is described as follows:

1. Query the relational database for a subset of news articles that announce
events, and store them as a CSV file (one article per row).

1 http://www.portaldalinguaportuguesa.org/?action=acordo&version=1990
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Table 5.1: Entity types used to annotate the SIGARRA News Corpus, along with examples
aligned with Figure 5.6. Listed entity types were used to populate the [entities] section of
the annotations.conf file in BRAT.

Entity Type Example

#Person “Liliana de Jesus Duarte da Mota”
#Organization “Faculdade de Direito da Universidade do Porto”
#Event “Provas de Mestrado em Direito - Licenciada Liliana de Jesus Duarte da Mota”
#EventType “Provas de Mestrado”
#Topic “Direito”
#Location “sala 228”
#Date “16 de dezembro de 2016”
#Time “11h00”

Figure 5.6: Example of an annotated fragment of text, for a SIGARRA news, in the BRAT
Rapid Annotation Tool.

We retrieved the news articles for the 1,000 closest upcoming events, starting from
December 23, 2016, and containing contributions from all faculties and organic
units of the University of Porto.

2. For each row in the CSV, prepare a txt file containing title, subtitle and content,
as well as an empty ann file.

SIGARRA news articles communicate a lot of relevant information in the title and
subtitle. In particular, we used the title to extract #Event entities and the subtitle to
extract information like the location or the date of the event. The content was pro-
vided as an HTML fragment that we converted into text using bs4.BeautifulSoup,
after removing <script> and <style> tags.

3. Place individual files within a subdirectory of the data/ directory from the
BRAT Rapid Annotation Tool and create an annotations.conf file with the list
of entity types to annotate (shown in Table 5.1, along with examples).

4. Run ./standalone.py in BRAT’s root directory and manually annotate the cor-
pus, as shown in Figure 5.6 (25 out of the 1,000 retrieved documents were
annotated).

5. Split the annotated corpus into two separate directories, one for training (70%;
18 news articles) and another one for testing (30%; 7 news articles).

While the size of the annotated corpus was not ideal, surprisingly 18 annotated
documents were enough to build a working system. Additionally, the annotated
corpus could be grown over time, in order to retrain and re-evaluate the system.

6. Convert training documents into a single col file (tab-separated format sup-
ported by Stanford NER), and testing documents into individual col files to
enable per-document evaluation.

7. Train a CRF using Stanford NER command line interface and obtain a model
for Named Entity Recognition (NER).
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Table 5.2: Evaluation of the named entity recognition module, based on the test set for the
SIGARRA News Corpus.

Avg. Precision Avg. Recall Macro F1

0.633220 0.371867 0.468563

ANT Search Engine

Relational 
Database

Title
Subtitle
Content

Corpus: one text 
document per event Annotate a subset with BRAT

TXT ANN

Training Set (70%)
Single COL tab-separated 
file (Stanford NER format)

Test Set (30%)
COL tab-separated file

per document

Stanford 
NER

Train CRF
NER Model

NLTK
StanfordNER

Tagger

Evaluation
Precision, Recall, 

F1 Score

Figure 5.7: Data acquisition, named entity recognition and evaluation. Data is obtained from
the ANT search engine database and pre-processed to enable CRF training and testing.

8. Evaluate the NER module. Extract entities from the original, non-annotated
documents of the test set, using StanfordNERTagger from NLTK along with the
learned CRF model. Compare extracted entities with annotated entities based
on the col files, computing precision, recall and F-score.

There are several evaluation methods for NER [292]. In this particular case, we
used the CoNLL evaluation scheme, where only exact matches are considered as
true positives. We calculate the precision and recall for each document and then
the overall averages for the test set. We also compute the macro-averaged F1-score.

Figure 5.7 shows a complete overview of the named entity recognition module,
from data acquisition to evaluation. As we can see, starting from the ANT search
engine, we access the relational database, in order to obtain a corpus, initially stored
as a CSV file. We then convert each document into a text file, with an associated
empty annotations file. The corpus is annotated using BRAT and then split into
a training set and a test set. The training set is used to train a CRF1, obtaining a
NER model. The NER model is then used by the StanfordNERTagger from NLTK to
evaluate the effectiveness of the named entity recognition module based on the test
set. Evaluation results are shown in Table 5.2 — we obtained an average precision
of 63%, which is acceptable given the reduced size of the annotated corpus, as well
an average recall of 37% and a macro-averaged F1-score of 47%.

5.1.2.4 A pipeline for information extraction

The complete information extraction pipeline consists of querying the relational
database, iteratively processing each individual news article, obtaining a set of
triples based on the identified entities and relations from the document, and loading
them into the triplestore. The pipeline we built was based on NLTK and it includes
the following steps, that are applied to each text sequentially:

detect_language() Our pipeline was trained using a Portuguese corpus. In or-
der to ensure we only process Portuguese documents, we use the Python
wrapper for the well-known langdetect Java library2. Whenever a text is not

1 We used a default configuration for Stanford NER, based on the example in the FAQ: http://nlp.

stanford.edu/software/crf-faq.shtml#a.
2 https://github.com/Mimino666/langdetect
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identified as “pt”, it is simply skipped. The associated event might still be fea-
tured in ANT’s event widget, but only when it’s extremely close to the date
and no other, more relevant events, are held simultaneously.

segment_sentences() The first step in processing a SIGARRA news article is to
split the text into individual sentences. We used the pre-trained Portuguese
model for the Punkt sentence tokenizer provided by NLTK. Challenges asso-
ciated with this task are frequently associated with distinguishing actual sen-
tence ends from periods that do not end a sentence (e.g., ‘Mr.’ or ‘Dr.’). While
this is a task that is essentially solved and already achieves a high precision in
the state of the art, given the quality of our text, many times sentences were
incorrectly identified. However, we did not find this to be particularly impact-
ful in the end result, as we did not rely too much on syntactic or dependency
parsing or even on POS tags, which we only used for relation extraction.

tokenize_sentences() Given a list of strings, obtained from the previous step
and corresponding to a sentence each, we split each string into individ-
ual words, as well as punctuation. For this, we used WordPunctTokenizer

from NLTK, instead of the default tokenizer implemented in nltk.tokenize.

word_tokenize, which was TreebankWordTokenizer. While the default tokenizer
reliably identified words, without splitting for instance compound words by
dashes, it did not implement the span_tokenize() method, which was fun-
damental to simplify the conversion process from the BRAT standoff format
(ann) into the Stanford NER tab-separated format (col). During tokenization,
we also replaced any slash characters by a dash, since slashes are removed
by StanfordNERTagger and, as we explain next, we need to match tagged sen-
tences, word by word, in order to build a tree combining POS tags and named
entity tags.

pos_tag_sentences() Given a list of lists of words and punctuation, from the
previous step, we assigned a POS tag to each word, obtaining a list of lists
of (word, pos_tag) tuples. Since there is no pre-trained model for POS tagging
Portuguese sentences in NLTK, we used the provided Floresta treebank cor-
pus to learn our own model. For training, we used a nltk.BigramTagger, falling
back to a nltk.UnigramTagger and then to a nltk.DefaultTagger, which always
identifies a word as a noun (the most common case), when all else fails. An
evaluation of a similar POS tagger based on Floresta treebank was already
available1, showing an accuracy of 89%, 87% and 18%, respectively for each
tagger.

ne_tag_sentences() Given a list of lists of words and punctuation (without POS
tags), we assigned a named entity to each word, obtaining a list of lists of
(word, ne_tag) tuples. In order to do this, we used the model we had trained for
Stanford NER, feeding it to the StanfordNERTagger (see step 8 in Section 5.1.2.3
for more details).

build_sentence_trees() Given the lists generated by pos_tag_sentences() and
ne_tag_sentences(), we generated a list of nltk.tree.Tree (one per sentence).
In order to do this, we used the nltk.chunk.util.conlltags2tree() function,
which takes a sentence argument as a list of (word, pos_tag, ne_tag) tuples.
In order to build such tuples, we assumed that an exact equivalence could
be established between the two lists, otherwise the system would fail, raising
an exception, which skipped the news article. The resulting tree had three
levels, a root level (the sentence), a mid-level (the entity types) and a bottom-
level (leafs corresponding to chunks of words belonging to a named entity, as
aggregated by the mid-level nodes).

1 http://www.nltk.org/howto/portuguese_en.html

113

http://www.nltk.org/howto/portuguese_en.html


5.1 ant: entity-oriented search at the university of porto

extract_entities() In order to extract the entities, we simply iterated over the
trees constructed in the previous step, aggregating tokens per entity type.
This is one of the outputs of our system, which is mainly used for evaluation
purposes, regarding the effectiveness of the named entity recognition module.
Results were saved as a human-readable ent text file (one per document), con-
taining lists of entities, grouped by type, with the frequency of the entity in
the document. We also saved the same information as a col file, in order to
compare predicted entities with the ground truth established in the test set.
Results have already been shown in Table 5.2 and commented at the end of
Section 5.1.2.3.

extract_relations() Relation extraction consisted of identifying links between
pairs of entities. In order to do this, we defined a set of rules, using regular
expressions, to identify relations between two types of entities, based on nltk

.sem.extract_rels(). We then defined an associated list of rules to map the
extracted relations into one or more triples in the knowledge base, possibly
in reverse order. For example, the rule 〈#Location, (da|do)/n, #Location〉 was
used to identify :partOf relations between two locations. Each #Location entity
was then mapped to a #dul:Place class, from the DOLCE+DnS Ultralite (DUL)
ontology, and the :partOf relation was mapped to the dul:isPartOf property
from the same ontology. Event information was modeled using the Linked
Open Descriptions Of Events (LODE) ontology, which focuses on defining a
#lode:Event class and a set of properties like lode:atPlace, that links to #dul:Place,
or lode:involvedAgent, that links to #dul:Organization or #dul:Person. The Time
ontology was also used to describe date and time, using lode:atTime to link
to a #time:TemporalEntity and, in particular, a #time:Instant with the property
time:inXSDDateTime linking to a #xsd:dateTime literal.

build_default_relations() Since many of the extracted entities were not fea-
tured in any relation, and in order to expand our knowledge base to better
support the ranking task, we decided to generate some default triples that
linked extracted entities to the corresponding lode:Event. With this step, we
compromised the quality of the information, in the sense that we considered,
for instance, all dates as part of the lode:atTime relation and we know that
some dates were in fact deadlines associated with events. The same is true
for locations, as different places were sometimes referenced in news articles,
besides the venue of the event. This is something that can be improved over
time, either by using different properties like dul:associatedWith, or by further
developing automatic relation extraction.

load_relations_into_virtuoso() Finally, we generate an N-Triples (nt) file
with the relations identified for each document, including relations of type
:isA, to annotate each entity with its class. This nt file is then loaded into Open-
Link Virtuoso, through a POST request to the /sparql-graph-crud-auth end-
point1, storing this information in a separate ant:EventsKnowledgeBase graph,
using the same naming convention for events and their associated news article,
already part of an existing ANT ontology2.

5.1.2.5 Entity-oriented event ranking

By default, ANT simply displayed the three closest upcoming events, without any
particular ranking strategy apart from recency. Using a knowledge base, we can
go beyond this through entity-oriented approaches. In particular, we propose two
scores based on entities associated with events: (i) the entity popularity score,

1 https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtGraphProtocolCURLExamples
2 Example of URI for lode:Event / ant:NewsArticle: http://infolab.fe.up.pt/ontologies/ant#Sigarra_

News_Article_53369_From_Faculdade_de_Engenharia_da_Universidade_do_Porto.
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Listing 5.1: SPARQL query to compute scoreclk(e,Ee) based on lode.

1 SELECT ?event ?code ?school (SUM(?count) AS ?score)

2 WHERE {

3 {

4 SELECT ?agent (COUNT(?agent) AS ?count)

5 FROM ant:EventsKnowledgeBase

6 WHERE {

7 ?event a lode:Event .

8 ?event ant:wasClicked "true"^^xsd:boolean .

9 ?event lode:involvedAgent ?agent .

10 }

11 GROUP BY ?agent

12 }

13 ?event a lode:Event .

14 ?event lode:involvedAgent ?involved_agent .

15 ?agent dul:partOf* ?involved_agent .

16 OPTIONAL {

17 ?event ant:hasCode ?code .

18 ?event ant:hasFaculty ?school .

19 }

20 }

21 GROUP BY ?event ?code ?school

scorepop(e,Ee), and (ii) the entity click score, scoreclk(e,Ee). The entity popu-
larity score is based on the popularity of individual entities, as defined by the fre-
quency an entity appears in distinct news articles over the whole corpus. The entity
click score is similar to the popularity score, but is limited to the entities that are
linked to clicked event news — this click status is transferred to the knowledge base
daily, when the IE pipeline is run, and is stored using the ant:wasClicked property,
linking to a #xsd:boolean literal.

The two scores are computed using a SPARQL query and then stored in the
relational database, each in their own column of the news articles table. Events
are retrieved by combining the number of days remaining to the event start date,
and the entity popularity and click scores. Listing 5.1 shows the SPARQL query
used to calculate scoreclk(e,Ee) for all #lode:Event instances in the system. The
scorepop(e,Ee) is calculated using a similar query, where we remove the statement
in line 8, discarding the constraint for clicked events. As we can see, each entity
score is calculated, per event, based on the total number of links to the entities that
are associated with the event. We illustrate this by using lode:involvedAgent property
for classes #dul:Person and #dul:Organization.

After computing and storing the two entity scores for each event, we calculate
the final score, for event ranking, as shown in Equation 5.1. Given event e, and
entities Ee associated with event e, the final score is calculated based on a weighted
average of three factors: days to event ∆Te, entity popularity score scorepop(e,Ee),
and entity click score scoreclk(e,Ee).

score(e,Ee) = w1
1

∆Te + 1
+w2

scorepop(e,Ee)
maxe scorepop(e,Ee)

+w3
scoreclk(e,Ee)

maxe scoreclk(e,Ee)
(5.1)

We have deployed this ranking strategy in the ANT search engine, manually
tuning the weights in order to prioritize the number of days to the event, since close
events are more relevant, and then considering the implicit feedback based on the
entity click score and finally the entity popularity score. The version we deployed
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only relies on entities of type #Person and #Organization and uses w1 = 0.5, w2 = 0.2
and w3 = 0.3.

5.1.3 Index-based semantic tagging for efficient query understanding

The search process begins with the query, making query analysis essential to ex-
tract additional information, such as the parts of the query that represent entities,
as well as their types or attributes, and the parts of the query that represent tradi-
tional keywords. Identifying entities in a query through segmentation, as well as
matching them to a particular category is frequently called semantic tagging [293].
In our system, query understanding is fully supported by the information obtained
from semantic tagging. This enables the subsequent construction of knowledge base
queries to retrieve entities, types or attributes matching the text and identified cat-
egory of each query part. The resulting ranked set of candidates can then be used
to support the understanding of the query, helping in the final query answering
process. We evaluate the efficiency of the candidate retrieval subtask, based on a
Sesame triplestore, using SPARQL queries, as well as on a Lucene index, prepared
for this task, using keyword queries. We also propose the score hypergraph, as an
extension and improvement of the probabilistic approach we first consider.

5.1.3.1 An overview on query understanding

Pound et al. [3] have provided a relevant contribution to entity-oriented search by
structuring the queries for ad hoc object retrieval into five categories: entity query
(directly find a specific entity), type query (find entities of a given type), attribute

query (find values of an attribute of an entity or type), relation query (discover
how two or more entities or types are connected) and keyword query (for any
traditional full-text query that doesn’t fit the other categories).

Guo et al. [294] proposed a new application of named entity recognition in the
context of search queries, based on a Weakly Supervised Latent Dirichlet Allocation
(WS-LDA) algorithm that used partially labeled entities as seeds. The idea was
to use a query log, discovering queries that contained a given entity and class, to
obtain an associated context (remaining terms). Based on a context “document”
and a class “topic”, they generated training data that could be used to learn a topic
model and reiterate with new seeds to improve the overall model.

Blanco et al. [295] presented an extremely effective and efficient algorithm for
entity linking in queries (Fast Entity Linking, or FEL) that took advantage of con-
text (using word2vec), based on query logs and Wikipedia articles on the entity (as
determined by the anchor text linking to the Wikipedia article). While the method-
ology we present here does not seem to outperform FEL (the mean run time for
our whole search process is 49ms for a different dataset), our technique might have
a lower implementation cost, as it easily builds on top of existing information re-
trieval frameworks like Lucene.

Aggarwal and Buitelaar [296] focused on the understanding of natural language
queries to facilitate querying over linked data, with languages like SPARQL. Their
pipeline included: entity annotation (supported on two indexes, one for labels and
URIs of all DBpedia instances and another one for all DBpedia classes), deep lin-
guistic analysis (at this stage, a central entity, as well as the dependencies between
all entities, were identified), and semantic similarity/relatedness (similarity was de-
fined on the basis of :isA relations of concepts, while relatedness covered other types
of relations).

5.1.3.2 Scaling issues for growing entity data

ANT is an entity-oriented search system capable of answering queries by taking
advantage of the previously untapped underlying structured data available in the
current information system. We considered information needs like the discovery of
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the department for a given staff member, or finding students enrolled in two given
courses. We first tackled this problem at a faculty level and then extended our
support to the fourteen schools of the University of Porto. When we scaled from
faculty-centric entities to university-centric entities, we identified a performance is-
sue that led us to explore alternatives to directly using the triplestore for query
analysis. Growing from a dataset restricted to the students at the Faculty of Engi-
neering to a dataset including the students for all the schools at the University of
Porto meant growing our triplestore from 546,760 to 2,594,511 statements. Includ-
ing the students for the whole university had a tremendous impact in the growth
of our dataset, translating into 139,640 additional students, associated with 193,650
extra enrollments, 1,166 additional courses, 14 more academic years and 10 more
faculties.

5.1.3.3 Approaching semantic tagging in queries

Semantic tagging in queries is the act of annotating queries with entity types, for
query understanding. We followed this approach by segmenting the query and
annotating groups of sequential terms (n-grams) with the most probable category
(entity, attribute, type or keyword), based on a set of matching candidate labels
from the knowledge base. In this work, we focused on the efficiency of two alterna-
tive methodologies for candidate retrieval, one based on a Sesame triplestore and
SPARQL querying, and another one based on a Lucene index and keyword query-
ing. The techniques we describe here can easily be used to also identify entity types
or to establish entity links.

The first step for query analysis was to build a collection of all n-grams for
n ∈ [1,n]. We used n = 6 as the maximum n-gram size, given it provided a
coverage of 94.28% for the labels of our entities, resulting in a good compromise
between performance and accuracy (a higher number of n-grams would result in
additional candidate retrieval queries). The second step was to retrieve matching
candidates for each n-gram. We did this either by using the Sesame triplestore or
the specialized Lucene index. We also computed the number of candidates per class
using either technology. This enabled us to calculate the probability of associating
a given candidate to an n-gram: 1− |Cxt | / |Ct|, where Cxt is the set of candidates
for n-gram x and type t, and Ct is the set of candidates for type t. The probability
is higher when the fraction of candidates is smaller, which means that rarer labels
have priority over common labels, resulting in better precision. Finally, in the last
step, we selected the n-gram with the highest probability, keeping only the longest
n-gram in case of term overlap between selected n-grams. Each candidate could
be directly categorized into entity, attribute or type. This information was used to
classify the query based on templates for these three categories.

Our first attempt at retrieving matching candidates was directly based on the
Sesame triplestore. This contained our knowledge graph and was the obvious
choice for an initial approach. As described in Section 5.1.3.2, we first experimented
with a knowledge base containing 546,760 statements or facts. While this approach
did not allow for sub-second query times, it resulted in a reasonable query time of
under 5 seconds. The SPARQL query we built returned four columns associated
with candidate entities: Label, URI, Class and Category. This was obtained from the
union of three sub-queries for entity, attribute and type individuals, associating the
value of the property rdfs:label, or equivalent, to the Label column. These results
were filtered using a case insensitive regular expression that matched the n-grams
generated from the search query.

As an alternative for better performance, we built an Apache Lucene query anal-
ysis index based on the triplestore data, combining documents for entities, attributes
and types. Each document contained four fields: Label, URI, Class and Category. We
iterated through the same items returned by the SPARQL query described above,
dropping, however, the regular expression filter. This enabled us to create an index
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Figure 5.8: Score hypergraph: TF-IDF scores for query n-grams based on the query index.

of query parts, as supported by our knowledge base. We then queried this index
in order to return the results for each n-gram generated from the search query. We
used proximity search within n = 6 terms of distance (the same as the n-gram size)
and ensured that the query was parsed in order. For each query to the index, we
only returned the top-N results. Specifically we used N = 10, which is a low value
that results in high performance, as we show in Section 5.1.3.5.

5.1.3.4 Solving overlap with the score hypergraph

The most probable candidate was selected for each query part, however we had to
deal with overlap. For instance, it could happen that for query [ josé sérgio sobral

nunes informática ], both “josé sérgio” and “sérgio sobral nunes” would be identified as
two of the most probable query parts. This would result in the following query seg-
mentation: [ josé sérgio | sérgio sobral nunes | informática ], which is not a correct
result for this query, even if “josé” links to an entity containing “josé sérgio” with the
highest probability.

We propose the score hypergraph, which we developed while thinking about this
problem. With the score hypergraph, segmentation is done iteratively, discarding
overlapping query parts at each step. While the score hypergraph can be applied
to probabilistic scores, it can also be generalized to different weighting schemes. In
particular, we applied the score hypergraph based on TF-IDF scores computed from
the Lucene query analysis index.

Figure 5.8 illustrates a possible hypergraph generated for the problematic query.
Displayed weights were obtained from a production version of the query analysis
index, based on TF-IDF. We only show n-grams for n ∈ {1,2,3}. We create an edge
from each n-gram to the (n + 1)-grams that contain its label. We also create a
hyperedge containing all overlapping n-grams for the same value of n. Each node is
weighted according to the TF-IDF of the top ranking result, retrieved when using the
n-gram as a keyword query over the query analysis index. The query segmentation
process then consists of the following steps:

1. Select the source node (i.e., with lowest n) with the highest weight.

2. Follow edges leading to nodes with a higher weight, until no more are avail-
able.

3. Select the end node as a query part.

4. Backtrack through incoming edges, follow hyperedges (without backtracking
through their edges), and delete all visited nodes.

5. Repeat from step 1 until the hypergraph is empty.
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Figure 5.9: Score hypergraph: segmented and semantically tagged query.

The top entity associated with the selected query parts, as retrieved from the
query analysis index, can also provide a Class and a Category, which support the
semantic tagging, as well as the query classification tasks. This is illustrated in
Figure 5.9, where the resulting query segmentation was [ josé | sérgio sobral nunes

| informática ]. As we can see from the figure, when searching for [ josé ] and for
[ sérgio sobral nunes ], during candidate retrieval, the top retrieved entities were of
class #ant:Staff in both cases. When searching for [ informática ], the top retrieved
entity was of class #ant:Department. While the user’s intent when mentioning “in-
formática” could have been to search for two staff members from an informatics
program, teaching an informatics course, or from the informatics department, the
most probable option according to our algorithm would be the latter. Accordingly,
the three query parts are of category Entity, which ultimately leads to a classifica-
tion of Relation query.

Let us consider the following four sets for each category of identified query part:
A for attributes, T for types, E for entities, and R for relations. We implemented
the following rule set, applied in order until a match is found, to classify the query
according to the five query categories from Pound et al. [3]:

1. |A| > 0⇒ Attribute

2. |T| > 0 ∧ |E| > 0⇒ Attribute

3. |T| > 0 ∧E = ∅ ⇒ Type

4. |E| > 1⇒ Relation

5. |E| > 0⇒ Entity

6. Otherwise⇒ Keyword

5.1.3.5 Evaluating candidate retrieval efficiency

We compared the performance of both candidate retrieval strategies by measuring
overall search time over a set of synthetic test queries. We synthetically built a query
test set by combining terms from randomly selected individuals of the ontology
with terms from a Portuguese dictionary with over 400,000 words. Our generation
method required five parameters: the number of queries to generate, the minimum
and maximum number of terms associated with ontology individuals, and the min-
imum and maximum number of keyword terms. For this evaluation process, we
generated 1,000 queries with the number of terms associated with ontology indi-
viduals ranging from 3 to 8, and with a number of keyword terms ranging from 0

to 2, resulting in queries with a minimum of 3 terms and a maximum of 10 terms
overall.
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Table 5.3: Statistics for the query analysis time of the Sesame triplestore and the Lucene
index strategies, using N = 10 for the Lucene index.

Sesame triplestore Lucene index

Avg. 7.435765s 0.048580s
Std. ±3.206806s ±0.019115s

Speedup 153.062268 (∼153× faster)
Mann-Whitney U Test p-value ≈ 0� 0.01
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Figure 5.10: Efficiency evaluation of the overall search process, based on 1,000 synthetic
queries.

comparing query analysis time for the retrieval strategies We did
several runs based on the same set of synthetic queries. In particular, we did one
run based on the Sesame triplestore strategy, that we directly compared with a run
based the Lucene index strategy for the top-N results. We picked N = 10 since it
provided a near-optimal speedup, also having a positive impact on the quality of
the results for a small set of manually tested queries.

In Table 5.3, we show the mean query analysis time (Avg.) along with the standard
deviation (Std.), in seconds, for the 1,000 synthetically generated test queries. These
tests were ran on a laptop with a dual core Intel® CoreTM i7-5600U, 16 GiB of RAM
and a 256 GiB solid-state drive. We calculated the speedup of the Lucene index
strategy over the Sesame triplestore strategy, concluding that it was about 153 times
faster, for N = 10. Increasing the parameter N resulted in lower, but still positive,
speedup values, as shown in the next paragraph.

influence of N over the speedup Figure 5.10a shows a run time compari-
son between the Sesame strategy (all matching results) and various N values of the
Lucene strategy (top-N results). As we can see, the index-based strategy outper-
forms the triplestore strategy even when retrieving the top N = 1 million matching
candidates. Figure 5.10b illustrates the evolution of the speedup for growing values
of N. Higher values for the parameter N were expected to result in a lower speedup.
However, by analyzing the progression of N, from 10 to 1 million, we found that the
speedup actually increased, from N = 10 to N = 20. This can be explained by the
fact that our testing routine continuously read from the same location in disk, to
load the index before running each set of queries, which resulted in better read per-
formance through system caching. However, as expected, for N > 20, the speedup
consistently decreased, nearly stabilizing at 4× faster.
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5.2 army ant: a workbench for innovation in
entity-oriented search

Army ANT is an information retrieval research framework that supports experimen-
tation with classical approaches, while also providing a high-level abstraction that
motivates the implementation of innovative approaches in a shared evaluation en-
vironment. It facilitates the use of combined data, and it provides an environment
for testing and evaluating multiple retrieval tasks, supporting keyword or entity
queries, as well as documents, entities, or even terms, as the rankable results.

In this section, we present an overview on Army ANT [§5.2.1] and position it in re-
gard to other experimental frameworks, such as Terrier, Lemur, and Nordlys [§5.2.2].
We then describe its system architecture [§5.2.3], covering four main abstractions:
(i) readers, to iterate over text collections, potentially containing associated enti-
ties and triples; (ii) engines, that implement indexing and searching approaches,
supporting different retrieval tasks and ranking functions; (iii) databases, to store
additional document metadata; and (iv) evaluators, to assess retrieval performance
for specific tasks and test collections. We also describe the command line interface
and the web interface [§5.2.4], presenting learn mode as a way to explore, analyze
and understand representation and retrieval models, through tracing, score compo-
nent visualization, and documentation. Finally, we present a typical workflow of
our platform [§5.2.5], describing configuration, server deployment, and the required
implementation details for conveniently exploiting learn mode.

5.2.1 What is Army ANT?

Army ANT is an experimental workbench, built as a centralized codebase for re-
search work in entity-oriented search. It was created as a structured framework for
testing novel retrieval approaches in a comprehensive manner, even when poten-
tially deviating from traditional paradigms. This required a flexible structure, that
we developed by iteratively satisfying the requirements of multiple engine imple-
mentations for representing and retrieving combined data [92, Definition 2.3]. An
important step in research, that we also motivate and support, is the continuous
documentation of models and collections, which is fundamental for reproducibility,
but also useful to advance research, by exploring, learning and building on previ-
ous approaches. In this sense, Army ANT is particularly well suited for individuals
or small research teams, as it provides a structural framework with the basic tools
to integrate the typical components of a modern search engine. It acts as a skele-
ton to support the research process, while introducing only minimal limitations, by
leaving the storage and retrieval implementations to the researcher.

The basic unit of Army ANT is the engine, which must implement the repre-
sentation model for indexing and the retrieval model for searching. The indexing
method has access to one of multiple collection readers and can optionally consider
external features. The search method is based on a keyword query, pagination pa-
rameters and, optionally, a task identifier, a ranking function and its parameters,
and a debug flag. For searching and evaluating over the web interface, each engine
is required to have a unique identifier, which frequently describes the representa-
tion model and indexed collection (e.g., lucene-wapo for a Lucene index over the
TREC Washington Post Corpus). Each engine has an entry in the YAML configu-
ration file (config.yaml), so that it is visible to the web interface. Supported ranking
functions, their parameter names and specific values can also be defined in the con-
figuration file. Combinations of selected parameter values can then be used by the
evaluation module to launch individual runs, known as evaluation tasks. When
completed, each task will provide a performance overview, based on efficiency and
effectiveness metrics for each parameter configuration, as well as complementary
visualizations and a zip archive with intermediate results. Intermediate results in-
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clude elements like the average precisions for each topic, used in the calculation of
the mean average precision, or the results for each individual topic, along with the
relevance per retrieved item, according to a ground truth (e.g., qrels from TREC or
INEX). This means that, even if Army ANT evolves and no backward compatibil-
ity is maintained, the archive can still be downloaded and independently used to
compute other metrics, such as statistical tests, or to correct any wrong calculations.
Additionally, an overall table, comparing the performance among different runs, is
also available for download as a CSV or LATEX file.

Out-of-the-box, Army ANT provides reader implementations for INEX 2009 Wiki-
pedia collection [112], TREC Washington Post Corpus1, and Living Labs API [246].
It also provides a Lucene baseline engine, supporting TF-IDF, BM25 and divergence
from randomness, as well as several experimental engines, such as hypergraph-of-
entity. Finally, evaluators are available for the INEX Ad Hoc track and the INEX XER
track, as well as for the TREC Common Core track and for the Living Labs API’s
team-draft interleaving online evaluation. On a smaller scale, Army ANT also pro-
vides several utility functions, covering DBpedia and Wikidata access, as well as
statistics for the measurement of rank concordance and correlation. Several index
inspection and debugging tools, as well as documentation strategies, are also inte-
grated into Army ANT’s workflow. The workbench is written in Python, providing
integrated implementations for engines written in Java and C++, which we use as
examples of cross-language interoperability.

5.2.2 Frameworks for experimental information retrieval

Over the years, there have been several actively developed frameworks for experi-
mental information retrieval research. In this section, we cover three of them: The
Lemur Project, Terrier and Nordlys, the latter being a fairly recent framework in
the area of entity-oriented search. Our focus was on comparing the frameworks
with Army ANT, however for a more in-depth comparison of open source search
engines please refer to Middleton and Baeza-Yates [297].

The Lemur Project [255] is particularly focused on language models. There are
multiple components included in Lemur, besides the Lemur toolkit, which has been
deprecated in favor of Indri, since version 4.12, released in June 21, 2010. Compo-
nents include the RankLib, a library for learning-to-rank algorithms, Sifaka, which
supports named entity recognition, as well as frequency and co-occurrence analysis,
and Galago, which provides a command line and web interface and also supports
the computation of PageRank. Indri is the main component of the Lemur Project.
It supports structured querying using INQUERY [256] operators and suffix-based
wildcards. It also supports field and passage retrieval and the indexing of text an-
notations and document metadata. Indri can be distributed, both for indexing and
retrieval tasks, scaling up to terabyte collections.

Terrier [36] provides easy-to-use out-of-the-box implementations of multiple well-
known and state-of-the-art indexing and ranking approaches. It is particularly good
for batch evaluation over standard TREC and CLEF collections, providing a com-
mand line tool for directly indexing TREC corpora. Terrier is also a good example
of a middle-ground framework between research and production, since it not only
supports experimental IR, but it is also prepared to be deployed as a product, if
used as a Java library.

Both the strength and the downside of the previous two frameworks is that they
provide their own implementations within their own ecosystem. This means that, if
a certain ranking function is not supported, it must be implemented following the
toolkit’s interface rules, which frequently aren’t clearly documented. This makes
novel approaches harder to explore, since the frameworks constrict innovation in-
stead of promoting it. Although, arguably, this is not their main focus.

1 https://trec.nist.gov/data/wapost/
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Army ANT attempts to fill this niche and, in order to do so, it is built with the
integration of external libraries, such as Apache Lucene, in mind. It can even act as
a layer over Lemur and Terrier, since it supports both C++ and Java engines. The
challenge in providing a workbench for innovation is that it requires both freedom
and structure. For this reason, implementing a new engine in Army ANT is fre-
quently perceived as the equivalent to starting from scratch. However, this is not
the case, since Army ANT already provides collection readers and evaluators that
can be used directly after implementing a new engine. Also, at the very least, there
is already a predefined command line interface and web interface to access the en-
gine, both for indexing the collection and searching over the index. Through the
implementation of a class that inherits Index, along with its index() and search()

methods, Army ANT provides a skeleton to support research ideas, without being
opinionated, but supportive through optional reusability.

Nordlys [298] is a bit different from Lemur and Terrier, as it focuses on three
entity-oriented search tasks: entity retrieval, entity linking in queries, and target
type identification. Like Army ANT, Nordlys acts as a layer over available infor-
mation retrieval tools (e.g., Elasticsearch). Unlike Army ANT, Nordlys relies on
external evaluation tools, instead of providing a generalized evaluation framework,
where different topic or relevance judgment formats are translated to a common rep-
resentation and assessed through a common module. Army ANT also integrates
with novel evaluation frameworks, such as the Living Labs API. While Nordlys is
designed for a fixed set of entity-oriented search tasks, Army ANT is able to gen-
eralize through a task selection parameter in the search() function, which can be
freely implemented, or even ignored, by the developer or researcher. Our work-
bench also supports multiple engines for a single web server instance, enabling the
joint evaluation and comparison of potentially different representation and retrieval
models. Finally, Army ANT provides a learn mode, that is focused on exploring,
understanding and analyzing each engine and, in particular, the ranking functions.
In order to achieve this, it relies on the visualization of individual score components,
for a given query, per document, and also on the implementation of tracers (Java-
only for now), which are essentially explainers of ranking functions that describe
the ranking function through a tree of togglable nodes.

5.2.2.1 Comparing existing frameworks and Army ANT

Table 5.4 provides a structured comparison of the four frameworks, based on the fol-
lowing features: (1) are they opinionated (i.e., biased towards a particular approach
or technology); (2) have they been actively maintained (i.e., relevant commits in the
last few months); (3) which test collections are supported; (4) which programming
languages and interfaces are supported.

As we can see from Feature 1 (‘Opinionated?’), we classified both Lemur and
Nordlys as opinionated, since they have a clear focus on language models and
entity-oriented search, respectively. We then classified Terrier as non-opinionated,
since it focuses on integrating state-of-the-art approaches in a single package. And
we classified Army ANT as partially opinionated, since provided implementations
are geared towards entity-oriented search, but the framework supports general
search tasks based on keyword queries.

Regarding Feature 2 (‘Maintained / active?’), we found that frameworks are still
actively maintained, although, when Lemur transitioned to Indri, some of Lemur’s
features, like ireval were never integrated with Indri. Both Terrier and Army ANT
have shown relevant activity in the last few months, but Nordlys has only received
maintenance fixes for its most recent commits.

For Feature 3 (‘Suggested test collections.’), we found that all frameworks support
TREC test collections, with Terrier also covering CLEF and Army ANT supporting
INEX test collections, both for ad hoc document retrieval and ad hoc entity retrieval.
Finally, regarding Feature 4 (‘Programming languages and interfaces.’), we found
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Table 5.4: Comparing frameworks for experimental information retrieval.

Framework Comment

1. Opinionated?

Lemur Yes. It has its own query language and, while it supports other weighting models (seen as baselines),
it is focused on language models.

Terrier No. Apart from being purely Java-based, it does a fairly good job at keeping its architecture open
through plugins and even provides some of the Indri query language operators from The Lemur
Project.

Nordlys Yes. It is focused on very specific entity-oriented search tasks.
Army ANT Partially. It supports any retrieval task that uses keyword queries as input, but provided implementa-

tions are focused on entity-oriented search tasks.

2. Maintained / active?

Lemur Partially. The Lemur toolkit has been deprecated, but some of its features (e.g., ireval) have not
transitioned to Indri. Lemur still runs in Windows, but it won’t compile in Linux with recent versions
of gcc (6+). The last commit to SourceForge, at the time of this writing, was done in June 2018.

Terrier Yes. New weighting models and several improvements have been added over the years. The last
commit to GitHub, at the time of this writing, was done in September 2018.

Nordlys Partially. The last commit to GitHub, at the time of this writing, was done in May 2018, for a bug
correction, but the last relevant change occurred almost a year ago.

Army ANT Yes. The last commit to GitHub, at the time of this writing, was done in October 2018, with relevant
additions committed in the last month for the rank correlation analysis module.

3. Supported test collections.

Lemur TREC (trecweb for the web format and trectext/trecalt for the regular format).
Terrier TREC / CLEF (no specific CLEF implementation found).
Nordlys TREC (via trec_eval wrapper).
Army ANT TREC (Common Core track and Living Labs API for OpenSearch track) / INEX (Ad Hoc track and

XML Entity Ranking track).

4. Programming language and interfaces.

Lemur C++. Has bindings for Java. Provides a web interface (Galago).
Terrier Java. Provides a web interface (bin/terrier http).
Nordlys Python. Provides a RESTful API and a web interface.
Army ANT Python. Provides Java and C++ implementations, integrated into Python through JPype and Boost

Python, respectively. Provides a RESTful API and a web interface.

that every framework provides a web interface, but they are written in different
programming languages: Lemur in C++, Terrier in Java, and Nordlys and Army
ANT in Python. Lemur also provides Java bindings and Army ANT provides direct
integration with Java and C++ engine implementations.

While the frameworks all fit into a similar use case of experimentation and evalua-
tion, some are more adequate for particular tasks or settings. Lemur is interesting to
explore language models, through the flexible Indri query language [299], based on
INQUERY [256]. Terrier provides a framework for easy TREC-based experiments,
where Java classes can be created to act as plugins for specific features, such as a
custom weighting model. Multiple state-of-the-art approaches are also provided,
along with the flexibility to deploy for production if needed. Nordlys, while still a
research prototype, does an excellent job at establishing and providing base imple-
mentations for relevant tasks in entity-oriented search. It is currently relies on data
from DBpedia [94], FACC [300] and a pre-trained word2vec model based on Google
News1. These are fundamental features for any entity-oriented modern search en-
gine, that weren’t easily available before Nordlys. Finally, Army ANT can be used
as a codebase to support novel ideas on information retrieval, without the need
to start from scratch in respect to any feature that is secondary to the main idea.
For instance, if the focus is on query expansion, then you can simply extend an
existing engine, add a query expansion function and feed the expanded query back
to the original search method. This is, in a way, similar to what Terrier provides.
The difference is that Army ANT’s structure is a lot more relaxed and close to the
user interaction layer. Nevertheless, even if the main user action is to search, we
still need to ensure pagination and a common format for results to be displayed
correctly. Once an engine is implemented, it can be immediately used to index any
of the supported collections, available through one of the Reader subclass, and even
to evaluate the retrieval model through standard test collections, as implemented

1 https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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through an Evaluator subclass. In any case, the developer can implement new read-
ers or evaluators, as required, but the abstractions in Army ANT always remain
close to the user requirements.

5.2.3 System architecture

Army ants are larger, altruistic ants, that frequently sacrifice themselves for the well-
being of the colony, for instance by building a bridge with their bodies to ensure
food transportation [301]. In FEUP InfoLab, we have developed the ANT (Ad hoc
search of eNtities and Text) system1, an academic search engine based on the infor-
mation needs of the University of Porto. As ANT evolved into a viable prototype,
there was the need for continued experimentation on a separate platform, while
also providing features for debugging, performance measurement and documenta-
tion. Army ANT was born as an altruistic piece of software, built to preserve and
improve ANT, but also to provide a workbench for innovation. It is based on the
idea of freedom, to motivate creativity and novelty in information retrieval.

While Army ANT can be of general use for the evaluation of search approaches,
it was also developed with some of the specific needs of entity-oriented search in
mind. In particular, there are multiple tasks in entity-oriented search, such as ad hoc
document retrieval (leveraging entities) [62, Ch.8], ad hoc entity retrieval [62, Ch.3],
list search or related entity finding [62, Ch.4], that are not easily explored through
conventional evaluation frameworks. Even if the unification of such approaches is a
possibility, as we have previously proposed [302], this is not easily explorable with
existing tools. Army ANT addresses this particular problem, providing, among
other things, a way for different retrieval tasks to be explored and evaluated. For
instance, the hypergraph-of-entity representation model, that we present in this the-
sis, supports multiple retrieval tasks, based on a unified ranking function, namely
ad hoc document retrieval, ad hoc entity retrieval, or even term retrieval, where a
ranking of related terms is provided for a given keyword query. This related term
retrieval task was included merely as a possibility of the explored model, which is
the kind of serendipity we aim to introduce through Army ANT.

In the remainder of this section, we describe Army ANT’s system architecture,
presenting the structure of collection readers, engines for the representation and
retrieval of collections, databases for metadata storage, evaluators of effectiveness
and efficiency, and the web server for searching, exploring, understanding and an-
alyzing. Army ANT is currently available at FEUP InfoLab’s GitHub2, along with
further documentation, under a BSD 3-Clause license.

5.2.3.1 Overview

Army ANT is built with reusability, flexibility and cross-language interoperability
in mind. In order to respect these requirements, we divided the system into what
we consider the atomic components of information retrieval research:

1. Iterate over the documents in a collection (reader);

2. Index and search those documents (engine),

3. Eventually decorating them with metadata (database);

4. Assess the effectiveness and efficiency of the retrieval (evaluator);

5. Obtain as much additional information as possible about the system, in order
to reiterate and improve (web interface⇒ learn mode).

1 https://ant.fe.up.pt
2 https://github.com/feup-infolab/army-ant/
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Figure 5.11: Army ANT system architecture.

Figure 5.11 provides an overview of the components in Army ANT, illustrating
how they interact with test collections/APIs, as well as with each other. Solid
arrows represent information flow, while dashed arrows represent optional interac-
tions. Dotted arrows are simply used to indicate subcomponents of test collections
(i.e., topics and qrels). In the figure, we can see some of the supported implemen-
tations, namely readers and evaluators for both both disk-based and REST-based
data. We can also see that a query is defined as a task and a sequence of keywords,
and that results can be based on documents, entities and their relations. Each com-
ponent can have a command line icon, as well as a web interface icon, illustrating
how it presents itself to the user.

Figure 5.12 provides an overview of the main dispatchable actions from the com-
mand line (index, search and server), along with the two main HTTP requests han-
dled by the server (GET /search and POST /evaluation). It illustrates a typical work-
flow in Army ANT. Most actions, with the exception of the evaluation, involve
contacting the engine to either index or search documents, as well as the database
to either store or retrieve the metadata for a set of documents. Evaluation con-
sists of queuing tasks that batch-retrieve results for a set of queries, which are then
compared with a ground truth and assessed using metrics like the Mean Average
Precision (MAP) or the required time to search.

5.2.3.2 Readers

A process begins by iterating over a collection of documents and translating each
document into a Document instance. A Document in Army ANT contains a unique
document identifier (required), a text block (optional) and a knowledge block (op-
tional). This is to reflect the focus on combined data and entity-oriented search,
however any configuration can be considered with no impact for the implemented
engines: only the text component; only the knowledge component (entities and/or
triples); or both the text and knowledge components. Each document can also have
a title, if one exists, as well as a dictionary of metadata that will be stored in a
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Figure 5.12: Sequence diagram for Army ANT.

Database. A reader is an iterator of Document and, in order to implement a reader, the
following process must be followed:

1. Create a new class that inherits Reader;

2. Edit the Reader.factory() method to associate the new class to a name (used
in the command line interface during indexing);

3. Implement the __next__() method, which should return a single instance of
Document, or raise StopIteration when no more documents are available. This
is where test collections are read and preprocessed.

We already provide six readers out-of-the-box, for five different collection for-
mats: CSVReader, which uses column suffixes to identify the doc_id and columns
representing values to append to the text block; INEXReader and INEXDirectoryReader,
which can either load a single INEX 2009 Wikipedia collection [112] archive, or a
set of archives within a directory, respectively; WikipediaDataReader to iterate over
passages of the Wikipedia Relation Extraction Data v1.0 [267], LivingLabsReader

, which reads documents directly from a Living Labs API endpoint [246], used
for instance in TREC OpenSearch track [276], and TRECWashingtonPostReader for the
TREC Washington Post Corpus1, used for the first time in TREC 2018 Common
Core2 and News3 tracks. Each reader uses a source_path parameter to pass corpus
location information in the style of a JDBC connection string, as well as an optional
features_location (e.g., document profiles) and limit parameters, whose usage is
particular to each specific reader.

1 https://trec.nist.gov/data/wapost/
2 https://trec-core.github.io/2018/
3 http://trec-news.org/
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5.2.3.3 Engines

As previously stated, each engine is implemented through an Index subclass by
defining its index() and search() methods. Army ANT provides two Index sub-
classes that serve as helpers or prototypes, in particular for two common cases:
ServiceIndex, which simply splits the index_location into host, port and path compo-
nents; and JavaIndex, which initializes the JVM along with common classes, through
the jpype library. An Index can also implement an optional load() method, which is
used to preload required components to memory. For example, we use the load()

method in the HypergraphOfEntity to fully load the hypergraph, as well as auxil-
iary dictionaries, to RAM, in order to provide better performance, in particular for
repeated web server search queries (singleton pattern). An engine can be imple-
mented using the following steps:

1. Create a new class that inherits Index;

2. Edit the Index.factory() and Index.open() methods to instantiate the new class
by name, for writing and for reading, respectively (used in the command line
interface, for instance as part of the index and search commands);

3. Implement the index() and search() methods, which can be done one at a
time, optionally taking advantage of the Index.analyze() method to tokenize
text.

• The index() method must yield instances of Document by iterating over a
reader. While yielded documents are usually the same as the ones di-
rectly returned by the reader, in some cases multiple documents can be
derived from each document provided by the reader (e.g., if the origi-
nal document is split into multiple documents per section or passage,
or based on its entities, to build virtual documents representing entity
profiles [4]).

There are also index extensions, which are a part of the index type
and, by convention, should be appended to the base identifier using a
colon and an extension identifier (e.g., hgoe:syns:context). Composite in-
dex types should then be dealt with in Index.factory() and Index.open(),
and passed as a list to the respective engine.

• The search() method must return a ResultSet, which is a list of Result.
Each result must contain a score, an id, a name, a type and, optionally, any
of the following fields:

metadata usually containing the name and photo URL for the document
(if the fields name and img_url are found, they are used in the web
interface to display results);

components an array of score components and values (e.g., for a partic-
ular document returned for a given query, the TF might be 2 and the
IDF 1.3).

The result set can also be associated with the following debugging infor-
mation:

trace a tree, where each node contains a message, describing a step in
the ranking approach, and, optionally, a subtree of details (recursive
definition).

trace_ascii a string with a printable version of the trace tree (useful to
include in experiment reports).

The search() method can also take a task, a ranking function and
its parameters as arguments. Supported tasks are defined in Index.

RetrievalTask. Currently, three retrieval tasks are supported: document-
_retrieval, entity_retrieval and term_retrieval, but this can be extended
as required.
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We provide several baseline engines out-of-the-box: LuceneEngine, which sup-
ports TF-IDF, BM25 and divergence from randomness, respectively configurable
as tf_idf , bm25 with parameters k1 and b, and dfr with parameters BM for
the basic model, AE for the after-effect, and N for the normalization; and a
GraphOfWord [16] implementation based on a collection graph [302]. The most recent
release also includes LuceneEntitiesEngine, as a helper for building entity profiles,
LuceneFeaturesEngine, as a helper for experimenting with query-independent fea-
tures, and TensorFlowRanking, as an implementation of a learning-to-rank baseline
that relies on the novel TF-Ranking library1. We also provide some of our own
experimental implementations: GraphOfEntity [302]; and HypergraphOfEntity [303],
a model using a hypergraph-based representation for combined data and a rank-
ing approach based on random walks departing from seed nodes that are likely to
represent the query.

5.2.3.4 Databases

In Army ANT, we separate the actual index from the storage layer. We do this
by chaining iterators: a reader yields documents that are indexed by an engine; an
engine yields indexed documents, potentially with metadata, that are then read by a
Database instance to handle metadata storage. This provides a flexible architecture,
where a typical Lucene index, which can also act as a storage layer, can still be
implemented to do so. This is done by dealing with storage in the engine layer
directly and using the ‘null’ database iterator Index.no_store, which is automatically
chosen when no database information is provided through one of the interfaces
(cf. Section 5.2.4). On the other hand, if the indexing layer should be separated from
the data storage layer, as is the case for HypergraphOfEntity, we can store metadata
in a separate database.

Defining a database follows a similar scheme as the one used for the reader and
engine. A Database subclass must implement the following two methods: store(),
which iterates over an engine’s Document instances, storing metadata for the pro-
vided id; and retrieve(), which extends a list of results (documents or entities) with
their metadata, when it is not directly available from the index. Currently, we only
provide a MongoDatabase implementation. We chose MongoDB since it was already a
dependency for the evaluation module. The database module is secondary in Army
ANT, being used only to ensure a user-friendly display of results when querying
the interfaces.

5.2.3.5 Evaluators

This module is based on the management of a job queue for evaluation tasks.
Each task has a status indicator that can be in one of five states: WAITING (the
task is queued, but inactive), RUNNING (results, usually for a set of given top-
ics, are being retrieved and performance assessed), DONE (evaluation was suc-
cessfully completed), SUBMITTED (used for online experiments, for instance via
LivingLabsEvaluator), or ERROR (if it fails in a controlled manner).

Whenever a task is DONE, it is extended with a results field that contains a dictio-
nary, where each key is a unique parameter identifier that points to a ranking_params
dictionary, with further details, and to a metrics dictionary, containing effectiveness
metrics and their respective values. A completed evaluation task can also be ex-
tended with a stats field, with a similar structure to the results field, but usually
containing efficiency metrics, like the time per query for each topic (query_time)
or the total and average query times (total_query_time and avg_query_time). Finally,
each task also provides a downloadable zip archive containing intermediate results
or additional details about the calculation of the evaluation metrics. The archive

1 TF-Ranking supports the learning of a groupwise scoring function [38], besides relying on the traditional
pointwise, pairwise and listwise loss functions for training. It can be found at https://github.com/

tensorflow/ranking.

129

https://github.com/tensorflow/ranking
https://github.com/tensorflow/ranking


5.2 army ant: a workbench for innovation in entity-oriented search

might include a CSV with the average precisions per topic, as used to calculate
the mean average precision, or multiple CSVs with the results for each individual
topic, cross-referenced with the relevance per retrieved item, according to a ground
truth. Next, we illustrate the file structure of an example archive created from a
Lucene-based evaluation using TF-IDF.

5b4df784344f8640a29576dc.zip

eval_metrics.csv

eval_stats.csv

evaluation_details

no_params

map_average_precision_per_topic.csv

p_at_1000-precision_at_1000_per_topic.csv

p_at_100-precision_at_100_per_topic.csv

p_at_10-precision_at_10_per_topic.csv

precision_recall_per_topic.csv

search_results

no_params

2010003.csv

2010014.csv

2010023.csv

2010032.csv

2010038.csv

2010040.csv

2010049.csv

2010057.csv

2010079.csv

2010096.csv

Based on the tree, we can see that there are two summary files, eval_metrics.csv and
eval_stats.csv, with the overall effectiveness and efficiency measurements. The evalu-
ation_details/ directory contains a subdirectory per parameter configuration, in this
case no_params/, since TF-IDF does not take any parameter. Evaluation details in-
clude the average precisions per topic, as well as precisions at different cutoff values
n ∈ {10, 100, 1000} and the overall prevision and recall per topic, including true and
false positives and negatives, as well as the F-measure for β ∈ {0.5, 1, 2}. Finally, the
search_results/ directory also contains a subdirectory per parameter configuration,
each with a CSV per topic, containing the columns rank, score, doc_id and relevant
(“True” or “False”, based on the ground truth provided in INEX 2010 Ad Hoc track).
Besides the individual downloadable archive, with details about the particular task,
there is also an overall summary table that combines the effectiveness metrics from
each task. In order to simplify model comparison, this is previewable in the web
interface and it can also be configured and downloaded as a CSV or LATEX table
(cf. Section 5.2.4.2).

In order to create an evaluator, it must be a subclass of Evaluator and implement
a run() method to populate the results field with effectiveness metrics (e.g., MAP,
NDCG@10) and the stats field with efficiency metrics (usually search times). We
currently provide three evaluators out-of-the-box. The first is INEXEvaluator, which
is based on the INEX 2009 Wikipedia collection and supports the topics and rele-
vance judgments from the 2009 and 2010 Ad Hoc tracks, as well as the 2009 XML
Entity Ranking track. A document is considered relevant whenever it contains a
relevant passage (binary grading) and an entity is considered relevant for grade 1

and not-relevant for grade 0 (grade 2 judgments are converted to grade 0, consider-
ing ‘not-an-entity’ as not-relevant). The second evaluator we provide is for standard
TREC topics and relevance judgments. TRECEvaluator was designed based on TREC
2018 Common Core track and, as such, it provides an additional TREC results file
within the downloadable zip archive, which can be used with trec_eval. Finally,
there is also a LivingLabsEvaluator, which submits a run for each query provided
by a Living Labs API endpoint (e.g., TREC OpenSearch), assuming a previously
indexed collection, usually based on the LivingLabsReader (cf. Section 5.2.3.2).

5.2.3.6 Secondary packages

Secondary packages, by degree of importance, include: analysis, features, sampling,
extras and server. These packages provide auxiliary features that complement or
support experiments. More importantly, they provide a well-defined location for
implementations that are commonly required for information retrieval research.
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analysis The analysis package currently provides two functions for the retrieval
and comparison of search results: rank_correlation(), to compare rankings from
two different engines, and rws_rank_concordance() to measure the rank stability for
a single engine based on the Random Walk Score (RWS). The rank_correlation()

function receives parameters for two engines, including an index location and a
type, as well as a ranking function and its parameters. The rws_rank_concordance()

function receives parameters for an index location and type, as well as the length
and number of iterations for the random walks in RWS. Both functions iterate over
a set of topics from a file, and save the output to a given directory. Each function
supports a cutoff parameter in order to obtain the ‘Correlation@n’ or the ‘Concor-
dance@n’, respectively. A method parameter is also provided to select a different
correlation or concordance metric (currently, only “spearman” and “kendall” are sup-
ported, respectively). Finally, the repeats parameter is also available to be used with
nondeterministic ranking functions, such as RWS, repeating the experiment multi-
ple times and providing an aggregated statistic for robustness.

features The features package includes subclasses of FeatureExtractor, which
iterate over a collection using a reader and extract features from documents. A
feature extractor must implement the extract() method. Features can then be pro-
cessed by an engine, as an extension, during indexing, if the engine supports ex-
ternal features. At this time, only the Word2VecSimilarityNetwork is provided in the
features package. It processes a corpus, extracting word embeddings and creating
a similarity network, where each word is linked to the top-k words with a cosine
similarity above a given threshold. The result is saved as a GZipped GraphML file
that can be used when creating for instance a hypergraph-of-entity index with the
context extension.

sampling The sampling package was created as a generic way to implement in-
dependent collection samplers. We currently only provide an INEXSampler, which
is based on a random selection of topics and the documents mentioned in the rel-
evance judgments for those topics, optionally including linked documents. This is
particularly useful either to produce a tiny development test collection, or simply
to reduce the scale when building experimental retrieval approaches that are slower
than conventional approaches.

extras The extras package contains additional features that are either specific
to collections or indexes, and that do not fit any other package. We currently im-
plement a function to fetch the first infobox image for Wikipedia collections that
use the URL of the article as the doc_id. We also include a word2vec_knn() and a
word2vec_sim() to explore the models generated by the Word2VecSimilarityNetwork

feature. The first function retrieves the k-nearest neighbors of a given word, while
the second function displays the cosine similarity between two words. Finally, we
also provide a fetch-dbpedia-entities command that hasn’t yet been refactored as
a function in the extras package, despite being a part of the command line extras

module.

server The server package contains the RESTful services and the web interface.
It is also prepared to receive documentation about supported collections and repre-
sentation and retrieval models. We provide further details about the web interface
in Section 5.2.4.2, and in Section 5.2.5.3 we illustrate how documentation can be
created as a part of the server module.
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5.2.4 Interfaces

In this section, we describe the command line interface and the web interface, il-
lustrating how several of the features covered in Section 5.2.3 can be accessed. In
particular, we show how indexing, search and evaluation can be done through the
command line. We also describe how the web interface can be used to explore
search results, illustrating several features of learn mode for visualizing and debug-
ging the ranking functions, and for documenting collection and retrieval models.

5.2.4.1 Command line interface

In this section, we describe the command line syntax, focusing on the most relevant
packages (by pipeline order): features, index, search, analysis and evaluation. Each
particular command can be run through army-ant.py. For example, for search, we
would run:

./army-ant.py search <search-specific parameters...>

In order to list available parameters, for instance for server (which has default val-
ues for all parameters and can run parameterless), we can issue the following com-
mand:

./army-ant.py server -- --help

Some packages, such as features, sampling and extras, also provide subcommands,
particularly for sets of tasks that are semantically similar, but do not share a com-
mon parameter set. For example:

./army-ant.py extras fetch-wikipedia-images <task-specific parameters...>

features During indexing, the data structure can be enriched with external fea-
tures, through what we call index extensions (cf. Section 5.2.4.1). These features are
extracted from documents, by iterating over a reader, and results are stored in the
provided output directory. All features for a collection should be stored in a com-
mon directory, that will then be used by the index package as the base path to find
the specific files or subdirectories that depend on the enabled index extension. Next,
we show an example command for the extraction of a similarity network based on
word embeddings:

./army-ant.py features \

--method "word2vec_simnet" \

--source-path "inex-2009-10t-nl/corpus" \

--source-reader "inex_dir" \

--output-location "/opt/army-ant/features/inex_10t_nl"

index In order to create an index, we must decide which reader to use for itera-
tion over the documents in a collection, and then select the index type and location.
Optionally, we can also store document metadata in a database, which by default
is MongoDB. This also requires the definition of a database name, otherwise re-
sulting in metadata storage to be skipped. The metadata database can be shared
by multiple indexes over the same collection and it’s a step we are only required
to run once for the first engine we are testing. Next, we show an example of an
indexing run using the Living Labs API for the TREC 2017 OpenSearch track and
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the graph-of-entity CSV representation (loadable to Neo4j and configurable as a
GraphOfEntity):

./army-ant.py index \

--source-path "http://api.trec-open-search.org::YOUR_API_KEY" \

--source-reader "living_labs" \

--index-location "/opt/army-ant/indexes/trec2017/graph-of-entity" \

--index-type "goe_csv" \

--db-name "aa_ssoar"

Other parameters, not displayed here, enable the definition of the database type
and location, as well as a limit of documents to index, which is useful for testing
purposes but might not be supported by all readers.

Index Extensions Representation models might have optional features, such as syn-
onyms or context, which we call index extensions. Each individual extension can
be toggled during indexing by a certain order, which, depending on the exten-
sion, might result in a different index data structure. An example of this is the
hypergraph-of-entity with synonym and contextual similarity hyperedges:

./army-ant.py index \

--source-path "localhost:27017/wapo" \

--source-reader "wapo_dbpedia" \

--index-location "/opt/army-ant/indexes/wapo/hgoe-dbpedia-syns-context" \

--index-type "hgoe:syns:context"

--features-location "/opt/army-ant/features/inex_10t_nl"

The previous command will read the TREC Washington Post Corpus from a “wapo”
database on a “localhost” MongoDB instance and annotate it with DBpedia enti-
ties. The index will then be extended with synonyms based on WordNet [304] and
contextual similarity based on the word similarity network extracted through the
features command, as illustrated in Section 5.2.4.1. The colon is used as a separa-
tor for index extensions, added as a suffix to the index type, as show above. For
this particular engine, specifying the index type as “hgoe:syns:context” is different
from specifying it as “hgoe:context:syns”. In the first case, contextual similarity hy-
peredges will also exist between terms that were newly added from WordNet and
did not previously exist in any document of the collection. In the second case, con-
textual similarity hyperedges will only consider terms that were already a part of
the collection. In a different engine, such as LuceneEngine, index features might in-
clude, for instance, a payload weight based on the query-independent relevance of
entities.

search Searching over an index requires a similar set of parameters to the one
used during indexing. In particular, it requires information about the index and,
optionally, about the database, if we want results to also display document metadata.
It also requires a keyword query, as well as optional offset and limit parameters for
pagination. For example, to search for [ computer science ] over the graph-of-entity
for TREC 2017 OpenSearch track’s SSOAR data, we run:

./army-ant.py search \

--index-location "localhost:8182/goe_trec2017" \

--index-type "goe" \

--db-name "aa_ssoar" \

--query "computer science"
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analysis An analysis can be run over a collection, an index or even a set of
extracted features. This means that each analysis has its own particular set of pa-
rameters. For instance, we might want to compare the rankings provided by two
different ranking functions, through Spearman’s coefficient of correlation ρ. Also,
we might want to do this in a nondeterministic scenario (e.g., for a ranking function
based on random walks). The following rank-correlation command does exactly
this:

./army-ant.py analysis rank-correlation \

--index-a-location "/opt/army-ant/indexes/inex-10t-nl/lucene" \

--index-a-type "lucene" \

--ranking-function-a "bm25" \

--ranking-params-a "b=0.75,k1=1.2" \

--index-b-location "/opt/army-ant/indexes/inex-10t-nl/hgoe-syns-context" \

--index-b-type "hgoe:syns:context" \

--ranking-function-b "random_walk" \

--ranking-params-b "l=2,r=1000" \

--topics-path "inex-2009-10t-nl/topics/2010-topics.xml" \

--output-path "/opt/army-ant/analysis/inex_10t_nl-lucene_bm25-

hgoe_syns_context-rank_correlation_at_10" \

--cutoff 10 \

--repeats 100

In this example, we compared two ranking functions for the same INEX collection.
The first was Lucene BM25, with parameters b = 0.75 and k1 = 1.2. The second was
the hypergraph-of-entity’s RWS (Random Walk Score), with parameters ` = 2 and
r = 1,000. For each ranking function and topic, the top-10 results were retrieved
100 times. Obviously this is redundant for BM25, which is deterministic, but not for
RWS, which should converge, despite its nondeterministic nature. Spearman’s ρ is
calculated for each topic, comparing the rankings provided by each ranking func-
tion. This is then repeated 100 times and averaged over all runs per topic. Both
the averages per topic and the overall mean are saved to the output directory. Ad-
ditionally, the Jaccard index, computed in the same manner, is also provided as a
comparison metric of the documents retrieved by the two methodologies.

evaluation The recommended method to manage evaluation tasks is through
the web interface, however we also provide a way to queue and run evaluation
tasks from the command line. These tasks, along with results, will then be listed
in the web interface. There is currently no way to access the results directly from
the command line, but this is something that we will consider in the future. An ex-
ample of a run for the INEX (Ad Hoc) evaluator, based on the INEX 2009 Wikipedia
collection, along with topics and assessments from the 2010 Ad Hoc track, can be
run as follows:

./army-ant.py evaluation \

--index-location "/opt/army-ant/indexes/inex-10-nl/hgoe" \

--index-type "hgoe" \

--eval-format "inex" \

--topics-filename "inex-2009-10t-nl/topics/2010-topics.xml" \

--assessments-filename "inex-2009-10t-nl/assessments/inex2010.qrels" \

--run-id "INEX - Hypergraph-of-Entity - Default Ranking"
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Figure 5.13: Basic search interface with engine selectors and learn mode toggle button.

5.2.4.2 Web interface

The web server was developed using aiohttp1, initially as a requirement to interact
with aiogremlin2, which is a Python library that can handle requests to the Apache
Gremlin Server via the web sockets API. For the front end, we used an approach
based on jinja23, which easily integrates with aiohttp, designing the interface using
spectre.css4. Pages are rendered server-side, with some exceptions in the evalua-
tion interface, where there is asynchronous task deletion, renaming, and restarting,
implemented with plain JavaScript.

In the following paragraphs, we visually describe the components of the web
interface. First, we cover the search component, which is closer to the expected
user experience. We then describe the learn mode, for debugging and documenting.
Finally, we describe the evaluation interface, where runs can be launched for dif-
ferent parameter configurations, in order to assess performance based on standard
metrics.

search Figure 5.13 shows the basic search interface provided by Army ANT. It
consists of a text box for the query (e.g., [ monuments of india ]), next to a combo box
for the selection of the retrieval task (e.g., “Documents”, for ad hoc document re-
trieval). Below, we find two additional combo boxes, to select one of the configured
engines (e.g., “INEX 10T-NL - Hypergraph-of-Entity”), as well as one of its ranking
functions (e.g., “Random Walk Score”). Each ranking function can have a different set
of parameters and available values, which are shown as separate combo boxes (e.g.,
ef, l, nf and r). Engine configuration is illustrated in Section 5.2.5.2. On the right,
we can also find a button to toggle the learn mode. With the learn mode disabled,
a search request will display a summary with the number of retrieved results and
the time taken to run the query. It will also render each result either by displaying
its doc_id or by using the url, name and img_url from metadata, if a database con-
figuration is provided and these fields are available. The search mode also offers
pagination and it’s ideal for basic testing of ranking functions and their parameters.

learn mode In order to better explore, understand and analyze the representa-
tion and retrieval model, Army ANT provides a learn mode. Depending on whether
the developer of the selected engine has implemented the particular feature, learn
mode can provide up to five diagnostic tools: a stripped down results list, show-

1 https://aiohttp.readthedocs.io
2 https://aiogremlin.readthedocs.io/en/latest/
3 http://jinja.pocoo.org/
4 https://picturepan2.github.io/spectre/
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Figure 5.14: Learn mode: parallel coordinates visualization of the score components for a
query to graph-of-word.

ing the rank, score and id for the top 30 documents; a parallel coordinates [305]
score components visualization, to help understand the impact of each component
in the final score and provide an intuition on whether components are correlated
(Figure 5.14); a tracer, explaining in a sequential and hierarchical manner, and with
increasing granularity, how the ranking function was implemented for the issued
query over the given engine configurations (Figure 5.15); a textual description of
the model, usually covering the representation model, the retrieval model and its
ranking functions, the used id, and, when available, a citation to a research paper
with further details; a textual description of the indexed collection, containing infor-
mation about the source and temporal coverage of the data, as well as an example
and, when available, a citation to a paper with further details.

evaluation The evaluation interface enables the measurement of performance
for each engine, based on one of the implemented evaluators. Currently, four of-
fline evaluators and one online evaluator are supported: INEX (Ad Hoc), INEX (XML
Entity Ranking), INEX (XML Entity Ranking - List Completion), TREC (Common Core),
and Living Labs API. The three INEX evaluators are based on the INEX 2009 Wiki-
pedia collection, supporting topics and relevance judgments from the Ad Hoc track
and the XML Entity Ranking (XER) track, respectively. These evaluators are useful
to explore unified models for entity-oriented search, since the same test collection
can be used to assess ad hoc document retrieval, ad hoc entity retrieval, and entity
list completion. The TREC (Common Core) evaluator follows standard TREC for-
mats and was implemented for experiments over the new TREC Washington Post
Corpus, used both in the Common Core track and the News track, during the 2018

occurrence. It supports the preparation of runs to submit to TREC, which can be ob-
tained through the zip archive associated with a completed evaluation task. Finally,
Living Labs API provides an online method, based on team-draft interleaving [245],
for evaluation. This was used in TREC OpenSearch over CiteSeerX (2016), the Social
Science Open Access Repository (2016-2017) and Microsoft Academic Search (2016).

Figure 5.16 shows the evaluation task submission form. In order to queue a new
evaluation task, you must first select one of the evaluators, as well as one of the
engines, from the respective combo boxes. For the offline evaluators, you will at
least have to provide a topics file, as well as an assessments file, provided by the
respective evaluation forum. For online Living Labs evaluator, you will have to
provide the base URL for the API, along with the API key. In any case, you are
required to assign a run ID that will uniquely identify the evaluation task. The
run ID can be renamed later and it will be used as the official run ID for TREC and
Living Labs submissions.
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Figure 5.15: Learn mode: trace for random walk score in hypergraph-of-entity.

Each of the submitted tasks start in the WAITING status and can be selected
by one of the active server threads — note that, by default, only one thread is
launched by aiohttp, but multiple threads can be configured either through Systemd
or Supervisor, as described in Section 5.2.5.1. Once a task is started, it will change to
the RUNNING status and won’t be available to other threads for processing. If the
server is properly shutdown, through a SIGINT (or Ctrl+C), all RUNNING tasks will
be reset to the WAITING status and restarted the next time the server is initialized.
Once a task is completed, it will change to the DONE status, providing access to the
evaluation metrics button / , depicted in Figure 5.17, as well the downloadable
zip button , to obtain further evaluation details. Any task in the DONE status
will also be included in the download of the overall summary (Figure 5.18). There,
you will be able to select a set of effectiveness metrics, the number of decimal places
and other columns to include in the summary table, which can then be downloaded
as a CSV, or a LATEX file that you can include in your research paper. Since each
researcher uses different performance metrics, we provide a configuration for the
favorite metrics, so that researchers can quickly toggle the ones relevant to them.

5.2.5 Typical workflow

In this section, we present a typical workflow for developing and testing a new
search engine using Army ANT. Through a use case, we describe the configuration
process, as well as server deployment in a Linux system. We show how to setup
either Supervisor or Systemd to launch multiple server threads or, as an alternative,
how to use Docker Compose and automatically built Army ANT Docker images.
Finally, we provide details on how to implement the components required to con-
veniently exploit learn mode over an engine, including how to implement a tracer,
how to provide score component data and how to document a model.
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Figure 5.16: Evaluation task submission form.

Figure 5.17: Evaluation task results for Lucene TF-IDF.

5.2.5.1 Use case

Let us assume the following use case. We have an idea for a distributed index that
we want to implement in Java, but, in order to do so, we would need a collection
to index first. We already know that Army ANT provides an INEXDirectoryReader

class that iterates over the individual documents of a set of archives for the INEX
2009 Wikipedia collection. We download the whole INEX collection to a inex-2009/
directory, putting the archives in a corpus/ subdirectory, the queries in a topics/ sub-
directory and the relevance judgments in an assessments/ subdirectory. However, we
would also like to have a smaller collection to use only during development. We
can take advantage of the sampling command to do this:

./army-ant.py sampling inex \

--qrels-input-path "inex-2009/assessments/inex2010.qrels" \

--qrels-output-path "inex-2009-10t-nl/assessments/inex2010.qrels" \

--topics-input-path "inex-2009/topics/2010-topics.xml" \

--topics-output-path "inex-2009-10t-nl/topics/2010-topics.xml" \

--corpus-input-path "inex-2009/corpus" \

--corpus-output-path "inex-2009-10t-nl/corpus" \

--query-sample-size 10
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Figure 5.18: Evaluation session results export modal.

We can now create a new class within index.py, for instance named
DistributedIndex that inherits from JavaIndex. We then open the java-impl project
in the external/ directory at the root of Army ANT and create a new subpackage un-
der armyant for our implementation and we can optionally extend Engine to provide
a basic structure to our index, as well as easy access to some utility methods such
as the analyze() method. The Java implementation of Army ANT already provides
a set of data structures, such as Document or Triple, that can be used in conjunction
with Engine to streamline the process. We then go ahead and implement the index()

method within a newly created DistributedIndex Java class and compile the project
by running the following command from the root directory java-impl:

mvn compile assembly:single

Next, we can go to the Python’s instance of DistributedIndex and implement index()
simply by iterating over self.reader and creating instances of JavaIndex.JDocument

from each iterated Python Document.
Before being able to index the INEX sample with DistributedIndex, we must first

add an entry to the Index.factory() and Index.open() methods, providing a name
for our engine (let’s say we call it distr). We can now use the Army ANT command
line interface to test the distributed index we created:

./army-ant.py index \

--source-path "inex-2009-10t-nl/corpus" \

--source-reader "inex_dir" \

--index-location "indexes/distr" \

--index-type "distr"
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When everything works as expected with the indexing process, we can imple-
ment the search() method (cf. Section 5.2.3.3) in a similar manner and prepare for
deployment.

5.2.5.2 Deployment

In order to run the web server, we are required to edit config.yaml, setting up an en-
gine by configuring parameters like index location and type, or supported ranking
functions. We can then either launch a local instance directly using the ./army-ant.py
server command or deploy the server using Supervisor or Systemd for a more per-
manent and maintainable solution. For convenience, we also provide automatically
built Docker images, that are installable through Docker Compose or available from
Docker Hub1.

yaml configuration All Army ANT internal configurations are stored within
config.yaml, which is divided in two main sections: defaults and engines. As shown
in the following example, the defaults section contains: default database configu-
rations (db), which can be overridden per engine; evaluation configurations (eval),
including the favorite metrics used to configure the downloadable CSV or LATEX
comparison table (cf. Section 5.2.4.2); web service configurations (service); con-
figurations for manually downloaded dependencies (depend); and JVM configura-
tions (jvm), in particular for the heap size in mebibytes and other additional argu-
ments.

defaults:

db:

location: localhost

name: army_ant

type: mongo

eval:

metrics:

favorite: [GMAP, MAP, NDCG@10, P@10]

location: /opt/army-ant/eval

service:

ner:

entity_list: /opt/army-ant/gazetteers/all.txt

depend:

stanford-ner: /opt/stanford-ner-2015-12-09

jvm:

memory: 5120

other_args: -XX:+UseConcMarkSweepGC

In this example, the main database is “army_ant”, provided by a MongoDB local-
host instance. This is used to store evaluation tasks, as well as document metadata.
In this configuration, we also defined the favorite evaluation metrics to be the ge-
ometric mean average precision (GMAP), the mean average precision (MAP), the
normalized discounted cumulative gain at a cutoff of 10 (NDCG@10) an the preci-
sion at a cutoff of 10 (P@10). The path for a list of entity names is also provided, as
a setting for the named entity recognition service, while the path to Stanford NER is
included as a dependency for NLTK 3.2.1 StanfordNERTagger wrapper, and the JVM
is assigned 5 GiB of heap size and runs with the ConcMarkSweepGC garbage collector.

Let us now assume a configuration for the use case presented in Section 5.2.5.1.
The goal is to add an entry with the configuration for the DistributedIndex engine.
Let us also consider that it supports two ranking functions: TF-IDF, without pa-
rameters, and BM25, with parameters k1 and b. The following example, shows a
possible configuration for this use case.

1 https://hub.docker.com/repository/docker/jldevezas/army-ant/
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engines:

distr-inex-10t-nl:

name: INEX 10T-NL - Distributed Index

db:

name: aa_inex

index:

type: distr

location: /opt/army-ant/indexes/inex-10t-nl/distr

ranking:

default:

id: bm25

functions:

tf_idf:

name: TF-IDF

bm25:

name: BM25

params:

k1: [1, 1.2, 1.8]

b: [0.5, 0.75, 1]

Each engine has its own unique key, usually descriptive of the type of index, but
also the indexed collection (e.g., “distr-inex-10t-nl”, for a distributed index over the
INEX 10T-NL collection). The engine should have a display name, as well as in-
formation about the index type and location. In the ranking section, we can define
the default ranking function, out of a list of supported ranking functions that we
provide. Each ranking function has its own display name and a dictionary of param-
eters and respective selectable values. Once the configuration is prepared, we can
launch Army ANT’s web server, either directly through the command line, usually
for development and testing, or by deploying it through Supervisor or Systemd and
an HTTP server such as nginx.

supervisor/systemd and nginx We provide example configuration files, in
the syadmin/etc directory, for Supervisor (supervisor/conf.d/army_ant.conf ), for Sys-
temd (systemd/system/army_ant@.service) and for Nginx (nginx/sites-available/army-
ant). Either install the Supervisor version or the Systemd version, by copying
the configuration file to the corresponding system directory under /etc and edit-
ing the paths to point to the Army ANT directory. For Supervisor, you can run
supervisorctl update to activate the service, launching four server threads. For Sys-
temd you must first activate the service by running systemctl daemon-reload and
then run systemctl start army_ant@{1..4} to launch four server threads; you can
also use enable in place of start to ensure the service is reactivated on system
restart. Nginx will then expect four server threads as Unix sockets (the default), as
well as a /etc/nginx/.htpasswd that you can comment out if restricting access is not
required. Simply copy the Nginx configuration file to /etc/nginx/sites-available and
then create a symbolic link in the sites-enabled directory, restarting Nginx.

installing as a container via docker compose Army ANT provides auto-
mated Docker images for the git master branch, tagged as latest in Docker Hub, for
the develop branch, tagged as testing in Docker Hub, and for non-release-candidate
versions, tagged with the respective version (e.g., 0.4.2). We also provide builds
for specific tags, corresponding to releases used in events or mentioned in specific
publications (e.g., ecir-2020-demo). Installation can be done by cloning Army ANT
Install git repository1 and running docker-compose up. Different docker containers
can also be created per project, by running the docker-compose -p <project-name> up

command instead. Two volumes are provided, the first for config.yaml, making it

1 https://github.com/feup-infolab/army-ant-install
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editable in the local machine, and the second for the data/ directory, used to trans-
fer collections, indexes and other files between the local machine and the container
(/home/army-ant/data). This means that, when indexing a new collection (e.g., “inex-
10-nl”), we can simply copy it to the data/ directory and run:

docker exec -i -t armyantinstall_army-ant_1 ./army-ant.py index \

--source-path "/home/army-ant/data/collections/inex-10t-nl/corpus" \

--source-reader "inex_dir" \

--index-location "/home/army-ant/data/indexes/inex-10t-nl/lucene" \

--index-type "lucene"

The created index will be easily accessible in the local machine through the
data/indexes/inex-10t-nl directory.

5.2.5.3 Exploiting learn mode

Army ANT provides a learn mode, for debugging and documenting the representa-
tion and retrieval models. However, in order for this feature to be useful, a new en-
gine must first implement several components, including a tracer (best supported in
Java), a dictionary of score components per retrieved document, and HTML+Jinja2

documentation for the collection and model — documentation can have dynamic
elements, for instance to better illustrate active index extensions or the selected
parameter values in the active query.

implementing a tracer A trace is simply an ordered tree, where each node has
an associated message and an ordered list of child nodes corresponding to details
on the current node. The root node globally represents the retrieval model and
nodes at progressively deeper levels will instantiate and illustrate retrieval details
with an increasing granularity. The JSON serialization of a trace is illustrated next.

{

"message": "Model Trace",

"details": [

{

"message": "Mapping query terms [ rock, music ] to query term nodes",

"details": [

{ "message": "TermNode{name=’rock’}" },

{ "message": "TermNode{name=’music’}" }

]

},

{

"message": "Mapping query term nodes to seed nodes",

"details": [

{ "message": "EntityNode{name=’Music of Jharkhand’}" },

{ "message": "EntityNode{name=’Doctor of Music’}" },

{ "message": "EntityNode{name=’glam rock’}" },

...

]

}

]

}

In the Java implementation, you can use the class Trace to help you prepare the
JSON and ASCII serializations of the tree. It provides an add() method with syntax
similar to String.format() to assign the message for the current node. It also pro-
vides goDown() and goUp() methods that can be called, for instance, before and after
loops, as messages are sequentially added to the trace instance as new child nodes.
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Table 5.5: Recommended metadata for collections and models.

Field Description

Collections

Representation Model Describe the data structure and the information encoded in the index. Index extensions
should also be described here as a sublist with one item per extension.

Ranking Model Explain the retrieval approach and weighting model. If there are multiple ranking func-
tions, they can be described in a sublist, with one function per item.

Doc/Entity ID Depending on the retrieval task, this could either be an identifier for a document, entity
or another item. This field clarifies this and describes the format of the ID.

Paper When possible, include a reference to the paper (or papers) that describe the model. Use a
<blockquote> element for the bibliographic reference, with a <cite> element containing an
anchor to the publication.

Models

Source Include an anchor to the online source of the dataset, usually providing a way to download
or solicit the data.

Date Temporal coverage of the data (i.e., period of time it refers to).
Description Brief description of the data collection, including relevant information about the content,

its format, origin, etc.
Example Fragment of a document or item in the collection.
Paper When possible, include a reference to the paper that describes the collection. Use a <

blockquote> element for the bibliographic reference, with a <cite> element containing an
anchor to the publication.

providing score components Score components provide a way to observe
the values of individual components of the ranking function, instantiated for a
particular document that was retrieved. Let us for instance consider a simplified
weighting model based on TF-IDF, where the score of a document d is given by
the sum, over all query terms t, of the product between the term frequency in
the document tf(t,d) and the inverse document frequency of the term idf(t). For
each document, we could then discriminate between these two components for each
query term. We illustrate this next with the results value of a JSON response from
Army ANT’s server, for a query with two terms.

[

{

"id": "1547719",

"score": 3.45,

"components": [

{ "docID": "1547719", "tf(t, d)": 3, "idf(t)": 0.9 },

{ "docID": "1547719", "tf(t, d)": 15, "idf(t)": 0.05 }

]

},

{

"id": "17713850",

"score": 2.5,

"components": [

{ "docID": "17713850", "tf(t, d)": 3, "idf(t)": 0.5 },

{ "docID": "17713850", "tf(t, d)": 10, "idf(t)": 0.1 }

]

},

...

]

Each object in a components array corresponds to one of the query terms. It contains
keys and values for docID, tf(t, d) and idf(t), which will be mapped to a dimension
in the parallel coordinates visualization (Figure 5.14). It would have been an option
to also add a dimension for the query term or for a document length normalization
component, were they a part of the weighting model. Score components are a part
of the Result classes in the Python, Java and C++ implementations.

documenting the model Collection and model documentation is done directly
in HTML+Jinja2, as part of the source code. In particular, each collection or model
should have a corresponding file under army_ant/server/templates/search/debug, filed
under collections/ or ranking_models/, respectively. A documentation file should con-
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Table 5.6: Dynamic variables available within documentation files.

Variable Description

engine A string with the engine identifier (e.g., “hgoe-inex-10t-nl”).
index_features An array of enabled index extensions (e.g., [“context”, “syns”]).
task A string with the name of the retrieval task (e.g., “document_retrieval”).
rankingFunction A string with a ranking function identifier from the active engine (e.g., “random_walk”).
rankingParams A dictionary of ranking function parameters and their values as strings (e.g., {l: “2”, r:

“1000”}).
query A keyword query (e.g., [ rock music ]).
debug A flag showing whether learn mode is enabled (“on”) or disabled (“off”).
time The number of seconds required to rank and retrieve the documents (e.g., 4.23).
offset Used to indicate where the current page begins.
limit Maximum umber of results per page.
numDocs Total number of retrieved documents.
page Current page number.
pages Total number of pages.
results Array of result objects, containing an id, a score and a components array.
metadata Document metadata, for the retrieved documents, as stored in the database and if avail-

able.
trace Object with an ordered tree of messages and details.
trace_ascii ASCII version of trace, to print in a command line or store in a research log.

tain a <dl> element with <dt> and <dd> elements for the metadata recommended in
Table 5.5. Each list entry can also make use any of the dynamic variables available
in the context of the search and learn mode modules, as listed in Table 5.6. Doc-
umentation is then displayed based on the engine identifier, which should consist
of a model identifier (e.g., distr), followed by a dash and a collection identifier (e.g.,
inex), with the same names as the respective documentation files. Remaining parts
of the engine identifier string, after an optional second dash, will be ignored.

144



5.2 army ant: a workbench for innovation in entity-oriented search

summary
In this chapter, we presented the two main software contributions that we devel-
oped throughout this doctoral work: ANT, and Army ANT. For ANT, we focused
on describing three main aspects: (i) search engine architecture; (ii) event ranking
based on the entities and relations extracted from the news announcing the events;
and (iii) query understanding based on query segmentation and semantic tagging,
and supported on the entity catalog from ANT’s knowledge base. For Army ANT,
we focused on describing the system architecture, as well as the command line
and web interfaces, illustrating a typical development and research workflow, with
a focus on the implementation of new search engines, while taking advantage of
learn mode to inspect the index and debug the ranking function. We also promoted
the documentation of the representation and retrieval models, in a useful and dy-
namic way, so that other information retrieval scientists can benefit from our open
source platform for innovating in this area, while exploring and evaluating their
own work.
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Managing large volumes of digital documents along with the information they con-
tain, or are associated with, can be challenging. As information systems evolve
towards intelligence, it increasingly makes sense to power retrieval through all
available data, where every lead makes it easier to reach relevant documents or
entities. Modern search is heavily powered by structured knowledge, but users still
query using keywords or, at the very best, telegraphic natural language. As search
becomes increasingly dependent on the integration of text and knowledge, novel
approaches for a joint representation of corpora and knowledge bases present the
opportunity to unlock new ranking strategies.

We tackle entity-oriented search using graph-based approaches for representation
and retrieval. In particular, we begin by proposing a model called graph-of-entity,
as a novel approach for indexing combined data, where terms, entities and their
relations are jointly represented. We compare the graph-of-entity with the graph-
of-word, a text-only model, verifying that, overall, it does not yet achieve a better
performance, despite obtaining a higher precision. Our assessment was based on
the INEX 2009 10T-NL subset, described in Section 4.1.1.2, which was created from
a sample of 10 topics and respectively judged documents. The offline evaluation
we do here is complemented by its counterpart from TREC 2017 OpenSearch track,
where, during our participation, we assessed the graph-of-entity in an online setting,
through team-draft interleaving.

The online evaluation at TREC 2017 OpenSearch was carried over the SSOAR site
(Social Science Open Access Repository), using the title and the abstract as a text
block and the remaining metadata as a knowledge block. Unfortunately, due to
a technical problem with the OpenSearch track infrastructure, we were unable to
obtain feedback for the real round during August 2017. As an alternative, we were
offered the opportunity to participate in a third extraordinary round, happening
during October 2017, as well as provided with available feedback from the period
between the two official rounds, at the end of July 2017. We obtained an outcome
of 0.375 for the graph-of-word and 0.167 for the graph-of-entity, based on only
29 impressions with clicks, out of a total of 4,683 impressions. According to this
small number of clicked impressions, both models performed below the site’s native
search, with graph-of-entity performing below graph-of-word, in concordance with
the offline evaluation.
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6.1 unification over graph-based models

The structure of this chapter is organized as follows:

• Section 6.1 introduces several unification aspects that can be supported by
graph-based models, both for the joint representation of corpora and knowl-
edge bases, and for the generalization of retrieval tasks, along with prepro-
cessing tasks, specific to entity-oriented search.

• Section 6.2 presents the technologies that we used for these experiments, as
well as a toy example, for describing our implementation of graph-of-word, an
existing graph-based representation and retrieval model, as well as our own
novel model for combined data, the graph-of-entity.

• Section 6.3 describes the evaluation approach used to compare the graph-of-
word and the graph-of-entity, based on a small subset of the INEX collection,
as well as the participation in TREC 2017 OpenSearch, which relied on an
online assessment approach based on team-draft interleaving.

• Section 6.4 discusses the carried experiments and obtained results, after find-
ing two underperforming retrieval models, one of them inconsistently so in
regard to the literature. We justify the pursuit of further experiments to im-
prove this graph-based model.

6.1 unification over graph-based models
As the production of digital documents continues to increase, the answers we are
looking for become harder to reach, particularly when relying only on identifiers
and linked data to directly reach relevant content. Moreover, using a structured
query language is frequently inappropriate for a regular user, who prefers natural
language to express their information needs [306]. Full-text search is often the
answer, but it inherently discards structure, which is extremely valuable to increase
precision. In this work, we attempt to integrate unstructured text and structured
knowledge in order to improve retrieval effectiveness in entity-oriented search tasks.

Search has evolved from keyword-based matching. Over time, it has grown in-
creasingly dependent on semantic matching, largely supported on natural language
understanding techniques. The need to integrate unstructured text and structured
knowledge has substantially increased. In fact, one of the biggest challenges in se-
mantic search is dealing with heterogeneity [147], in particular on the web, where a
potentially unlimited number of topics exist. We tackle the problem of heterogene-
ity in entity-oriented search by proposing a unified graph-based model for terms
and entities, where relations are seen as leads to be followed in the investigation of
a given information need.

The more accurately a user’s information need is identified through query under-
standing, and the better the information within a document is understood, the more
likely the query will be matched with relevant documents or entities mentioned in
those documents. This frequently results in improved retrieval effectiveness and,
therefore, increased user satisfaction. What about when there is ambiguity? Can
we always use entity linking to segment and semantically tag a query, discarding
all other segmentations, even those which are equally likely? What if we were un-
able to provide an adequate answer to the users, even though the information they
sought was available in the indexed corpus?

In the graph-of-entity, we integrate query entity linking into the ranking process,
that is, a given entity in the graph is more relevant if it was reached from a nearby
seed node (usually another entity) whose probability of being a good representation
of the query is high (i.e., it has a high confidence weight). This probability models
the certainty degree of the query entity linking process.
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Listing 6.1: SPARQL query for the shortest
path between Axel A. Weber and
Solingen in DBpedia.

PREFIX : <http://dbpedia.org/resource/>

SELECT DISTINCT ?s ?o1 ?t

WHERE {

VALUES ?s { :Axel_A._Weber }

VALUES ?t { :Solingen }

?s [] ?o1 .

?o1 [] ?t

}

Listing 6.2: SPARQL query for the shortest
path between Axel Weber (athlete)
and Solingen in DBpedia.

PREFIX : <http://dbpedia.org/resource/>

SELECT DISTINCT ?s ?o1 ?o2 ?o3 ?o4 ?o5 ?t

WHERE {

VALUES ?s { :Axel_Weber_(athlete) }

VALUES ?t { :Solingen }

?s [] ?o1 .

?o1 [] ?o2 .

?o2 [] ?o3 .

?o3 [] ?o4 .

?o4 [] ?o5 .

?o5 [] ?t

}

For example, let us assume the ambiguous mention to “Axel Weber”, who, accord-
ing to Wikipedia, can either be the athlete or the economist. Let us now assume
that the query also mentions “Solingen”, which is the birthplace of Jens Weidmann,
the successor of Axel A. Weber, the economist. Now, the probability of “Axel We-
ber” referring to the economist increases, but there might also be a longer path
connecting “Axel Weber”, the athlete, to Solingen. We can easily check this using DB-
pedia’s SPARQL endpoint, by manually testing increasingly longer paths between
both “Axel Weber” individuals and Solingen. Listing 6.1 shows the SPARQL query
for the shortest path between Axel A. Weber and Solingen, which are only linked
by one other entity, Jens Weidmann — this is consistent with what we have already
described. Listing 6.2 shows the SPARQL query for the shortest path between Axel
Weber (athlete) and Solingen, which are linked by five other entities, through two
distinct paths — no shorter path would link the two entities. While the query [ axel

weber solingen ] is more likely to refer to “Axel Weber”, the economist, there might
still be a niche where users could be searching for “Axel Weber”, the athlete, investi-
gating whether there is a relation between the person and the location.

This type of unified approach is more prepared to take advantage of available
information, discarding no lead, in order to provide the freedom to search for all
matching items. We might say that word or entity disambiguation would happen
“organically” during the process of ranking. The hypothesis is that this might im-
prove effectiveness for search queries in the long tail [307], in particular by increas-
ing recall without decreasing precision.

In the last few years, there has been work in graph-based approaches for informa-
tion retrieval [15, 16], and also a growing need for unified models [85, 257, 258, 302].
While many solutions focus on the integration of signals obtained from text repre-
sented in an inverted index with signals obtained from external knowledge bases
like Wikipedia [92], there have been few attempts at modeling text and knowledge
in an unified manner, as a single data structure.

In this experiment, we build on the idea of the graph-of-word [16] to propose a
novel graph-based model that combines text and knowledge within a single rep-
resentation. The graph-of-word is a document-based graph [15] where terms are
represented by nodes, providing directed links to the following n = 3 terms, as a
way of capturing context. The graph-of-entity also captures the links between terms,
still accounting for term dependence, but also the links between entities, similarly
to RDF. RDF is frequently used to represent knowledge bases such as DBpedia (the
structured version of Wikipedia), through semantic triples of subject, predicate and
object, that can be seen as a graph and, perhaps more importantly, it also captures
the links between terms and entities, in an attempt to connect unstructured and
structured data. On one side, the model is capable of representing the properties
of terms in a text document, as well as the properties of entities and relations in a
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knowledge base. On the other side, it provides a way to cross reference all avail-
able information, independently of the source, as well as an opportunity to define a
common set of operators that simultaneously work for text corpora and knowledge
bases.

two aspects combined From the surveyed literature (Chapter 2), we can make
two assumptions about entity-oriented search. First, structured data from knowl-
edge bases, which is inherently representable as graphs, is a fundamental part of the
semantic search process. Therefore, knowledge bases must somehow be integrated
into the existing frameworks, which are mostly supported by inverted files. Many
approaches exist to integrate signals from text and knowledge, but fewer common
representation models have been proposed so far. Secondly, graphs have consis-
tently been used to improve text retrieval, even outperforming weighting schemes
such as BM25. Graphs can thus be used to represent text and are also frequently
used to represent knowledge. It is definitely of value to study how to combine
these types of graphs, in order to take advantage of the information locked within
unstructured data through the integration of structured data — the knowledge base
augments the text, through entities and their relations, and the text augments the
knowledge base, providing leads to new information, seamlessly and through a
common model (all are nodes in a graph).

What we propose is that the representation model for text and knowledge should
be shared, using a graph data structure to capture discourse properties from text, re-
lations between entities from knowledge bases, and term–entity associations based,
at the very least, on potentially obvious relations between terms and entities (e.g.,
through substring matching). The ideal graph-based representation should: (i) cap-
ture information complexity, while avoiding redundancy; (ii) facilitate the cross-
reference of information from distinct individual sources; (iii) propose a clear rep-
resentation for combined data (text + knowledge) [92, Definition 2.3] that is easily
extensible to other types of media. The open research question is whether or not
such a combined data model will, through the unlocking of innovative weighting
schemes, improve retrieval effectiveness. In this chapter, we propose and evaluate
a baseline model, the graph-of-entity, which defines a graph-based representation
for combined data, as well as a graph-based weighting scheme that can be used
for entity ranking. We compare the graph-of-entity with an implementation of the
graph-of-word, in order to position our baseline model within the state of the art.

6.2 representation and retrieval
In our experimental workbench, we implemented the graph-based models using
a graph database per index (Neo4j1) and the ranking functions using the Grem-
lin DSL2. The goal of this work was to propose a graph-based representation for
combined data (text and knowledge), while using the graph-of-word as a text-only
baseline. Figures 6.1 and 6.2 illustrate the graph-of-word and graph-of-entity mod-
els, described in the following sections, based on the first sentence of the Wikipedia
article for ‘Semantic Search’ (i.e., our example collection consists of only one docu-
ment with a single sentence):

1 https://neo4j.com/
2 Apache Gremlin is a domain-specific language for graph querying. More information at https:

//tinkerpop.apache.org/gremlin.html.
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6.2 representation and retrieval

Figure 6.1: Graph-of-word (document-based graph; text-only) for the first sentence of Wiki-
pedia’s article on Semantic search. Nodes represent terms. Query term nodes are identified
by a thicker border.

Semantic search seeks to improve search [Search Engine Technology] accuracy
by understanding the searcher’s intent [Intention] and the contextual [Contex-
tual (language use)] meaning of terms as they appear in the searchable dataspace,
whether on the Web [World Wide Web] or within a closed system, to generate
more relevant results.

– Semantic search, Wikipedia, 09:10, 7 January 2016

6.2.1 Graph-of-word

representation The graph-of-word [16] is a document-based graph [15], where
each node represents a term and each edge links to the following terms within
a window of size n. The graph is unweighted, but directed, defying the term
independence assumption of the bag-of-words approach. Figure 6.1 shows a graph-
of-word instance for the first sentence of the Wikipedia article on ‘Semantic Search’,
using a window size of n = 3. The graph-of-word is thus able to capture the context
of each term within a particular document.

retrieval In the original graph-of-word implementation, the term weight (TW)
metric was precomputed based on the indegree of each term node and stored in
the inverted index to be used in place of the term frequency (TF). In our imple-
mentation, however, this was done in real time by filtering over the union of all
document-based graphs and selecting a given subgraph based on a doc_id attribute
stored in the edge. This is a less efficient solution, but it simplified the process of
exploring and developing the novel graph-of-entity model, based on the graph-of-
word, by defining a common representation framework. Additionally, the focus of
our experiment was retrieval effectiveness; we were not particularly concerned with
index efficiency.
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Figure 6.2: Graph-of-entity (collection-based graph; text+knowledge) for the first sentence of
Wikipedia’s article on Semantic search. Pink nodes represent terms and green nodes represent
entities. A seed node for the given query is displayed in white. Query term nodes are
identified by a thicker border.

Equation 6.1 shows the ranking function used for retrieval over the graph-of-
word [16, Equation 7].

TW-IDF(t,d) =
tw(t,d)

1− b+ b× |d|
avdl

× logN+ 1

df(t)
(6.1)

The formula was derived from the TF-IDF approach as defined by Lv and Zhai [118],
replacing the tf(t,d) function by the tw(t,d) given by the node indegree of term t,
for document d, on the graph-of-word. For example, in Figure 6.1, we assume
the query [ web search system ] and find that the largest term weight, tw(t,d) =

3, was assigned to ‘search’, while ‘web’ and ‘system’ were tied in second place
with tw(t,d) = 2. The parameter b was fixed at 0.003, since, according to the
authors [16], it consistently produced good results across various collections, with
|d| representing the length of document d, avdl the average length of all documents
in the corpus, N the number of documents in the corpus, and df(t) the document
frequency of term t in the corpus. In our implementation, both |d| and avdl were
approximated by the number of edges within the respective document-based graph,
since we did all computations directly based on the graph.

6.2.2 Graph-of-entity

representation The graph-of-entity is a collection-based graph [15], where
nodes can represent either terms or entities and edges can be of three types: #term
–[ :before ]→ #term, #entity –[ :related_to ]→ #entity and #term –[ :contained_in ]→ #en-
tity. While the graph-of-entity was inspired by the graph-of-word, it only captures
term sequence instead of term context, through term→term relations, that is, the
window size is always one. Additionally, we also encode entity→entity relations
in the graph as a way of representing knowledge associated with the document
(e.g., obtained from an information extraction pipeline applied to the text, or sim-
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ply consisting of Wikipedia concepts linked in some manner). Finally, term→entity
relations are established based on a substring matching approach, where a link
between a term and an entity is created whenever the term is contained within
the entity’s name as a whole word (i.e., partial word matches are not considered).
The goal for the first version of this model was to keep it simple (e.g., refraining
from using similarity edges), but strongly connected (namely capturing all obvious
relations). The main goal was to capture the properties of text, while modeling
knowledge and establishing relations between text and knowledge.

retrieval We rank entities in the graph-of-entity based on the entity weight
(EW) for an entity e and a query q. A set of seed nodes Sq are derived from query
q, based on the links between query term nodes and entity nodes; when there are
no entity nodes linked to a query term node, then the term node becomes its own
seed node. This step provides a representation of the query in the graph, that will
be used as the main input for the ranking function. Next, we present a formal
definition for EW(e,q), based on three main score components: coverage c(e,Sq),
confidence weight w(s) for a seed node s, and the average weighted inverse length
of the path between a seed node s and an entity node e to rank.

Let us assume a graph-of-entity represented by an attributed labeled multigraph
Ge, similar to the one depicted in Figure 6.2, and a set of operations over Ge to
obtain a ranking of entity nodes with a doc_id attribute. Let q be a query represented
by a sequence of term nodes qn and let e be an entity node that we want to rank
(i.e., it has a doc_id attribute). Let Sq be the set of seed nodes derived from query q.
For each node qn that represents a term in query q, we obtain the set of seed entity
nodes Sqn that are adjacent to term node qn. Whenever qn has no entity node
neighbors, Sqn = {qn}. The set Sq of all seed nodes derived from query q is then
given by Sq =

⋃
qn
Sqn . This means that Sq will contain all entity nodes adjacent

to query term nodes, as well as query term nodes that are not adjacent to any entity
node (i.e., they represent themselves). For example, in Figure 6.2, assuming query
q = q1,q2,q3, the seed nodes are given by Sq = {e1, e2, e3,q3}, where:

Vertex Name Source Vertex Name Source

Entities Terms

e1 Search engine technology q2 q1 web –
e2 Semantic search q2 q2 search –
e3 World Wide Web q1 q3 system q3

Let pes be a path between an entity node e and a seed node s, as defined by a
sequence of vertices e, v1, · · · , v(ε−1), s in the undirected version of Ge. Let Pes be
the set of all simple paths pes between e and s. Assume the function ε(puv) as the
length of a given path puv between vertices u and v, representing the number of
traversed edges1.

Equation 6.2 can be read as the ratio between the number of paths linking entity
node e and seed nodes s and the total number of seed nodes Sq. That is, the
coverage represents the fraction of reachable seed nodes from a given entity.

c(e,Sq) =
|{s ∈ Sq|∃pes ∈ Pes}|

|Sq|
(6.2)

1 In practice, we also defined a maximum distance threshold to compute the length of a path between two
nodes. That is, no paths above the given threshold were considered. For this particular experiment, we
used a maximum distance of one, which is an extremely conservative value.
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Let ets be the edge incident to both a term node t and a seed node s. Equation 6.3
can be read as the confidence weight of seed node s. It represents the confidence
that a seed node is a good representation of the query term it was derived from.

w(s) =


|{ets ∈ E(Ge)|∀t∃q(t = qn)|}

|{ets ∈ E(Ge)}|
if s is an entity node

1 otherwise
(6.3)

Finally, Equation 6.4 shows the ranking function for a given entity e and query q.

EW(e,q) = c(e,Sq)×
1

|Sq|

∑
s∈Sq

 1

|Pes|

∑
pes∈Pes

w(s)
1

ε(pes)

 (6.4)

The query is only used to obtain the seed nodes Sq that best represent q in the
graph. This is analogous to a step in a query entity linking process. The remaining
steps are quite straightforward. We obtain the average weighted inverse length of
the path between each seed node s and the entity e that we want to rank. Assuming
that the seed nodes are good representations of the query in the graph, the closer
an entity is from all seed nodes, the more relevant it is — closeness is measured
by the inverse length of the path. Given there is a degree of uncertainty associated
with the selection of seed nodes, we scale this value based on the confidence weight
of the seed node — an entity close to a high confidence seed node is more relevant
than an entity close to a low confidence seed node, but an entity further apart from
a high confidence seed node might be on par, or even more relevant.

6.3 evaluation
During the evaluation stage, we aimed at assessing the retrieval effectiveness of
the graph-of-entity in comparison with a slightly altered implementation of the
graph-of-word. Particularly, the document length |d| and the average document
length avdl, used for pivoted document length normalization [117], were calculated
based on the number of term nodes per document, which appear only once per
document — this means that we were only able to account for unique terms to
obtain the document length in the graph-of-word. However, this change is not
particularly critical, given the low sensitivity of the graph-of-word to document
length [16, Section 5.3] (using b = 0.003 is close to using no pivoted document
length normalization at all). That is to say, our implementation of the graph-of-
word is only slightly different from the original and still provides a solid baseline.

6.3.1 INEX 2009 10T-NL

We prepared two indexes based on the 7,487 documents from the INEX 2009 10T-NL
collection, one for the graph-of-word and another one for the graph-of-entity. For
our experiment, each index was stored as a graph database. We then retrieved the
results for each topic, labeling each entry using a binary relevance attribute based
on whether there were any identified passages in the judgments file.

Table 6.1 shows the result of the assessment for this small subset of INEX 2009

Wikipedia collection. In particular, we present the precision for the first 10 results
(P@10), the mean average precision for a maximum of 1,000 retrieved results (MAP),
the normalized discounted cumulative gain for the first 10 results, using binary
relevance grades (NDCG@10), and the overall precision and recall. As we can see,
the Graph-of-Word (GoW) obtained the best overall scores, except for precision.
Recall for the graph-of-word was nearly optimal (0.9816) and significantly above the
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Table 6.1: Evaluation metrics for the graph-of-word (GoW) and graph-of-entity (GoE) based
on INEX 2009 10T-NL (precisions and recall were [macro] averaged over all topics).

Model P@10 MAP NDCG@10 Prec. Recall

GoW 0.3000 0.2333 0.3265 0.1085 0.9816
GoE 0.1500 0.0399 0.1480 0.1771 0.2233

Table 6.2: Average precision per topic for the graph-of-word (GoW) and graph-of-entity
(GoE) based on INEX 2009 10T-NL. Highest and lowest average precision per model is shown
in bold; results are ordered by decreasing average precision for GoW.

Topic ID Topic Title (Query)
Average Precision
GoW GoE

2010038 [ dinosaur ] 0.6189 0.0069
2010057 [ Einstein Relativity theory ] 0.2899 0.1364
2010003 [ Monuments of India ] 0.2888 0.0000
2010079 [ famous chess endgames ] 0.2541 0.0448
2010023 [ retirement age ] 0.2513 0.0027
2010040 [ President of the United States ] 0.2408 0.0051
2010096 [ predictive analysis +logistic +regression

model program application ]

0.2185 0.0410

2010049 [ European fruit trees ] 0.0756 0.0119
2010014 [ composer museum ] 0.0624 0.1185
2010032 [ japanese ballerina ] 0.0331 0.0315

MAP 0.2333 0.0399

recall for the graph-of-entity (0.2233). Such a high recall also translated into a lower
precision for the graph-of-word (0.1085), which was the only metric that was beat
by the graph-of-entity (0.1771). This means that we were unable to improve Graph-
of-Entity (GoE) over the baseline, as expected. Nevertheless, we obtained a better
precision, which is encouraging, given our simplistic first attempt at designing a
graph-based representation for combined data.

Given the small dimension of the dataset and in order to better understand the
obtained MAP scores, in Table 6.2 we present the average precision for each topic.
We also present the issued query and highlight the highest and lowest scores per
model. As we can see, [ dinosaur ] achieved the highest average precision in graph-
of-word, retrieving 703 results (425 relevant), but only 3 results (all relevant) for the
graph-of-entity. The lowest average precision for the graph-of-word was achieved
for [ composer museum ], retrieving 1,674 results, out of which only 64 were relevant;
this was beat by the graph-of-entity, retrieving 179 results, out of which 30 were
relevant. The lowest average precision for the graph-of-entity was achieved for
[ Monuments of India ], retrieving only 2 results, none of which were relevant.

While the graph-of-entity clearly captures additional information, differing
mainly on the lack of explicit representation of word context, overall it did not
present an improvement over the graph-of-word. Our approach focused on assess-
ing the effectiveness of the model, in order to iteratively improve it and eventually
surpass existing state-of-the-art graph-based approaches through the integration of
text and knowledge and using a collection-based approach. Despite the disregard
for efficiency, at this stage, the complexity of the model and its inefficient imple-
mentation supported on a graph database were critical challenges in setting up an
evaluation workbench with acceptable run times. While we did not index the full
INEX 2009 Wikipedia collection, with over 2.6 million documents, we were able to
index a smaller test collection, based on a sample of 10 topics and corresponding
judged documents (INEX 2009 10T-NL), in order to obtain some insight. Addi-
tionally, during the participation in the TREC 2017 OpenSearch track [268] we had
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been able to index the complete SSOAR1 collection and evaluate the models in a
real-world scenario, which acts as complementary information to the performance
results we present here.

6.3.2 TREC 2017 OpenSearch track

During the participation in the TREC 2017 OpenSearch track, we were able to index
the complete SSOAR collection and evaluate the models in a real-world scenario,
thus complementing the performance results provided by the INEX experiment
with additional information.

The evaluation in the OpenSearch track differs from classical TREC evaluation
based on test collections. For this track, participants are provided with a Living
Labs API, where they can register for a set of available sites. The API then provides
documents to index and queries to generate rankings. Provided queries correspond
to the most frequently issued within the site, thus increasing the chance they will
appear again in the future. As one of the provided queries is issued by the site, a
participant is selected and the results for participant and site are interleaved using
team draft interleaving [245]. Evaluation is then carried based on the clickthrough
rate and, for the assessment, we account for the fraction of wins of the participant
over the site. In the 2017 edition, only the Social Science Open Access Repository
(SSOAR) was available as a site, providing 39,492 documents to index, along with
1,165 queries (676 train queries and 489 test queries). See Section 4.1.3 for further
details on SSOAR and the Living Labs API provided to participants.

Our goal was to compare the graph-of-word with the graph-of-entity, based on
the fraction of wins either model obtained against the site’s results. While the eval-
uation was carried individually for each model and compared with the site’s search
model, using a different set of queries, this provides initial feedback as to whether
the graph-of-entity is comparable or performs better than the graph-of-word — the
hypothesis is that by including structured data and providing a combined data rep-
resentation approach the results will improve. We submitted and activated three
runs, one during the trial round (goe_trec2017), and two during the real round (gow_-
trec2017-real_round and goe_trec2017-real_round), which we analyze in this section.

6.3.2.1 Technical issue

Unfortunately, there was a technical problem with the load balancer on the side of
the OpenSearch track infrastructure that resulted in our team receiving no feedback
for the real round, during August 2017. The criterion for a given run from any par-
ticipant to be selected is based on the lowest number of impressions it has received
so far. A rather unpredictable issue with the priority strategy of the load balancer
led to our runs never being selected. This happened for two main reasons: (i) the
early activation of our run in July 17, 2017, which by itself would have posed no
issues; and (ii) the fact that the SSOAR site was kept active throughout the two
rounds, even when no round was scheduled to run. The combination of these two
events resulted in a total of 4,000 impressions for our runs, during July 2017, that
were never surpassed by any other participant during August 2017, possibly due to
lower traffic during the summer. Since the runs from every other participant were
continuously lower in number of impressions, our runs were never selected to be
displayed and thus received no feedback during August 2017.

The organization of TREC 2017 OpenSearch Track acknowledged and detailed
this issue and provided two options: (i) sharing the feedback from the end of July
2017, which is not available directly via the API, since there was no official round
happening at the time; and (ii) run an extraordinary round during October 2017.
While either option cannot be considered comparable with the approaches from
other participants, our main focus was on comparing the two models we propose,

1 https://www.gesis.org/ssoar/home/
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Figure 6.4: Rank distribution per run (bin width = 5).

making them both valuable. While the data from October 2017 was limited (only
97 impressions were provided, versus the 59 impressions from the failed official
run), the data provided for the end of July 2017 was sufficient for a more in-depth
analysis.

6.3.2.2 Dead period: feedback for July 17–31 2017

Feedback collected between July 17, 2017 and July 31, 2017 corresponds to what we
call a dead period, as no official round was scheduled to run at that time. This is
not usually supplied to participants, however, given the technical issue described in
Section 6.3.2.1, such data was provided to us as a JSON dump.

Figure 6.3 shows the average number of results per query, as provided to the
users, based on the feedback for the dead period. Analyzed results were auto-
matically generated by the Living Labs system from the interleaving of documents
provided by the participant and the site. We distinguish between each run with
different colors and separately analyze impressions with and without clicks. As we
can see, the number of results varies between 0 and 100 and there is a significantly
lower number of impressions with clicks. We also find that lists of results with less
than 10 documents were never clicked, which might be an indicator of a poor pre-
cision at 10 for both models. Overall, the graph-of-word retrieves a slightly larger
number of documents when compared to the graph-of-entity.

Figure 6.4 shows the rank distribution for clicked results. As we can see, most
of the clicked results were at the top of the ranks and, overall, the graph-of-word
achieved a higher number of clicks for the top ranks than the graph-of-entity.

Table 6.3 shows the outcome for the gow_trec2017-real_round, where we tested the
graph-of-word (gow), and the goe_trec2017-real_round, where we tested the graph-
of-entity (goe), based on feedback for the dead period. This enabled us to evaluate
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Table 6.3: Outcome for the two graph-based models, during the dead period of July 17–31,
2017.

Run
Impressions

Outcome Wins Losses Ties
Total Clicked

gow 2,342 16 0.375 6 10 0

goe 2,341 13 0.167 2 10 1

the two graph-based models, by comparing each of them, individually, with the
existing model used by SSOAR. This comparison was based on the outcome given
by the fraction of wins for the participant (not including ties). For an outcome of
0.5, the two retrieval models would be equivalent, while for a value higher than
0.5, the participant’s model would be better than the site’s model. The results were
not particularly encouraging, with both graph-based models achieving an outcome
under 0.5 — 6 wins versus 10 losses for the graph-of-word and 2 wins versus 10

losses for the graph-of-entity. While there were over 2,300 impressions for each run,
only a small fraction of about 15 impressions contained clicked results (∼0.5%).

6.4 discussion
We tackled the problem of entity-oriented search through the proposal of a novel
graph-based model for the representation and retrieval of combined data (text and
knowledge). We proposed a collection-based representation of terms, entities and
their relations (term–term, entity–entity, and term–entity), as a way to unify un-
structured text and structured knowledge as a graph. We then proposed a very
basic ranking function, supported on the graph-of-entity, where we mapped the
terms of the query into nodes in the graph, preferentially expanding into neigh-
boring entities, in order to obtain a query representation in the graph (seed nodes).
We treated this as an open step in an entity linking process, that was only closed
during ranking. Ranking was done based on the seed nodes, by treating them as
leads. These leads were followed by trying to exhaust all available paths within a
maximum distance, which resulted in the scoring of entity nodes. For evaluation
purposes, not all entity nodes were ranked, limiting this operation to nodes that di-
rectly represented a document in the corpus (e.g., for Wikipedia, the entity mapped
to the corresponding article, while, for SSOAR, a special entity had been created to
represent the document). This enabled us to map the problem of entity ranking into
the domain of documents, thus providing a way to evaluate using the traditional
test collections and strategies that were available to us at the time.

The main goal of this work was to provide a simple baseline model that was
graph-based and represented combined data in a unified manner. We performed
evaluation based on a 10-topic sample of the INEX 2009 Wikipedia collection, which
was complemented by the participation in TREC 2017 OpenSearch. During TREC,
we were able to assess the two models, but only based on feedback from a “dead
period” between the trial round and the real round, because of the technical issue
described in Section 6.3.2.1. When comparing the graph-of-entity (our model) with
the graph-of-word (a baseline text-only model), we found that, for the INEX ex-
periment, our model did not outperform the baseline, except regarding precision.
In TREC, both models also underperformed when compared to SSOAR’s native
search. Additionally, when comparing the models amongst themselves, we found
no evidence of graph-of-entity performing better than the graph-of-word.

Results were unexpected, particularly for graph-of-word, as it had been compared
to TF-IDF and BM25, outperforming both [16, Tab.2]. According to our research, in
SSOAR, search is provided via DSpace, which uses a Lucene-based solution (ei-
ther Elasticsearch or Apache Solr, depending on the version). We therefore assume
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that the results provided by the graph-based models were being interleaved with
results provided through a Lucene’s DefaultSimilarity, usually based on TF-IDF, as
implemented in TFIDFSimilarity. As such, the results we obtained are deemed in-
conclusive. If the graph-of-word had outperformed the site’s search (i.e., TF-IDF)
and the graph-of-entity had underperformed, we could have concluded that the
graph-of-entity is a worse retrieval model. As it stands, however, we decided not
to close this line of research and instead attempt to expand our evaluation to the
complete INEX 2009 Wikipedia collection. With the graph-of-entity, we were nev-
ertheless able to establish a graph-based strategy to jointly represent corpora and
knowledge bases, as combined data, taking into account terms, entities and their re-
lations in order to perform ranking. At the same time, we explored the integration
of entity linking and entity ranking as a single task over the graph-of-entity, a first
attempt at generalizing two different tasks.
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summary
In this chapter, we proposed and presented graph-of-entity, as the first attempt at
a unified retrieval framework, where unstructured and structured data were jointly
represented, in order to seamlessly contribute to the ranking process. We also ex-
plored the subsumption of named entity disambiguation by the process of ranking.
We described our implementation of the graph-of-word baseline, a graph-based
model developed by Rousseau and Vazirgiannis [16] to index text. We also de-
scribed the implementation of the graph-of-entity, a model that builds on some of
the ideas introduced in the graph-of-word, but was also expanded to include enti-
ties and relations from a knowledge base, representing the whole collection rather
than a single document. Our goal was to provide a way to access all available in-
formation at any stage of retrieval. This meant the usage of atomic representations,
including terms and entities, and their network of dependencies. Our goal was also
to provide a way to harness the joint representation model to provide generaliza-
tions for information retrieval tasks. While we did not fulfill this goal in the current
chapter, in the following chapters we build over this model to reach our goal of
a unified framework for information retrieval, evaluated for entity-oriented search
tasks. Meanwhile, in this chapter, we assessed this initial approach, based on a sub-
set of the INEX 2009 Wikipedia collection, as well as by relying on the click-based
implicit feedback provided from the online evaluation in TREC 2017 OpenSearch.
We found that both the graph-of-word (our baseline) and the graph-of-entity (our
model) were outperformed by the site’s search algorithm (TF-IDF), which was in-
consistent with previous literature [16], thus leaving this line of research open.
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In the previous chapter, we have proposed the graph-of-entity as a purely graph-
based representation and retrieval model, however this model would scale poorly.
In this chapter, not only do we tackle this scalability issue by adapting the model so
that it can be represented as a hypergraph, but we also describe several extensions
that the index can consider, and a universal approach to ranking that can solve
multiple entity-oriented search tasks. Relying on a hypergraph enables a significant
reduction of the number of (hyper)edges, in regard to the number of nodes, while
nearly capturing the same amount of information. Moreover, such a higher-order
data structure, presents the ability to capture richer types of relations, including
n-ary connections such as synonymy, or subsumption. We present the hypergraph-
of-entity as the next step in the graph-of-entity model, where we explore a universal
ranking approach based on biased random walks.

The structure of this chapter is organized as follows:

• Section 7.1 reflects on the need for new representation and retrieval models
able to better exploit all available information for solving information needs.

• Section 7.2 describes the strengths and weaknesses of hypergraphs as instru-
ments of generalization, commenting on performance differences between
graphs, hypergraphs and fuzzy hypergraphs.

• Section 7.3 delves deeper into the idea of a unified framework for information
retrieval, describing which information can be expressed with a hypergraph,
as well as proposing an approach for designing a universal ranking function
for entity-oriented search tasks.

• Section 7.4 presents the hypergraph-of-entity representation and retrieval
model, introducing the base model, along with different configurations for
related_to hyperedges, as well as four optional index features that can be com-
bined as desired to extend the base model: synonyms, context, weights, and
TF-bins (a novel concept that we propose). We show that, in this model, the
data structure is the main agent of ranking, and describe a universal ranking
approach based on seed node selection and random walks, covering its pa-
rameterization and the mapping of tasks to different input and output nodes
and hyperedges.
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7.1 cross-referencing and solving general in-
formation needs

Information retrieval includes a wide range of tasks that frequently depend on, or
at the very least benefit from, cross-referencing information locked within heteroge-
neous data sources. In entity-oriented search, there is frequently a combination of
corpora and knowledge bases, and a strong reliance on the integration of unstruc-
tured and structured data. Perhaps the most straightforward approach to tackle
this problem is to store text in an inverted index and entities and their relations in
a triplestore, and then separately compute and combine signals from each storage
unit [92, §5.1.2] [129, 308]. Despite the importance of the cross-referencing aspect,
few attention has been given to the relations within and across corpora and knowl-
edge bases in the design of representation models. Joint representation models have
been explored through the usage of the inverted index, to store virtual documents
built from passages mentioning the indexed entities [4, 131] and, while mention rela-
tions were implicitly captured in the process, no other relations (e.g., entity relations)
are available in the model to inform retrieval. Representation learning has also been
used to find a common word and entity embedding space [86] and, despite captur-
ing latent relations between words and entities, these are not explicit or particularly
exploited for retrieval. On the other hand, graph-based models are focused on the
explicit representation of relations, be it intra-document, among terms [15, 16] or
capturing syntactic and semantic dependencies [309, 310], inter-document, based
on any type of links between documents [311], or even based on document-entity
relations, resulting from the annotation of entity mentions that point to their in-
stance in a knowledge base [312]. These are some of the reasons that make graphs
viable to support a retrieval process based on the cross-referencing of information
locked within text with information directly expressed as triples. Graphs are gen-
eral data structures capable of capturing discourse properties from text [15], as well
as knowledge from entities and their relations [50]. Graphs can support multiple
tasks, from query understanding [313] to entity disambiguation [84] and document
retrieval [16]. The challenge is to build such a model in a way that it is as complete
and useful as possible, while remaining efficient.

In Section 1.3.1, we cited an example by Bast and Buchhold [74], showing that
some relations can only be established through the connection of evidence atomi-
cally spread across corpora and knowledge bases in the form of terms, and entities
and their relations, respectively. Figure 7.1 illustrates a case when fundamental
information to answer the user’s query is spread across corpora and knowledge
bases. In particular, we can identify [ astronauts who walked on the moon ] completely
from the knowledge graph. The same happens for [ entertainers ]. However, the
friendship relation is only described in the text. Without a joint representation of
such unstructured and structured data, and despite having access to the informa-
tion, the search engine won’t be able to correctly solve the user’s information need.
We agree with Bast and Buchhold, who argued that a new type of semantic index
was required to solve this problem. While they presented a working solution, we
propose that such a novel low level representation model would benefit from a
graph-based approach and even more from a hypergraph-based approach. The real
issue with the available indexing approaches is the lack of generalization. When a
new type of resource needs to be indexed in the context of existing resources, the
effort to change the representation model (i.e., the index) and the retrieval model
(i.e., the ranking function) is usually considerable. With a graph-based model, how-
ever, there are multiple options to integrate resources, including semantic relations,
similarities, co-occurrence, and so on. The obvious solution is to use information
extraction to process the text and add the missing triple to the knowledge base:
〈Kevin Foster, :friendOf, Neil Armstrong〉. Despite the added computational complex-
ity, this would be a solution for this specific problem of ad hoc entity retrieval.
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Moon

Neil Armstrong

Buzz Aldrin

Astronaut

:isA :walkedOn

:isA :walkedOn

Kevin FosterEntertainer

:isA

“After the act, Kevin Foster went 
down to the audience, to hug his 
friend, Neil Armstrong, who had 
been sitting in the crowd since the 
beginning of the show.”

Figure 7.1: Cross-referencing information from corpora and knowledge bases. Green is as-
sociated with text, while purple is associated with entities. The dashed arrow illustrates the
friendship relation inferred from the text.

Nevertheless, it would not fill the requirements for supporting other tasks, like ad
hoc document retrieval, since the text would be transformed into structured data.
In this work, we focus on general approaches to information retrieval, and in this
chapter we shift our focus to hypergraphs.

7.2 hypergraphs: instruments of generalization
While we have frequently used data structures like graphs as a representation that
promotes the integration of heterogeneous data, hypergraphs can take it even fur-
ther. Not only they provide a more expressive data structure that can, at the same
time, capture both the relations and the intersections of nodes, but they also re-
duce traversal complexity by grouping multiple nodes through hyperedges. Hy-
pergraphs are a generalization of graphs where edges, or rather hyperedges, can
contain an arbitrary number of nodes. Undirected hyperedges can be represented
by a set of nodes (e.g., the terms in a sentence), while directed hyperedges can be
represented by a tail set of nodes and a head set of nodes1 (e.g., an e-mail to multi-
ple recipients). Hypergraphs can be represented as an equivalent bipartite incidence
graph, where each original node connects to a new node for each of its hyperedges.
While such conversion is possible, it is not always ideal. This is true for instance for
the study of overlapping or hierarchical relations. When broken down into multi-
ple edges, they become harder to identify or read. Hypergraphs have been used to
represent documents, but also to support ranking in information retrieval. Haent-
jens Dekker and Birnbaum [76] proposed a hypergraph-based representation of text
as a hypergraph, and Bendersky and Croft [14] relied on hypergraphs to define a
log-linear model based on higher-order term dependencies.

We propose that hypergraphs should be used as an alternative data structure for
indexing, not only because of their expressiveness — a document might be mod-

1 The analogy is to an arrow, not to a list. This is why the tail set contains the source nodes and the
(arrow)head set contains the target nodes.
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eled as a hyperedge with terms and entities, potentially subsuming other relations
between entities — but also because they have the potential to scale better than a
graph-based approach — in particular, relations like synonymy or co-occurrence
can be modeled with only one hyperedge as opposed to creating a complete sub-
graph for all synonyms or co-occurring nodes. It is also clearer, from a semantics
perspective, to model synonymy or co-occurrence as a single hyperedge. Even vi-
sually, a hypergraph can, through transparency, provide further insights regarding
intersections and subsumptions [314, Figures 2 and 5].

Let us for instance assume a labeled hyperedge, related_to, which connects four
entities mentioned in a document entitled “Cat”: Carnivora, Mammal, Felidae and
Pet. In subsumption theory, this hyperedge would represent an extension of Car-
nivora, Mammal and Felidae, a set of entities that could be a part of a hyperedge
present for instance in a document entitled ‘Lion’. While a lion is not a pet, it
is still related to cat through the remaining three entities, so this information is
useful for retrieval. While such example illustrates the potential of a hypergraph-
based model, it only just scratches the surface. Using a hypergraph we can rep-
resent n-ary relations — linking more than two nodes (undirected hyperedge) or
two sets of nodes (directed hyperedge) — but also hierarchical relations (hyper-
edges contained within other hyperedges) and any partial combination of the two.
This means we can, for instance, model synonyms as an undirected hyperedge
(e.g, {result, consequence, effect,outcome}) and even introduce hypernyms/hy-
ponyms as directed hyperedges (e.g., directed hyperedge {cat, lion} → {feline}, or
undirected hyperedges {cat, lion, feline} and {cat, lion}).

To sustain our argument, let us consider an alternative approach based on a tree,
which is a type of directed graph, to represent hierarchical relations. With a basic
tree we lose the ability to simultaneously represent hierarchical and n-ary relations.
We argue that a bipartite graph or an edge-labeled mixed graph would allow for the
representation of both n-ary and hierarchical relations, but, while conceptually it
would contain the same information as the hypergraph, it would also be harder to
read and use. We wouldn’t be able, for instance, to naturally identify intersections
or subsumptions. Independently of whether or not we translate the hypergraph
to an equivalent graph, at the very least the theoretical modeling power of the
hypergraph is clear. Nonetheless, in practice there are also some advantages to
using hypergraphs over graphs, for instance the fact that a single hyperedge can
store all synonyms at once, requiring a single step to retrieve the synonyms for
a single term — O(|V |) for term nodes V . Conversely, the same operation on a
graph would require as many steps as the number of synonyms for a single term
— O(|V |+ |E|) = O(bd), assuming a breadth-first search approach for term nodes V
and synonym edges E or, equivalently, for outdegree b (the branching factor of the
graph) and distance d (where d would be the same as the graph diameter).

Another advantage of hypergraphs includes the attempt to more closely model
the human cognitive process. When we think, we inherently relate, generalize, par-
ticularize or overlap concepts. Most of us also translate natural language (sequences
of terms) into concepts (entities), supporting the thought process on language. What
we propose to do with the hypergraph-of-entity is to attempt to develop a kind
of cognitive search engine (or at least the foundation for one). The way the (hy-
per)graph is traversed, including the selection of the point of origin, determines the
kind of process over the “brain” of the engine. As a result, generalization becomes
possible. With only slight adjustments to the search process, we can add support
for multiple tasks from entity-oriented search. This includes ad hoc document and
entity retrieval — the point of origin might be term nodes from a keyword query
— as well as related entity finding and entity list completion — the point of origin
might be one or several example entity nodes; both tasks can also be considered
a type of recommendation [87]. In order to avoid a combinatorial explosion while
still taking advantage of structural features, we propose that we model each process
using random walks over the hypergraph — each step is based on the random se-
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lection of an incident hyperedge and the subsequent random selection of one of its
nodes. In this work, we focus on the task of ad hoc document retrieval, a process
that we implement by modeling documents as hyperedges of terms and entities,
and ranking document hyperedges through random walks. If we instead ranked
entity nodes using the same strategy, we would have generalized the problem to ad
hoc entity retrieval.

Claude Berge stated that hypergraphs could be used to simplify as well as to gen-
eralize [40]. We have shown that simplification can significantly reduce the order
of complexity when compared to graph-based models like graph-of-entity. This
is for instance the case with representing synonyms based on a single hyperedge
rather than multiple edges in a graph. Moreover, it is not only a more natural,
but also a more efficient modeling approach. On the other hand, the hypergraph
is an adequate data structure to generalize, since it is able to represent clusters
(n-ary groupings of elements), and other kinds of relations (e.g., directed relations
between n-ary groupings of elements). It is also able to indirectly capture overlap
through intersections, or hierarchies through subsumption, and it can factor uncer-
tainty through node and hyperedge weights. During this doctoral work, however,
we questioned the ability for generalization with hypergraphs, in particular when
attempting to represent the frequency of a term (node) in a given document (hyper-
edge). Assigning a weight to the term would result in a global boost of the term
in our collection-based hypergraph. A possible solution would be to define inde-
pendent hypergraph models for each document. This would, however, segment in-
formation in a way that would inhibit the cross-referencing of atomic elements (i.e.,
terms and entities) at a low level, which is required for exploiting all available infor-
mation, a condition that we established in Section 1.3. One solution that would rely
on the collection-based instead of the document-based approach would be a fuzzy
hypergraph [213]. In a (non-fuzzy) mixed hypergraph, undirected hyperedges can
be represented as a set of nodes, while directed hyperedges can be represented as a
tuple of two sets of nodes. However, in a fuzzy hypergraph, each set of nodes in the
hyperedge contains tuples instead of nodes, and each tuple is a pair of node and
membership weight. While this is not equivalent in space complexity to a graph-
based representation where a pair of nodes would be connected by a weighted edge
— three elements (two nodes and a weight), instead of two (a node and a weight) —
it is a significantly more costly solution, not only regarding space complexity, but
also regarding time complexity, since the ranking function would then be required
to consider each weight. This makes the hypergraph a truly adequate solution for
generalization, taking into consideration real-world restrictions, as opposed to only
optimizing for the theoretical view. Relying on fuzzy hypergraphs is a solution that
will result in a similar scaling behavior, when compared to the graph-of-entity that
we explored in Chapter 6 and, while it is not impracticable, it is not ideal efficiency
wise. Furthermore, as seen throughout this thesis, the hypergraph-based solution
that we propose is, itself, not particularly efficient.

7.2.1 General concepts and definitions

We provide a mathematical framework, where we formalize several concepts and
definitions, including relevant classes of hypergraphs, as well as useful properties
and statistics, that we rely on across this manuscript.

7.2.1.1 Classes of hypergraphs

In this section we formally define hypergraph, distinguishing between undirected,
directed and mixed, as well as uniform and general.

Definition 2 (Hypergraph). Let v be a vertex and V be a set of vertices such that v ∈ V ,
with n = |V | being the number of vertices. Let E = EU ∪ ED be the set of all hyperedges,
where EU represents the subset of undirected hyperedges eU ∈ EU and ED the subset
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of directed hyperedges eD ∈ ED, with m = |EU|+ |ED| = |E| being the total number of
hyperedges. Let also a set eU ⊆ V be an undirected hyperedge and a tuple of sets eD = (t,h)
be a directed hyperedge formed by a tail set t ⊆ V (source) and a head set h ⊆ V (target). A
hypergraph is then a tuple H = (V ,E).

Definition 3 (Undirected hypergraph). Under this notation, a hypergraph H = (V ,E)
is said to be undirected when E = EU or, equivalently, ED = ∅.

Definition 4 (Directed hypergraph). Similarly, a hypergraph H = (V ,E) is said to be
directed when E = ED or, equivalently, EU = ∅.

Definition 5 (Mixed hypergraph). It is also trivial to describe a mixed hypergraph H =

(V ,E) when EU 6= ∅∧ ED 6= ∅.

Definition 6 (k-uniform hypergraph). A k-uniform hypergraph is characterized by all of
its hyperedges being defined over the same number k of vertices. For an undirected hyperedge
eU it means |eU| = k, while for a directed hyperedge eD = (t,h) it means |t|+ |h| = k.

* Please refer to Banerjee and Char [315] for more information on directed uniform hypergraphs.

Definition 7 (General hypergraph). A general hypergraph is simply a non-uniform hy-
pergraph, that is, with edges of diverse cardinalities.

7.2.1.2 Hypergraph statistics

In this section, we formally describe the hypergraph statistics that we rely upon for
our analysis framework. In particular we describe the different degrees that can be
computed for a vertex, the cardinalities of hyperedges, the diameter and average
shortest path length, the clustering coefficient, and the density.

Definition 8 (Vertex-based vertex degree). Let dv(v) be the degree of a vertex measured
based on the number of adjacent vertices. Let Ev = EUv ∪ EDv be the set of incident
hyperedges to v, ignoring direction, E−v = EUv ∪ E−Dv be the set of incoming hyperedges to
v, and E+v = EUv ∪ E+Dv be the set of outgoing hyperedges from v.

Vertex-based degree (ignoring direction) is given by:

dv(v) =
∑
eU∈EUv

|eU|+
∑

(t,h)∈EDv
(|t|+ |h|)

Vertex-based indegree is given by:

d−v (v) =
∑
eU∈EUv

|eU|+
∑

(t,h)∈E−
Dv

|t|

And vertex-based outdegree is given by:

d+v (v) =
∑
eU∈EUv

|eU|+
∑

(t,h)∈E+
Dv

|h|

Definition 9 (Hyperedge-based vertex degree). Let dh(v) be the degree of a vertex
measured based on the number of incident hyperedges. Again, let Ev = EUv ∪ EDv be the
set of incident hyperedges to v, ignoring direction, E−v = EUv ∪ E−Dv be the set of incoming
hyperedges to v, and E+v = EUv ∪ E+Dv be the set of outgoing hyperedges from v.

Hyperedge-based degree (ignoring direction) is given by:

dh(v) = |Ev|

Hyperedge-based indegree is given by:

d−h (v) = |E−v |
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And hyperedge-based outdegree is given by:

d+h (v) = |E+v |

Definition 10 (Hyperedge cardinality). Let c(e) be the cardinality of a hyperedge mea-
sured based on the number of nodes it contains. Let eU be an undirected hyperedge and
eD = (t,h) be a directed hyperedge.

Undirected hyperedge cardinality is given by:

c(eU) = |eU|

Directed hyperedge cardinality is given by:

c(eD) = |t|+ |h|

In order to index hyperedges based on their number of nodes, we also use the
notation EaU to represent sets of undirected hyperedges of cardinality a = |eU|, as
well as Ea,b

D to represent sets of directed hyperedges with a tail of size a = |t| and a
head of size b = |h|.

Definition 11 (Diameter / avg. short. path len.). Let L = {`u,v : u ∈ eU ∧ v ∈
eU ∨ u ∈ t∧ v ∈ h} be the set of shortest path lengths between all pairs of nodes, where
eU ∈ EU and (t,h) ∈ ED.

The diameter is then given by:

maxL

And the average shortest path length is given by:

1

|L|

∑
`i,j∈L

`i,j.

Definition 12 (Clustering coefficient). The clustering coefficient measures the degree to
which nodes tend to agglomerate in dense groups. We compute this metric based on the
following approach by Gallagher and Goldberg [316]. Let Ev = EUv ∪ EDv be the set of
incident hyperedges to v, ignoring direction. Let N(v) be the set of all vertices adjacent to v
(i.e., sharing a hyperedge, while ignoring direction).

The clustering coefficient cc(u, v) for a pair of nodes u and v is given by:

cc(u, v) =
|Eu ∩ Ev|
|Eu ∪ Ev|

The clustering coefficient cc(v) for a single node v is given by:

cc(v) =
1

|N(v)|

∑
u∈N(v)

cc(u, v)

And the clustering coefficient cc(H) for the hypergraph is given by:

cc(H) =
1

|V |

∑
v∈V

cc(v)

Definition 13 (Density). We transform a hypergraph H = (V ,E) into its corresponding
bipartite graph GH = (V,E), using the density of GH as an indicator of density for H.

The vertices V of GH are based on the vertices V and hyperedges E from H and are given by:
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V = V ∪ {ve : e ∈ E}

The edges E = EU ∪ ED of GH are established based on all pairs of vertices connected by a
hyperedge E = EU ∪ ED from H.

The undirected edges EU of GH are given by:

EU = {(u, ve), (ve,w) : e ∈ EU ∧ u ∈ e∧w ∈ e}

And the directed edges ED of GH are given by:

ED = {(u, ve), (ve,w) : e = (t,h) ∈ ED ∧ u ∈ t∧w ∈ h}

Density D(H), or simply D, is then given by:

D = D(GH) =
2|EU|+ |ED|

2|V| (|V|− 1)

7.3 a hypergraph-based unified framework for
information retrieval

In Section 1.4 we presented the problem of jointly representing corpora and knowl-
edge bases, and proposing a universal ranking function to support multiple entity-
oriented search tasks. In Chapter 6, we put forward graph-of-entity as a simple
graph-based model to represent the relations between terms and entities. Retrieval
relied on seed nodes that acted as a proxy for query representation. This allowed
for the expansion of the original query keywords over the terms and entities of the
graph. The second part of this expansion was similar to the candidate selection pro-
cess for entity linking, but it delayed the ranking of the selected candidates, making
it a part of the ranking process for the overall search strategy. This ensured that
we were able to account for all available information, cross-referencing it to find the
best results, while accepting uncertainty as part of the process. Ranking was done
based on the distances to these seed nodes over all simple paths. The idea was
that nodes closer to a higher number of seed nodes would have a higher probabil-
ity of being more relevant. At the same time, disambiguating entities would occur
“organically” based on the overall proximity to seed nodes.

Our initial effort had issues, regarding both the representation and the retrieval
models. In particular, ranking based on all simple paths between seed nodes and
all other nodes was inefficient, a process that was aggravated by the chosen doc-
ument representation approach, which was based on edge labels — i.e., an edge
originating from a document would be labeled according to the document’s iden-
tifier, resulting in multiple edges for the same pairs of nodes, depending on the
document (e.g., ten edges for new → york might exist if ten documents mention
the city). Furthermore, as we have shown in Section 7.3, n-ary relations can be quite
common and useful (e.g., synonyms), but costly to represent in a graph, increasing
complexity and limiting experimentation even at a small scale. Moreover, combin-
ing multiple edges into a single hyperedge might lead to reduced complexity by
diminishing the number of hyperedges in relation to the number of nodes. In this
section, we continue to build the argument towards using hypergraphs as a joint
representation model [§7.3.1] that can support a universal ranking function [§7.3.2],
highlighting the strengths of this data structure and proposing a general approach
to ranking.
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7.3 a hypergraph-based unified framework for information retrieval

7.3.1 Joint representation model

Graphs are a proven data structure for modeling heterogeneous data. They have
been used to rank text documents [15, 16], as the underlying abstraction of hy-
pertext [317–319], and for the representation of knowledge bases [47, 320]. Their
ubiquity across the relevant areas of entity-oriented search led us to propose a
graph-based representation and retrieval model that combines terms, entities, and
their relations. As a reiteration of this approach, we now propose a model based on
a weighted mixed hypergraph, since it can simultaneously and clearly express:

1. Undirected n-ary relations (e.g., bag-of-words, sentence, synonymy, context
similarity);

2. Directed n-ary relations (e.g., a set of terms pointing to an entity, or a set of
entities belonging to a category);

3. Hierarchical relations (e.g., subsumption);

4. Ontological relations (e.g., Donald Duck is both a #duck and a #character in a
comic book);

5. Intersections (i.e., overlap is naturally captured by hyperedges and their
shared nodes);

6. Uncertainty (e.g., knowing that there is 80% certainty that a set of terms are
contextually similar can be translated into a weight in the respective context
hyperedge);

7. User preference (e.g., a user rating ‘Back to the Future’ with 5 stars can be
translated into a higher weight for the corresponding entity node).

Moreover, hypergraphs enable us to decrease the number of (hyper)edges in re-
lation to the number of nodes, by prioritizing n-ary relations over binary relations.
This is an advantage in reducing the complexity and improving retrieval efficiency.

In this thesis, we propose and study a hypergraph-based representation model,
called hypergraph-of-entity, for the joint indexing of terms, entities and their re-
lations. We explore most of the items that we previously listed, for expressing
different relations in our model. In particular, we do not explore hierarchical rela-
tions, and we capture entity co-occurrence rather than explicit ontological relations,
introducing uncertainty only on the weighted version of the model. This is further
detailed in Section 7.4.1.

7.3.2 Universal ranking function

Regarding the retrieval model, we propose a universal ranking function over the
hypergraph-of-entity. One of our ongoing goals is to design a function that can
be used independently of the unit of information, as well as for multiple different
tasks. We suggest this should be done by controlling:

• Input and output, e.g.:

– Input term nodes to output a ranking of document hyperedges;

– Input entity nodes to output a ranking of other entity nodes.

• Parameter configuration, e.g.:

– Longer traversals are more exploratory;

– Shorter traversals are more precise or on-topic.

In particular, the approach we propose is based on:
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1. Finding a representation for the query in the hypergraph-of-entity;

2. Ranking nodes and hyperedges based on traversals around those representa-
tions;

3. Collecting only the relevant nodes or hyperedges to present to the user.

In this thesis, we propose a universal ranking function, which we evaluate for the
tasks of ad hoc document retrieval, ad hoc entity retrieval, and entity list comple-
tion.

7.4 hypergraph-of-entity
Ad hoc document retrieval is traditionally a text retrieval task. Semantic search,
however, frequently takes advantage of annotated collections, where entities are
recognized and linked to external knowledge bases to improve document retrieval.
In this work, we assume that, like entity annotations, relevant relations are also a
part of the annotated document, extending it. Given a document containing a text
block of unstructured data, as well as a knowledge block of structured information
(i.e., entities and relations that are relevant to the document), our goal is to pro-
pose a joint representation model able to provide seamless integration, as well as
support for entity-oriented search tasks, from ad hoc document retrieval to related
entity finding. A regular document usually contains multiple text fields (e.g., title,
content, etc.), which corresponds to the text block in the extended document. How-
ever, we also include a knowledge block, in the form of triples, that are usually
available as structured data in the original document. The knowledge block can
be directly extracted from a semi-structured document (e.g., building triples based
on links to other documents), but it might also be obtained from an information
extraction pipeline. There is no restriction about the source of the knowledge block,
except that it should represent a set of triples related to the document. For exam-
ple, the triples might represent co-occurring entities in a sentence or paragraph, or
statements obtained from a dependency parser, or they could represent external
knowledge about identified entities, from an external knowledge base.

We propose that a hypergraph would be the ideal data structure to represent a col-
lection of extended documents, effectively capturing the dependencies and higher-
order dependencies between terms and entities in relation to the documents. Take
for example a document hyperedge created to associate all the elements within a
document, including its terms and entities. Through higher-order dependencies we
are, for instance, able to capture subsumption, where documents subsume (i.e., are
more general than) relations between entities — we might interpret it as “document
d1 explains the relations between entities e1, e2 and e3”. The hypergraph-based
model, detailed in Section 7.4.1, is able to capture multiple levels of information
about the text, the entities and their relations, providing a more unified and insight-
ful view over all available information. Although in this contribution we do not
explicitly assess the impact of subsumption or hierarchical relations, but only of
n-ary relations based on synonymy and context, we do highlight the ability for the
model to capture such complex relations. Moreover, regarding ranking, document
relevance scoring is based on biased random walks over the hypergraph, departing
from a set of term and entity nodes that represent the query. This is a ranking
approach that closely depends on the structure of the hypergraph, making it easier
to track the impact that changes to the representation have in retrieval performance.
The retrieval model is detailed in Section 7.4.2.
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Table 7.1: Hypergraph-of-entity nodes and hyperedges (base model and extensions).

Type Set Description Observation

Nodes

term Vt Represents a single word from the
original document.

In this work, the preprocessing pipeline includes:
sentence segmentation; lower case filtering; replace-
ment of URL, time, money and number expressions
with a common placeholder, each; stemming via
porter stemmer.

entity Ve Represents an entity from the list of
extracted entities and/or provided
triples.

Each mention to an entity is modeled through this
type of node (we consider disambiguation to be a
part of the ranking).

Hyperedges (Base Model)

document Ed Represents a document through the
set of all its terms and entities.

Undirected hyperedge.

related_to Er Represents a semantic relation be-
tween multiple entities.

Undirected hyperedge. Two implementations based
on the triples from the collection: document co-
occurrence; grouping by subject.

contained_in Ec Represents a relation between a set
of terms and an entity.

Directed hyperedge. In our implementation, this re-
lation exists between terms that are a part of an en-
tity name or mention and the corresponding entity
node.

Hyperedges (Extensions)

synonym Es Represents a relation of synonymy
between a set of terms.

Undirected hyperedge. Present in the Synonyms
model. The first synset from WordNet 3.0 is obtained
for each noun term, missing terms are added to the
model and the hyperedge is created.

context Ex Represents a relation of contextual
similarity between a set of terms.

Undirected hyperedge. Present in the Contextual
similarity model. This is computed based on the top
similar terms according to word2vec embeddings.

tf_bin Eb Represents a sets of terms within
the same term frequency interval,
for a given document.

Undirected hyperedge. Present in the TF-bins model.
The number of TF-bins per document is a parameter
that can be set during indexing.

7.4.1 An indexing structure for representation-driven retrieval

In this section, we introduce the variations of the hypergraph-of-entity represen-
tation model. This includes the base model, with two different configurations for
related_to hyperedges, as well as multiple extensions based on synonyms, context,
term frequency discretization, and weights.

7.4.1.1 An overview and formalization of the hypergraph-of-entity index structure

The hypergraph-of-entity is a unified model for entity-oriented search. It provides
a joint representation for corpora and knowledge bases, through a general mixed
hypergraph (see Definitions 5 and 7). We propose several variations of this model
that can be achieved through the extension of the base model, which is described in
the sections that follow. As an introduction to the model, we present, in Table 7.1,
an overview of all available types of nodes and hyperedges, while also providing
the corresponding set for each particular element type. Based on this notation and
supported on the concepts and definitions put forward in Section 7.2.1, we formally
define the hypergraph-of-entity index structure.

Definition 14 (Hypergraph-of-entity). A hypergraph-of-entity H = (V ,E) is a general
mixed hypergraph, where V = Vt ∪ Ve, given the set of term vertices Vt and the set of
entity vertices Vt, and E = EU ∪ ED, with the following EU undirected hyperedges and
ED directed hyperedges:

EU = Ed ∪ Er ∪ Es ∪ Ex ∪ Eb, such that each subset of undirected hyperedges represents a
different type of structure:
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Figure 7.2: Hypergraph-of-entity base model, representing the first sentence of the Wikipedia
article for Semantic search.

document Ed = {v : v ∈ Vt ∨ v ∈ Ve}
entity relations Er = {v : v ∈ Ve}
synonym terms Es = {v : v ∈ V ′t ∧ V ′t ⊇ Vt}
contextually similar terms Ex = {v : v ∈ V ′′t ∧ V ′′t ⊇ Vt}
terms in the same TF range Eb = {v : v ∈ Vt ∧ v ∈ ed ∧ ed ∈ Ed}

where V ′t and V ′′t are extensions of Vt (i.e., supersets), which may contain additional terms
from external synonyms or contextually similar neighbors, respectively.

ED = Ec, where Ec is the only subset of directed hyperedges, such that Ec = {(t,h) : t ⊆
Vt ∧ h ⊂ Ve ∧ |h| = 1}.

In the experiments we carry throughout this thesis, we control the structure of
the index by enabling or disabling each of the described node and hyperedge types.
For example, in Section 9.1, we explore the base model Hbm, where Es = ∅, Ex = ∅,
and Eb = ∅. In the same section, we also explore several extended versions of the
base model, namely by adding synonyms, which results in |Vt(Hsyns)| > |Vt(Hbm)|

and |Es| > 0. Another example can be found in Section 9.2, where we explore a
text-only version of the model, such that Vt 6= ∅, and Ve = ∅.

7.4.1.2 Base model

The hypergraph-of-entity is, in many ways, a simplification of the graph-of-entity
(Chapter 6). In the graph-of-entity, the sequence of terms in a document was cap-
tured through term–term edges with a doc_id attribute, while in the hypergraph-of-
entity we discarded term dependency in order to be able to model the terms within
a document as a single hyperedge. This model is analogous to the bag-of-words,
in the sense that term dependency is not captured by hyperedges (sets of nodes).
Besides this major difference (one hyperedge per document), there are three other
notable differences between the hypergraph-of-entity and the graph-of-entity: (i)

each document hyperedge also contains nodes for entities mentioned within the
document; (ii) sets of entities can be linked through a related_to hyperedge; and

172



7.4 hypergraph-of-entity

(iii) sets of terms can be related to an entity through a contained_in hyperedge. We
use a mixed hypergraph to represent a collection of documents. This means that
hyperedges can be directed — from a set of terms to an entity (contained_in) —
or undirected — sets of terms and entities (document), and sets of related entities
(related_to).

In undirected hypergraphs, a set of nodes is a hyperedge. In directed hyper-
graphs, a hyperedge (or hyperarc) contains two sets of nodes — the set of source
nodes is called tail, while the set of target nodes is called head. In the hypergraph-
of-entity, we always have tail sets with cardinality one (for directed contained_in
hyperedges) — this characteristic might be useful for defining a tensor represen-
tation of the hypergraph. Figure 7.2 provides a basic illustration of this model,
capturing hyperedge direction, when it exits, through a multiple source and target
single arrow. In the figure, pink nodes represent terms and green nodes represent
entities. All term and entity nodes are linked by a yellow undirected hyperedge
that represents the document as the set of its terms and entities. Entity nodes are
linked by green undirected hyperedges, when the entities are related (e.g., through
a property in an ontology). Sets of term nodes are linked to an entity by a pink di-
rected hyperedge, whenever the terms are a good representation of the entity (e.g.,
through substring matching).

In particular, Figure 7.2 represents a single document based on the first sentence
of the Semantic search Wikipedia article. This was already introduced in Section 6.2,
but we replicate it here for convenience:

Semantic search seeks to improve search [Search Engine Technology] accuracy
by understanding the searcher’s intent [Intention] and the contextual [Contex-
tual (language use)] meaning of terms as they appear in the searchable dataspace,
whether on the Web [World Wide Web] or within a closed system, to generate
more relevant results.

– Semantic search, Wikipedia, 09:10, 7 January 2016

Underlined terms within the text block represent links to other Wikipedia entities
(shown in square brackets). This establishes the knowledge block (see Figure 4.1
for a visual illustration). Each term obtained from the tokenization of the text block
is represented only once within a document hyperedge, regardless of its frequency
within that document. The same happens when multiple links to the same entity
are found — the entity is always represented by the same, unique node.

In order to better visualize the differences between this representation and the
graph-of-entity, we recommend comparing Figure 7.2 with Figure 6.2, which in-
dexes the same document we illustrate here. For that particular instance of the
graph-of-entity, we had 22 term nodes and 5 entity nodes (the same number as the
hypergraph-of-entity), but we also had 32 edges as opposed to only 7 hyperedges in
the model we propose here. Such a significant edge reduction was in part possible
because of the loss of term dependencies, when switching to the hypergraph-of-
entity from the graph-of-entity.

7.4.1.3 Configurations for related_to hyperedges

Although related_to hyperedges are created based on the triples from the knowl-
edge block in the extended documents, there are several options to group entities
according to the provided binary relations (ignoring the predicate). In this work,
we explore two approaches for grouping related entities. The first is based on entity
co-occurrence, be it within a document or a sentence. This option largely acts as
reinforcement, increasing the number of paths leading to the entity, thus improving
its chance of being visited. The second is based on a grouping by subject, consid-
ering all triples in the collection, similar to the OutRelations explored by Neumayer
et al. [179]. Accordingly, this approach is more focused on improving connectivity
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(a) Grouped by co-occurrence. (b) Grouped by subject.

Figure 7.3: Alternative configurations for the related_to hyperedge.

across documents, although it requires more resources during indexing, since it re-
lies on a wide collection view as opposed to a local document view. That is, the
generation of related_to hyperedges based on grouping by subject will only be com-
plete after all documents in the collection are fully iterated over, while co-occurrence
based hyperedges can be computed for each document, independently.

Figure 7.3 illustrates the two approaches. In Figure 7.3a, we find two related_to
hyperedges, forming the sets {e1, e2, e3} and {e3, e4, e5, e6, e7}. As we can see,
there is a certain redundancy in defining relations based on entity co-occurrence
at the document-level, since the document hyperedge already ties the entities. Us-
ing sentence-level co-occurrence could be more interesting, however scaling would
become an issue, given the much higher number of resulting hyperedges, not to
mention the additional preprocessing overhead. It is however clear that the chance
to visit nodes like e3 is still reinforced, as is the overall preference for entities as
traversal nodes. In analogy to a Wikipedia research task about a given a subject,
this would model the higher likelihood of a user following a link to another Wiki-
pedia page (an entity), rather than issuing a new query based on terms extracted
from the article.

In Figure 7.3b, we find an alternative approach, where related_to hyperedges are
used to improve connectivity instead of being used for reinforcement, forming the
sets {e2, e3, e4, e5} and {e6, e7}, where one of the entities in the set is the subject in a
triple that reaches one of the remaining entities over the whole collection. Traversal-
wise, this means that not only can the subject entity reach the object entity, but also
that each of the object entities become associated and are now directly reachable
through the related_to hyperedge. Such a grouping by subject could generate a hy-
peredge that, in one step, makes a traversal reach a document that would otherwise
be multiple degrees apart from the starting node.

While there are multiple approaches for grouping entities based on the provided
triples, we only instantiate two in this work, focusing on the grouping by sub-
ject, which we use on most of the experiments in this thesis. Specifically, only
the hypergraph-of-entity experiments from TREC 2018 Common Core, described in
Section 9.2, relies on the document-level co-occurrence related_to hyperedges. The
experiments described in Sections 8.5, 9.1, 9.3, and B.2, all rely on related_to hyper-
edges grouped by subject.

7.4.1.4 Extensions

We provide three types of extensions to the base model — synonyms, context,
weights, and TF-bins — which we can combine and reorder in any way we want.
Extending the base model with synonymy and contextual relations provides a kind
of “organic” query expansion. We usually depend on query expansion to retrieve
previously unreachable documents that did not match the user’s vocabulary. With
the hypergraph-of-entity, this becomes an inherent part of the ranking process, as
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it simply requires the addition of new hyperedges linking to related terms. On
the other hand, introducing node weights enables term and entity boosting, and
introducing hyperedge weights enables document boosting and the assignment of
certainty to the information represented by the hyperedge, thus constricting the
flow of random walks and directing the walker through the most probable paths.
In this section, we provide further details on how synonyms, context, weights and
TF-bins were obtained and added to the hypergraph-of-entity.

synonyms We used WordNet 3.0, through JWI, the MIT Java Wordnet Interface1,
to obtain the synset for the first sense of each term (i.e., the sense that is more fre-
quently used), assuming that the term is a noun. We integrated synonyms into the
hypergraph-of-entity by adding missing term nodes (i.e., that were not originally
a part of the collection’s vocabulary) and linking all terms from the synset using
a synonym hyperedge. For example, if a document contained the term results, we
would search WordNet as follows:

$ wn results -synsn

Synonyms/Hypernyms (Ordered by Estimated Frequency) of

noun result

4 senses of result

Sense 1

consequence, effect, outcome, result, event, issue, upshot

=> phenomenon

Sense 2

solution, answer, result, resolution, solvent

=> statement

Sense 3

result, resultant, final result, outcome, termination

=> ending, conclusion, finish

Sense 4

resultant role, result

=> semantic role, participant role

For this particular case, we would obtain four senses. We would then take the
synonyms (i.e., the synset) from Sense 1 and link all the terms using a synonym
hyperedge consisting of the following set of terms: results (the original term), con-
sequence, effect, outcome, result, event, issue and upshot. At the same time, we stored
information about the number of senses for each term, as it is useful to compute
the weight of the synonym hyperedges.

context Two terms were considered contextually similar whenever they were
frequently surrounded by similar terms. We used word2vec [140] word embed-
dings to establish context, based on the implementation provided by Gensim2. The
model can either be trained with the same collection that is being indexed, or use
an external text collection that might be more relevant to impose context within
the given domain. Several hyperparameters can be tuned to control word2vec. We
extracted word embeddings of size 100, considering moving windows with 5 words
and discarding words with a frequency below 2 in the collection. Once we extracted
the embeddings for all terms in the collection, we used the cosine similarity to find
the k-nearest neighbors, with k = 2, building a similarity network where an edge

1 https://projects.csail.mit.edu/jwi/
2 https://radimrehurek.com/gensim/models/word2vec.html
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Figure 7.4: Word2vec SimNet: musician ego network, with a depth of three. Nodes size is
proportional to the betweenness centrality and colors identify clusters of densely connected
terms.

was created between a term and each of its nearest neighbors, but only when the
similarity was above a given threshold (we used 0.5). Throughout this article, we
call this the word2vec SimNet. Figure 7.4 shows the neighborhood of musician (its
context), up to a maximum of three nodes in distance, in the word2vec SimNet
for the INEX 2009 Wikipedia subset (see Section 4.1.1). As we can see, even if a
query for guitarist or bassist is issued, documents containing only musician can also
be considered, although expanding from guitarist should result in a higher weight
to documents containing musician than expanding from bassist, since musician is ad-
jacent to guitarist, but bassist can only reach musician through guitarist. This is the
kind of rationale that a graph-based design supports, simultaneously allowing for
a better explanation and the promotion of transparency. We integrated this graph-
based information into the hypergraph by creating an undirected context hyperedge,
linking each term to all of its contextually adjacent terms. Were the user to require
an explanation as to why a particular ranking was provided for a given query, we
would be able to list the paths traversed from the seed nodes representing the query.
We could either do it exhaustively (i.e., list all paths), or based on descriptive statis-
tics, like the number of paths leading to ranked nodes, along with a few examples.
Either way, graph-based or hypergraph-based models are easily traceable.

Figure 7.5 illustrates the hypergraph-of-entity revision, showing only synonym
and context hyperedges, both examples of n-ary relations between multiple term
nodes. We also added any missing term nodes that were external to the document,
but present in the list of synonyms or contextually similar terms (in the figure,
we only included some of the original terms to illustrate the different patterns). All
nodes within blue context hyperedges were already a natural part of the hypergraph
(i.e., contained in the original collection), since word2vec was trained with the same
collection. However, synonyms might be external to the collection, therefore result-
ing in the addition of new term nodes that are not a part of any document. As we
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Figure 7.5: Hypergraph-of-entity model partial view, showing some of the new synonym (red)
and context (blue) hyperedges. Term nodes from the original document are displayed with a
stronger border stroke.

have seen before, both synonyms and contextually similar terms establish bridges
between potentially disconnected, but related, documents, increasing the chances
of improving recall over the base model. In the figure, nodes that are a part of
the document are visually identified by a stronger border. Most of the document
term nodes are not synonyms or contextually similar to one another. However, the
terms semantic and contextual are both connected, since contextual is one of the top-2
most similar terms to semantic, according to their word embeddings. Other inter-
esting subhypergraphs include for instance the neighborhood of term results, that
contains appropriate synonyms like consequence, result (the singular) or effect, but
also less clear synonyms like issue or upshot; contextually, however, we are able to
reach both outcome and outcomes, with outcome already covered by the synonyms
(but not its plural), an indicator that relevant related terms might only be reachable
through context.

weights By default, all nodes and hyperedges were unweighted. As another ex-
tension to the index, we assigned probabilistic weights to nodes and hyperedges.
We did this for two main reasons. First, not all terms or entities (our nodes) are
equally relevant, from a query-independent perspective; the same happens for re-
lated entities, contextual terms, or synonyms that depend on word sense (our hy-
peredges). Secondly, assigning weights might serve as a base for pruning in the
future, which we predict might improve overall performance. Regarding effective-
ness, constricting available paths is a way of increasing focus in the model and thus
of guiding random walks. Regarding efficiency, a lower number of nodes and hy-
peredges result in a lesser amount of used memory, but also in a faster convergence
of random walk visit probability, thus requiring less CPU cycles to reach an optimal
result. On the other side, the non-uniform random selection of a node or hyper-
edge during random walks is more expensive than selecting an incident node or
hyperedge uniformly at random, which means this requires experimentation.

The aim of the weights assigned to nodes and hyperedges was to provide dis-
criminative power, thus requiring uniform distributions with well dispersed values.
In this work, we provide an initial approach to weighting in the hypergraph. Ta-
ble 7.2 provides an overview of the probabilistic weighting functions that we pro-
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Table 7.2: Hypergraph-of-entity weighting functions.

(a) Nodes.

Node / Weight Description

term

2S

(
α
N−nt

nt

)
− 1

We used a variation of the IDF, with a tunable α < 1 parame-
ter to control how fast the function decreases.
- S is the sigmoid function
- N is the number of documents in the collection
- nt is the number of documents where a given term t occurs.
- We used α =N−0.75.

entity

Same as term.

In the future, we will experiment with different values of α
for terms and entities, in particular alternative exponents to
−0.75.

(b) Hyperedges.

Hyperedge / Weight Description

document

0.5

Linking a term or entity simply through document co-
occurrence is weak, so we use a constant weight lower than
one.

related_to
1

|er|

∑
v∈er

|{u ∈ e′
r : e′

r ∈ Er \ {er}∧ v ∈ e′
r}|

|er|

For each entity within the hyperedge, we calculate the fraction
of reachable other entities and average all results.
- Er is the set of all related_to hyperedges.
- er ∈ Er is the specific related_to hyperedge, for which we
are calculating the weight.

contained_in
1

|t|

Links with fewer terms t, where t refers to the tail set in
(t,h) ∈ Ec ∧ t ⊆ Vt, should be more frequently followed,
since the certainty that the hyperedge leads to the entity is
higher.

synonym

1

|es|

The higher the number of possible synonyms es ∈ Es ∧

es ⊆ Vt, the less certain we are about the hyperedge — we
rely on the synonyms of the first (and most probable) sense
according to WordNet.

context
1

|ex|

∑
ti∈ex\{tk}

sim(tk, ti)−minsim

1−minsim

A context ex ∈ Ex is only as good as the average of all simi-
larities between the original term tk ∈ ex and all other terms
ti ∈ ex \ {tk}. We normalize the weight taking into account
the threshold used to create the word2vec SimNet.

pose, based on the characteristics of each individual node and hyperedge type. For
this first experiment with a weighted version of the hypergraph-of-entity, we se-
lected weighting functions that we could compute exclusively using information
internal to the model. In an attempt to ensure the generalization of the model, we
also restricted the weights to probabilities, in order to facilitate the eventual integra-
tion of elements from probabilistic information retrieval or language models in the
future.

In particular, for the weighting of terms and entities, we used the probabilistic
IDF [321], but replaced the log function with the sigmoid function, to ensure that
IDF would always range between zero and one. In the sigmoid IDF we provide a
parameter α that controls the function’s decrease speed. We manually experimented
with multiple values for α, finding that the behavior would significantly change
for collections of a different dimension. We, therefore, introduced a dependence
on a fraction of the collection size N. Figure 7.6 illustrates the behavior of the
probabilistic IDF when compared to sigmoid IDF for base N and exponents −0.5,
−0.75 and −1. As we can see, using an exponent of −1 results in IDF values always
being above 0.5 and a slow decrease behavior. On the other hand, using an exponent
of −0.5 results in a fast decrease with a large fraction of the collection with an IDF
closer to zero. Finally, using −0.75 results in a decrease speed that is closer to
the behavior of the probabilistic IDF assigning a more diverse range of values to
different documents in the collection. While we did not specifically tune α to the
best approximation to the probabilistic IDF, the value that we selected provides a
good enough discriminative power.
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Figure 7.6: Selecting α for sigmoid IDF, when compared to the probabilistic IDF.

Table 7.3: Term frequency over the complete Wikipedia article on Semantic search, from 09:10,
7 January 2016.

(a) Terms for 100th percentile on
the ]1.5,54] TF interval.

Term Frequency

search 54

semantic 53

web 9

meaning 6

system 4

relevant 4

results 4

intent 3

improve 2

accuracy 2

understanding 2

(b) Terms for 50th percentile
on the ]0,1.5] TF interval.

Term Frequency

seeks 1

searcher 1

contextual 1

terms 1

appear 1

searchable 1

dataspace 1

whether 1

within 1

closed 1

generate 1

term frequency bins (tf-bins) We introduce the concept of TF-bins, which
are based on the discretization of the term frequency per document. This way, term
frequency can be introduced in the hypergraph-of-entity, while having a low impact
in scalability (i.e., we remain focused on forming groups of nodes to minimize the
space complexity of the representation model).

For each document, we calculate the term frequency and, for a given number of
bins n, we compute the percentiles Pn = {100 xn | x ∈ Z+ ∧ x 6 n}, assigning them
the weight w(x) = x

n . So, for example, if we consider n = 4 bins, then we compute
the percentiles P4 = {25, 50, 75, 100}, resulting in four values of TF. Let us for instance
consider the following term frequency for 10 documents: 1, 1, 1, 1, 2, 2, 2, 2, 2, 3. This
would result in the value 1 for the 25 percentile, 2 for the 50 and 75 percentiles, and
3 for the 100 percentile. We would then form the TF intervals ]0, 1], ]1, 2], ]2, 2] and
]2, 3], with the interval ]2, 2] having no matches in Z+, which prioritizes the lower
weights (i.e., we consider w(x = 2), from the 50 percentile, instead of w(x = 3),
from the 75 percentile). Per document, and for each non-empty interval, a weighted
hyperedge was then created to group terms with a similar term frequency (i.e.,
within the same TF-bin). This can be used by the ranking function, to issue biased
random walks, controlling the flow in a way that the walker will be driven towards
documents with a higher TF for the query terms.

Table 7.3 shows the term frequency of all the terms in the example document.
While this document was built from the first sentence of Wikipedia’s article on
Semantic search, for illustration purposes we used the term frequencies from the
complete document. Our original example would have only contained a single
term with TF = 2 and the remaining terms would have TF = 1, making it less
interesting to analyze. Figure 7.7 illustrates the grouping of terms into two TF-
bins, as a part of the hypergraph-of-entity. We assigned two different colors to
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Figure 7.7: Hypergraph-of-entity model partial view, showing the document hyperedge, along
with two tf_bin hyperedges (orange for high-TF terms and steel blue for low-TF terms).

tf_bin hyperedges, distinguishing between high (orange) and low (steel blue) term
frequency bins. The high-TF bins contained terms with term frequencies in the
interval ]1.5, 54], while the low-TF bins contained terms with term frequencies in
the interval ]0, 1.5]. The tf_bin hyperedge for high-TF terms had a weight of w = 1.0,
while the tf_bin hyperedge for low-TF terms had a weight of w = 0.5. This bias
was introduced to drive the random walkers towards terms that are more probably
relevant within the context of each document.

7.4.1.5 Reflecting on the implications of representation-driven retrieval

The retrieval models based on indexing data structures like the inverted index are
highly dependent on the ranking function that is chosen. These functions usually
contain three main elements: (1) term frequency, to measure the importance of
query terms in the document; (2) inverse document frequency, to diminish the im-
pact of frequent terms that are widespread over the collection, therefore having lit-
tle discriminative power; and (3) pivoted document length normalization, to avoid
long documents to outrank shorter, more relevant documents. While this is the
standard, several other elements can be included based on an inverted index, such
as term positions, term boosting payloads, or even document prior features that
are query independent and stored in fields of the index. The final score, however,
completely depends on the ranking function, that only uses the index to efficiently
compute the statistics that it requires.

In the hypergraph-of-entity, however, the graph-based index data structure highly
dictates the effectiveness of the ranking function. By reducing the number of possi-
ble paths linking terms and entities, as well as ensuring the quality of the retained
terms, entities and relations, we increase the chances for the ranking function to suc-
ceed. A lower number of possible paths leads to lower uncertainty. In general, the
lower the number of documents we consider, the lower the uncertainty as well. This
is not to be confused with the quality of the proposed ranking, since smaller col-
lections have a lower probability of having relevant documents for a wide range of
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topics. Lower uncertainty is related to the best possible answer the ranking function
could return, based on the available information in the index. Given we cannot con-
trol the number of documents in a collection, which is often application-dependent,
one way to decrease uncertainty is to rely on the reduction of the number of hyper-
edges and the improvement of node and hyperedge quality. One strategy that we
explore to achieve this is the application of keyword extraction. Through it, we also
find that lowering the fraction of top keywords improves the effectiveness of the
model, just prior to reaching a number that is too low to assure effectiveness (see
Table 9.11 for the 0.05 ratio on HGoE, Section 9.3.3).

7.4.2 The random walk score as a universal ranking function

We propose a ranking function, based on random walks, that strongly captures the
structural features of the hypergraph-of-entity. We compare this function with two
baselines from a traditional Lucene1 inverted index: TF-IDF and BM25 (with de-
fault parameters k1 = 1.2 and b = 0.75). Both during indexing and querying, text
is preprocessed using an analyzer similar to Lucene’s StandardAnalyzer, with two
main differences: (i) stopwords are selected based on the language-detector library,
using the corresponding dictionaries for the detected language as provided by Post-
greSQL 9.6, instead of the default set of English stopwords; (ii) tokens with a length
inferior to 3 characters are discarded. The ranking function we propose, random
walk score, requires the preselection of a set of seed nodes that represent the query.
In this section, we describe the seed node selection process and the random walk
score computation approach.

7.4.2.1 Seed node selection

The seed node selection process can be seen as part of the “organic” process that
enables a kind of stochastic semantic tagging of query parts, akin to named entity
recognition in queries. Thus, the first step in calculating the random walk score
is to map a keyword query to nodes in the hypergraph-of-entity. This process is
similar to the graph-of-entity [268], that is, we tokenize the query into unigrams,
mapping them to the corresponding term node (if no match exists, the unigram is
simply ignored). The term nodes are then expanded to adjacent entity nodes (the
seed nodes), which replace them, unless no adjacent entity node exists, resulting in
the term node becoming its own seed node. A confidence weight is then calculated
for each seed node, measuring the certainty of the node representing the query. See
Devezas et al. [268, Section 3.2, Retrieval] for further details.

Ambiguity is not dealt with during seed node selection, but instead during rank-
ing. During seed node selection, we attempt to reach the whole universe of possibil-
ities (i.e., we find the most complete set of candidate entities that might represent
the query). During ranking, however, we rely on the overall relations, naturally
stored in the hypergraph, for disambiguation. It is not infrequent to do entity link-
ing based on a graph of entities (and sometimes mentions) and their relations [84,
262, 322]. What we do here is to use basic substring matching to find a large num-
ber of candidates (many times we can have over 1,000 candidate nodes per query).
Then, during ranking, while capturing the structure of the hypergraph based on
random walks, each candidate is visited for a given number of times, depending
on the link density of the neighborhood of each seed node. Seed nodes act as an
open representation of the query. Ambiguity is then solved by cross-referencing all
available information through paths in the graph that depart from the seed nodes.
Since we also include synonyms in the hypergraph, we aren’t even required to con-
sider multiple word senses, as these are naturally solved based on the knowledge
of the model. This is why we simply use substring matching. Although such a
naive approach to term-entity linking can be improved, we argue that, based on the

1 https://lucene.apache.org/
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Figure 7.8: Hypergraph-of-entity: ranking document hyperedges using RWS(` = 2, r = 10)

for seed nodes n5 and n6.

described strategy, this is only one step towards entity linking. Moreover, based
on the cited literature, this is a step that makes sense for our model, where we al-
ready capture links between entities and terms (i.e., mentions), which might even
be weighted with different degrees of certainty.

7.4.2.2 Random walk score

In random walks, steps can be chosen uniformly at random, but we can also estab-
lish a bias through weighted hyperedges (which we can also do for graphs) and
weighted nodes (used for a random, non-uniform selection of nodes within a hy-
peredge). We can also vary the length of the walk ` ∈ {`1, `2, . . . , `n}, as well as the
number of repeats (or iterations) r ∈ {r1, r2, . . . , rm}. In particular, we experimented
with the configurations given by `× r ∈ {(`1, r1), (`1, r2), . . . , (`n, rm)}. The goal was
to measure the impact of increasing the walk length, the number of repeats, or both.
The length ` constricts or liberates the random walker to wander closer or further
apart from the concepts that best represent the query (the seed nodes), while the
repeats r improve the certainty of the computed ranking. For evaluation, we used
` ∈ {2, 3, 4} and r ∈ {102, 103}.

For each seed node, we launched a number r of random walks of length `, stor-
ing the number of visits to each hyperedge. Per seed node, we then normalized
the number of visits by dividing by the maximum and then multiplying by the
seed node confidence weight. These individual scores were then summed for each
hyperedge, obtaining a final document hyperedge score. Random walks respected
hyperedge direction, as well as node and hyperedge weights, which introduced
bias. In practice, this means that we modeled ad hoc document retrieval as a hyper-
edge ranking problem using biased random walks for ranking. It also means that a
similar strategy can be applied to ad hoc entity retrieval by modeling this task as a
node ranking problem instead. This demonstrates how the hypergraph-of-entity is
a generalizable model that is easily extensible to other entity-oriented search tasks.

Figure 7.8 illustrates the output of such a random walk, showing three documents
represented by their hyperedges, d1, d2 and d3, and six abstract nodes (i.e., they can
either represent term or entity nodes), two of which, n5 and n6, are identified as seed
nodes. We calculated RWS(` = 2, r = 10) by launching 10 random walks of length
2 from each of the seed nodes, aggregating the number of visits per hyperedge as
v(d). As we can see, both d1 and d2 contain four nodes, overlapping on n2 and n5,
and d2 subsumes d3, that is, it is more general than d3, containing all of its nodes
(and more). One of the possible results of the nondeterministic execution of the
RWS is show in the figure. Larger values of r (usually r > 1000) result in a higher
ranking consistency, however, for such a small hypergraph, r = 10 is sufficient to
converge to the shown ranking: d2, d3, d1.
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Table 7.4: Mapping entity-oriented search tasks to the hypergraph-of-entity.

Query Input Results Output

Ad hoc document retrieval Keyword Term nodes Documents Hyperedge ranking
Ad hoc entity retrieval Keyword Term nodes Entities Node ranking
Related entity finding Entity One entity node Entities Node ranking
Entity list completion Entity Multiple entity nodes Entities Node ranking

Table 7.5: Random walk score parameters and chosen configuration.

Parameter Description Configuration

` Length of the random walk. 2

r Number of repeated random walks per seed node. 10,000
∆nf Number of cycles of node fatigue (see Section B.2). 0

∆ef Number of cycles of (hyper)edge fatigue (see Section B.2). 0

expansion Whether to expand query to neighboring entities. false
directed Whether to consider or ignore direction. true
weighted Whether to consider node and hyperedge weights. false

7.4.2.3 Parameterization

While the hypergraph-of-entity is a representation-driven retrieval model, the rank-
ing function still requires configuration to answer each of the different entity-
oriented search tasks. This is achieved both by controlling the type of input and
output as described in Table 7.4, and by configuring the parameters from Table 7.5.
The random walk score ranking function launches r repeated random walks of a
given length `, from each seed node. Seed nodes can either be the term nodes
matching query terms, or their expansion to adjacent entity nodes. Each node and
hyperedge has a counter that keeps track of the number of visits from the random
walks, which are simulated step by step. This is then used to rank the desired
output elements. As we can see in Table 7.4, each of the four main tasks can be
mapped to an input/output configuration, thus providing universal ranking for
entity-oriented search. For example, by selecting a specific entity as the query (in-
put), and ranking other entities (output), we are able to run the task of related entity
finding.
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summary
In this chapter, we began by arguing the importance of cross-referencing over all
available information, for solving general information needs. We have considered
the hypergraph data structure as an instrument of generalization, and as an alter-
native solution for capturing higher-order dependencies in documents, entities and
their relations. We then explored the idea of a unified framework for information
retrieval, providing clear instances for joint representation approaches and for gen-
eral retrieval based on a hypergraph. We then proposed a unified model for the
representation and retrieval of text and knowledge, supporting multiple tasks of
entity-oriented search: ad hoc document retrieval, ad hoc entity retrieval, related
entity finding, and entity list completion. The hypergraph-of-entity was proposed
as a joint representation of terms, entities and their relations, for indexing corpora
and knowledge bases in a unified manner. In this model, entities were linked to
other related entities as a group, either according to the knowledge base (e.g., the
subject and the respective target objects), or simply the occurrence in a common
document; terms and entities were all linked by a document hyperedge, as a bag
of words and entities; and terms were linked to entities that they represented or
illustrated in some way (e.g., based on string matching with the entity’s name; per-
haps also good for cross-language retrieval). We presented a base model, as well
as multiple combinable extensions, using synonyms provided by WordNet, context
provided by word2vec word embeddings similarity, node and hyperedge weighting
functions, and the newly introduced concept of TF-bins, based on the discretization
of term frequencies. We proposed the random walk score as a retrieval model and
as a method for relevance weighting that closely depends on the structure of the hy-
pergraph, which provides the flexibility to change and improve the representation
model without the need to repeatedly revise the ranking function. This universal
ranking function was based on a series of repeated random walks of a fixed length,
starting from a set of seed nodes representing the query. The proposed random
walk score was able to cover nodes and hyperedges of all types, but only collected
and ranked elements of the selected target type(s). The proposed retrieval model
is highly dependent of the representation model, as was well as the random walk
score parameters.
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Complex networks have frequently been studied as graphs, but only recently has
attention been given to the study of complex networks as hypergraphs [323]. As
we have seen in Chapter 7, the hypergraph-of-entity is a hypergraph-based model
used to represent combined data [92, §2.1.3]. That is, it is a joint representation
of corpora and knowledge bases, integrating terms, entities and their relations. It
attempts to act as a replacement to solve, by design, the issues of representing
combined data through inverted indexes and quad indexes. The hypergraph-of-
entity, together with the random walk score, is also an attempt to generalize several
tasks of entity-oriented search. This includes ad hoc document retrieval and ad hoc
entity retrieval, as well as the recommendation-alike tasks of related entity finding
and entity list completion. Since ranking is particularly dependent on the structure
of the hypergraph, a characterization is a fundamental step towards improving the
representation model and, with it, the retrieval performance.

Accordingly, our focus in this chapter is that of studying the structural features
of the hypergraph, following a network science approach, applied to a microscopic
and macroscopic scale, as well as over time with an increasing number of docu-
ments. This is a task that presents some challenges, both from a practical sense
and from a theoretical perspective. While there are many tools [324, 325] and for-
mats [326, 327] for the analysis and transfer of graphs, hypergraphs still lack clear
frameworks to perform these functions, making their analysis less trivial. Even
formats like GraphML [327] only support undirected hypergraphs. Furthermore,
there is still an ongoing study of several aspects of hypergraphs, some of which
are trivial in graph theory. For example, the adjacency matrix is a well-established
representation of a graph, however recent work is still focusing on defining an adja-
cency tensor for representing general hypergraphs [115]. As a scientific community,
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we have been analyzing graphs since 1735 and, even now, innovative ideas in graph
theory are still being researched [250]. However, the concept of hypergraph is much
younger, dating from 1970 [40], and thus there are still many open challenges and
opportunities. In particular, the main contributions of this chapter are the following:

• Analysis of multiple versions of real-world hypergraph data structures being
developed for information retrieval;

• Proposal of a practical analysis framework for hypergraphs;

• Proposal of estimation approaches for the computation of shortest paths and
clustering coefficients in hypergraphs;

• Proposal of a computation approach for the density of general mixed hyper-
graphs based on a corresponding bipartite graph representation;

• Example of an application in the context of information retrieval, where struc-
tural features were measured over different hypergraph-based models and
presented in relation to the performance of each model.

The structure of this chapter is organized as follows:

• Section 8.1 begins by providing an overview on the analysis of the inverted
index [§8.1.1], knowledge bases [§8.1.2] and hypergraphs [§8.1.3], covering the
three main aspects of the hypergraph-of-entity.

• Section 8.2 describes our characterization approach, covering shortest dis-
tance estimation with random walks [§8.2.1] and clustering coefficient esti-
mation with node sampling [§8.2.2], as well as proposing a general mixed
hypergraph density formula [§8.2.3] by establishing a parallel with the corre-
sponding bipartite mixed graph.

• Section 8.3 presents the results of a characterization experiment of the hyper-
graph–of–entity for the INEX 2009 10T-NL Wikipedia subset.

• Section 8.4 explores the effect of including synonyms [§8.4.1], contextual sim-
ilarity [§8.4.2], or TF-bins [§8.4.3] in the structure of the hypergraph.

• Section 8.5 assesses the retrieval effectiveness of the representation model,
analyzing the correlations between the evaluation metrics and the structural
features [§8.5.1], and proposing ranking and anomaly indicators based on our
conclusions [§8.5.2].

8.1 three perspectives for studying the repre-
sentation model

The hypergraph-of-entity representation model can be viewed from three different
perspectives, which we consider during this analysis. First, it acts as an index and
it can be studied accordingly, for example regarding efficiency or space require-
ments [328, 329]. Secondly, it can be viewed as a knowledge base, where entities
and triples can be studied by analyzing the structural features of the RDF graph, for
example diameter or density. Thirdly, the representation model can be viewed as
a hypergraph, which has special characteristics that a graph does not have, for ex-
ample hyperedge cardinality. In this section, we explore the statistics and analysis
approaches used in the literature, for each of these perspectives.
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8.1.1 Analyzing inverted indexes

Voorhees [328] compared the efficiency of the inverted index with the top-down
cluster search. She analyzed the storage requirements of four test collections, mea-
suring the total number of documents and terms, as well as the average number of
terms per document. She then analyzed the disk usage per collection, measuring
the number of bytes for document vectors and the inverted index. She measured
CPU time in number of instructions and the I/O time in number of data pages
accessed at least once, as well as the query time in seconds. Zobel et al. [329] took
a similar approach to compare the inverted index and signature files. First, they
characterized two test collections, measuring size in mebibytes, number of records
and distinct words, as well as the record length, and the number of words, distinct
words and distinct words without common terms per record. They also analyzed
disk space, memory requirements, ease of index construction, ease of update, scala-
bility and extensibility.

For the hypergraph-of-entity characterization, we focus on studying the structure
and size of the hypergraph, as the performance is studied in depth in Chapter 9.

8.1.2 Analyzing knowledge bases

Halpin [330] took advantage of Microsoft’s Live.com query log to reissue queries
mentioning entities and concepts over their FALCON-S semantic web search engine.
They studied the results, characterizing their sources, triple structure, RDF and
OWL classes and properties, and the power-law distributions of the number of
URIs, both returned as results and as part of the triples linking to the results. They
focused mostly on measuring the frequency of different elements or aggregations
(e.g., top-10 domain names for the URIs, most common data types, top vocabulary
URIs).

Ge et al. [331] studied the projection of tripartite RDF graphs, defining an object
link graph based on paths linking objects (i.e., target node entities), either directly
or through blank nodes. They studied the Falcons Crawl 2008 and 2009 datasets
(FC08 and FC09), which included URLs from domains like bio2rdf.org or dbpe-
dia.org. They characterized each object link graph based on density (extrapolated
from the average degree), connectivity, largest connected component, and diame-
ter. By comparing the object link graphs for the FC08 and FC09, they were able to
characterize the structural evolution of the object link graph. They also analyzed
two domain-specific subgraphs (according to URL domains) from FC09, comparing
each subgraph with its original graph. Comparing two snapshots of the same data
enabled them to find evidence of the scale-free nature of the network. While the
graph almost doubled in size from FC08 to FC09, the average degree remained the
same and the diameter actually decreased.

Fernandez et al. [332] focused on studying the structural features of RDF data.
They proposed several subject and object degrees, accounting for the number of
links from/to a given subject/object (outdegree and indegree), the number of links
from a 〈subject, predicate〉 (partial outdegree) and to a 〈predicate, object〉 (partial inde-
gree), the number of distinct predicates from a subject (labeled outdegree) and to an
object (labeled indegree), and the number of objects linked from a subject through
a single predicate (direct outdegree), as well as the number of subjects linking to
an object through a single predicate (direct indegree). They also measured predi-
cate degree, outdegree and indegree. They proposed common ratios to account for
shared structural roles of subjects, predicates and objects (e.g., subject-object ratio).
Global metrics were also defined for measuring the maximum and average outde-
gree of subject and object nodes for the whole graph. Another analysis approach
was focused on the predicate lists per subject, measuring the ratio of repeated lists
and their degree, as well as the number of lists per predicate. Finally, they also de-
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fined several statistics to measure typed subjects and classes, based on the rdf:type
predicate.

While we study a hypergraph that jointly represents terms, entities and their
relations, we focus on a similar characterization approach, that is more based on
structure and less based on measuring performance.

8.1.3 Analyzing hypergraphs

Hypergraphs [40] have been around since 1970. While this concept was introduced
by Claude Berge on this year, there had been other contributions surrounding the
topic, namely in extremal graph and set theory. Post-1970, the work by Erdös [333]
and Brown et al. [334] illustrates the intersection between extremal graph theory and
hypergraph theory, while, pre-1970, we can also find contributions like Sperner’s
theorem [335], in extremal set theory, or the Turán number [336, 337], in extremal
graph theory. Interestingly, hypergraphs have remained somewhat fringe in net-
work science, perhaps due to Paul Erdös resistance to the concept [40]:

At the Balatonfüred Conference (1969), P. Erdös and A. Hajnal asked us why
we would use hypergraphs for problems that can be also formulated in terms of
graphs. The answer is that by using hypergraphs, one deals with generalizations
of familiar concepts. Thus, hypergraphs can be used to simplify as well as to
generalize.

Although Erdös himself, who was interested in exploring the representation of
graphs using set intersections [338], also studied hypergraph problems, he avoided
this designation, only sparsely using it [334]:

By an r-graph we mean a fixed set of vertices together with a class of unordered
subsets of this fixed set, each subset containing exactly r elements and called an
r-tuple. In the language of Berge [40] this is a simple uniform hypergraph of
rank r.

Hypergraphs are data structures that can capture higher-order relations. As such,
they either present conceptually different or multiple counterparts to the equivalent
graph statistics. Take for instance the node degree. While graphs only have a node
degree, indegree and outdegree, hypergraphs can also have a hyperedge degree,
which is the number of nodes in a hyperedge [339]. The hyperedge degree also
exists for directed hyperedges, in the form of a tail degree and a head degree1. The
tail degree is based on the cardinality of the source node set and the head degree is
based on the cardinality of the target node set. In this work we rely on the degree,
clustering coefficient, average path length, diameter and density to characterize the
hypergraph-of-entity.

Building on the work by Gallo et al. [340], who extended Dijkstra’s algorithm to
hypergraphs, and the work by Ausiello et al. [341], who tackled the same problem
using a dynamic approach, Gao et al. [342] have also proposed two algorithms for
computing shortest paths in hypergraphs. The first, HyperEdge-based Dynamic
Shortest Path (HE-DSP), like Gallo et al., proposed an extension to Dijkstra’s algo-
rithm. The second, Dimension Reduction Dynamic Shortest Path (DR-DSP), relied
on an induced graph with the same vertex set, adding weighted edges when a hy-
peredge containing the two vertices exists in the corresponding hypergraph, while
selecting the minimum weight over all available hyperedges for the pair of vertices.

In this work, we focus on approximated computation approaches, which are use-
ful for large-scale hypergraphs. Ribeiro et al. [343] proposed the use of multiple
random walks to find shortest paths in power law networks. They found that ran-
dom walks had the ability to observe a large fraction of the network and that two

1 Tail and head is used in analogy to an arrow, not a list.
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random walks, starting from different nodes, would intersect with a high probabil-
ity. Glabowski et al. [344] contributed with a shortest path computation solution
based on ant colony optimization, clearly structuring it as pseudocode, while pro-
viding several configuration options. Parameters included the number of ants, the
influence of pheromones and other data in determining the next step, the speed
of evaporation of the pheromones, the initial, minimum and maximum pheromone
levels, the initial vertex and an optional end vertex. Li [345] studied the computa-
tion of shortest paths in electric networks based on random walk models and ant
colony optimization, proposing a current reinforced random walk model inspired
by the previous two. In this work, we also use a random walk based approach to
approximate shortest paths and estimate the average path length and diameter of
the graph.

Gallagher and Goldberg [316, Eq.4] provide a comprehensive review on clustering
coefficients for hypergraphs. The proposed approach for computing the clustering
coefficient in hypergraphs accounted for a pair of nodes, instead of a single node,
which is more frequent in graphs. Based on these two-node clustering coefficients,
the node cluster coefficient was then calculated. Two-node clustering coefficients
measured the fraction of common hyperedges between two nodes, through the
intersection of the incident hyperedge sets for the two nodes. It then provided dif-
ferent kinds of normalization approaches, either based on the union, the maximum
or minimum cardinality, or the square root of the product of the cardinalities of the
hyperedge sets. The clustering coefficient for a node was then computed based on
the average two-node clustering coefficient for the node and its neighbors.

The codegree Turán density [346] γ(F) can be computed for a family F of
k-uniform hypergraphs, also known as k-graphs. It is calculated based on the code-
gree Turán number co-ex(n,F) — the extremal number based on the codegree of
a hypergraph — which takes as parameters the number of nodes n and the fam-
ily F of k-graphs. In turn, the codegree Turán number is calculated based on the
minimum number of nodes, taken from all sets of r − 1 vertices of each hyper-
graph Hn that, when united with an additional vertex, form a hyperedge from H.
The codegree density for a family F of hypergraphs is then computed based on
lim supn→∞ co-ex(n,F)

n . Since this was the only concept of density we found asso-
ciated with hypergraphs or, more specifically, a family of k-uniform hypergraphs,
we opted to propose our own density formulation (Section 8.2). Furthermore, the
hypergraph-of-entity is a single general mixed hypergraph. In other words, it is
not a family of hypergraphs, it contains hyperedges of multiple degrees (it’s not
k-uniform, but general) and it contains undirected and directed hyperedges (it’s
mixed). Accordingly, we propose a density calculation based on the counterpart bi-
partite graph of the hypergraph, where hyperedges are translated to bridge nodes.

8.2 hypergraph characterization approach
Graphs can be characterized at a microscopic, mesoscopic and macroscopic scale.
The microscopic analysis is concerned with statistics at the node-level, such as the
degree or clustering coefficient. The mesoscopic analysis is concerned with statis-
tics and patterns at the subgraph-level, such as communities, network motifs or
graphlets. The macroscopic analysis is concerned with statistics at the graph-level,
such as average clustering coefficient or diameter. In this work, our analysis of the
hypergraph is focused on the microscopic and macroscopic scales. We compute sev-
eral statistics for the whole hypergraph, as well as for snapshot hypergraphs that
depict growth over time. Some of these statistics are new to hypergraphs, when
compared to traditional graphs. For instance, nodes in directed graphs have an
indegree and an outdegree. However, nodes in directed hypergraphs have four de-
grees, based on incoming and outgoing nodes, as well as on incoming and outgoing
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hyperedges. While in graphs all edges are binary, leading to only one other node,
in hypergraphs hyperedges are n-ary, leading to multiple nodes, and thus different
degree statistics. While some authors use ‘degree’ to refer to node and hyperedge
degrees [347, §4][339, §Network Statistics in Hypergraphs], in this work we opted
to use the ‘degree’ designation when referring to nodes and the ‘cardinality’ desig-
nation when referring to hyperedges. This is to avoid any confusion for instance
between an “hyperedge-induced” node degree and a hyperedge cardinality.

We analyze the base model, as well as three models based on the synonyms,
contextual similarity and TF-bins extensions. For the full hypergraph of each of the
four models, we compute the following global statistics:

• Number of nodes, in total and per type;

• Number of hyperedges, in total, per direction, and per type;

• Average degree;

• Average clustering coefficient;

• Average path length;

• Diameter;

• Density.

We also plot the following distributions for the full hypergraph:

• Node degree distributions per node type:

– Node-based node degree;

– Hyperedge-based node degree.

• Hyperedge cardinality distributions per hyperedge type.

Then, we define a temporal analysis framework based on an increasing number of
documents (i.e., time passes as documents are added to the hypergraph-of-entity
index). We prepare several snapshots, with a different number of documents each,
for each of the four models. We then compute and plot the following statistics for
each snapshot, showing its evolution as the number of documents increases:

• Average node degree over time;

• Average hyperedge cardinality over time;

• Average diameter and average path length over time;

• Average clustering coefficient over time;

• Average density over time.

• Size over time:

– Number of nodes;

– Number of hyperedges;

– Space in disk;

– Space in memory.

Finally, we also measure the run time for several operations, in order to understand
the efficiency cost and the evolution of its behavior for an increasing number of
documents:
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• Index creation time;

• Global statistics computation time;

• Node degrees computation time;

• Hyperedge cardinalities computation time.

In order to support large-scale hypergraphs, we compute the average path length,
diameter, clustering coefficient, and density using approximated strategies. We es-
timate shortest distances based on random walks, the clustering coefficient based
on node sampling, and the density based on a bipartite graph induced from the hy-
pergraph, although without the need to explicitly create this graph. The following
sections detail these approaches.

8.2.1 Estimating shortest distances with random walks

Ribeiro et al. [343] found that, in power law networks, there is a high probability
that two random walk paths, usually starting from different nodes, will intersect
and share a small fraction of nodes. We took advantage of this conclusion, adapting
it to a hypergraph, in order to compute a sample of shortest paths and their length,
used to estimate the average path length and diameter. We considered two (ordered)
sets S1 ⊂ V and S2 ⊂ V of nodes sampled uniformly at random, each of size
s = |S1| = |S2|. We then launched r random walks of length ` from each pair of
nodes Si1 and Si2. For a given pair of random walk paths, we iterated over the
nodes in the path starting from Si1, until we found a node in common with the path
starting from Si2. At that point, we merged the two paths based on the common
node, discarding the suffix of the first path and the prefix of the second path. We
computed the length of these paths, keeping only the minimum length over the r
repeats. As the number of iterations r increased, we progressively approximated
the shortest path for the pair of nodes. Despite the inherent estimation error, this
method can be used to study even large-scale hypergraphs — precision can be
controlled by tuning the number of sampled nodes and random walks, eventually
leading to convergence for large values. This approach enabled us to generate a
sample of approximated shortest path lengths, which could be used to compute
the estimated diameter (its maximum) and the estimated average path length (its
mean), in a scenario where high precision is not critical. This is true for instance for
a quick or initial analysis of a hypergraph. Given the repeated research iterations
over the hypergraph-of-entity and the multitude of tests carried over this model, a
quick estimation approach is ideal.

8.2.2 Estimating clustering coefficients with node sampling

In a graph, the clustering coefficient is usually computed for a single node and
averaged over the whole graph. As shown by Gallagher and Goldberg [316, §I.A.],
in hypergraphs the clustering coefficient is computed, at the most atomic level,
for a pair of nodes. The clustering coefficient for a node is then computed based
on the averaged two-node clustering coefficients between the node and each of its
neighbors (cf. Gallagher and Goldberg [316, Eq.4]). Three options were provided
for calculating the two-node clustering coefficient, one of them based on the Jaccard
index between the neighboring hyperedges of each node [316, Eq.1], which we use
in this work. While a global understanding of the clustering coefficient is useful
for characterizing the overall local connectivity in the hypergraph, the existence of
a random hypergraph generation model, like the Watts–Strogatz model [348] for
graphs, would provide further interpretations at a mesoscale. We leave this open
and instead focus on the macroscale.
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Continuing with the philosophy of large-scale hypergraph support in our anal-
ysis framework, as opposed to computing the clustering coefficient for all nodes,
we estimated the clustering coefficients for a smaller sample S ⊆ V of nodes. Fur-
thermore, for each sampled node si ∈ S, we also sampled its neighbors NS(si)
for computing the two-node clustering coefficients. We then applied the described
equations to obtain the clustering coefficients for each node si and a global cluster-
ing coefficient based on the overall average. For S = V ∧NS(si) = N(si), being
NS the sampled neighbors and N the full set of neighbors, we would obtain the
exact clustering coefficient. Again, this approach offers two parameters that can be
controlled as a tradeoff between efficiency and effectiveness.

8.2.3 Computing the density of general mixed hypergraphs

A general mixed hypergraph is general (or non-uniform) in the sense that its hy-
peredges can contain an arbitrary number of vertices, and it is mixed in the sense
that it can contain hyperedges that are either undirected and directed. We compute
a hypergraph’s density by analogy with its corresponding bipartite graph, which
contains all nodes from the hypergraph, along with connector nodes representing
the hyperedges.

Consider the hypergraph H = (V ,E), with n = |V | nodes and m = |E| hyperedges.
Also consider the set of all undirected hyperedges EU and directed hyperedges
ED, where E = EU ∪ ED. Their subsets EkU and Ek1,k2

D should also be respectively
considered, where EkU is the subset of undirected hyperedges with k nodes and
E
k1,k2
D is the subset of directed hyperedges with k1 tail (source) nodes, k2 head

(target) nodes and k = k1 + k2 nodes, assuming the hypergraph only contains di-
rected hyperedges between disjoint tail and head sets. This means that the union
of EU = E1U ∪ E2U ∪ E3U ∪ . . . and ED = E1,1

D ∪ E
1,2
D ∪ E

2,1
D ∪ E

2,2
D ∪ . . . forms the set of

all hyperedges E. We use it as a way to distinguish between hyperedges with differ-
ent degrees. This is important because, depending on the degree k, the hyperedge
contributes differently to the density, when considering the corresponding bipartite
graph. For instance, one undirected hyperedge with degree k = 4 contributes with
four edges to the density. Accordingly, we derive the density of a general mixed
hypergraph as shown in Equation 8.1.

D =
2
∑
k k|E

k
U|+

∑
k1,k2(k1 + k2)|E

k1,k2
D |

2(n+m)(n+m− 1)
(8.1)

In practice, this is nothing more than a comprehensive combination of the density
formulas for undirected and directed graphs. On one side, we consider the density
of a mixed graph that should result of the combination of an undirected simple
graph and a directed simple graph. That is, each pair of nodes can be connected, at
most, by an undirected edge and two directed edges of opposing directions. On the
other side, we use hypergraph notation to directly obtain the required statistics from
the corresponding mixed bipartite graph, thus calculating the analogous density for
a hypergraph.

8.3 analyzing the hypergraph-of-entity
We indexed a subset of the INEX 2009 Wikipedia collection [112] given by the 7,487
documents appearing in the relevance judgments of 10 random topics. We then
computed global statistics (macroscale), local statistics (microscale) and temporal
statistics. Temporal statistics were based on an increasingly larger number of docu-
ments, by creating several snapshots of the index, through a ‘limit’ parameter, until
all documents were considered.
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Table 8.1: Global statistics for the base model.

Statistic Value

Nodes 607,213

term 323,672

entity 283,541

Statistic Value

Hyperedges 253,154

Undirected 14,938

document 7,484

related_to 7,454

Directed 238,216

contained_in 238,216

Statistic Value

Avg. Degree 0.8338

Avg. Clustering Coefficient 0.1148

Avg. Path Length 8.3667

Diameter 17

Density 3.88e-06

Figure 8.1: Node degree distributions for the base model (log-log scale).

(a) Based on connected nodes. (b) Based on connected hyperedges.

global statistics In Table 8.1, we present several global statistics about the
hypergraph-of-entity, in particular the number of nodes and hyperedges, discrim-
inated by type, the average degree, the average clustering coefficient, the average
path length, the diameter and the density. The average clustering coefficient was
computed based on a sample of 5,000 nodes and a sample of 100,000 neighbors for
each of those nodes. The average path length and the diameter were computed
based on a sample of shortest distances between 30 random pairs of nodes and the
intersections of 1,000 random walks of length 1,000 launched from each element
of the pair. Finally, the density was computed based on Equation 8.1. As we can
see, for the 7,487 documents the hypergraph contains 607,213 nodes and 253,154
hyperedges of different types, an average degree lower than one (0.83) and a low
clustering coefficient (0.11). It is also extremely sparse, with a density of 3.9e−06.
Its diameter is 17 and its average path length is 8.4, almost double when compared
to a social network like Facebook [349].

local statistics Figure 8.1 illustrates the node degree distributions. In Fig-
ure 8.2a, the node degree is based on the number of connected nodes, with the
distribution approximating a log-normal behavior. In Figure 8.2b, the node degree
is based on the number of connected hyperedges, with the distribution approximat-
ing a power law. This shows the usefulness of considering both of the node degrees
in the hypergraph-of-entity, as they are able to provide different information.

Figure 8.2 illustrates the hyperedge cardinality distribution. For document hyper-
edges, cardinality is log-normally distributed, while for related_to hyperedges the
behavior is slightly different, with low cardinalities having a higher frequency than
they would in a log-normal distribution. Finally, the cardinality distribution of
contained_in hyperedges, while still heavy-tailed, presents an initial linear behavior,
followed by a power law behavior. The maximum cardinality for this type of hyper-
edge is also 16, which is a lot lower when compared to document hyperedges and
related_to hyperedges, which have cardinality 8,167 and 3,084, respectively. This is
explained by the fact that contained_in hyperedges establish a directed connection
between a set of terms and an entity that contains those terms, being limited by the
maximum number of words in an entity.

temporal statistics In order to compute temporal statistics, we first generated
14 snapshots of the index based on a limit L of documents, for L ∈ {1, 2, 3, 4, 5, 10, 25,
50, 100, 1000, 2000, 3000, 5000, 8000}.
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Figure 8.2: Hyperedge
cardinality distribution
based on the total num-
ber of nodes for the base
model (log-log scale).

Figure 8.3: Average node degree over time for the base model.

(a) Based on connected nodes. (b) Based on connected hyperedges.

Figure 8.3 illustrates the node-based and hyperedge-based average node degrees
over time (represented as the number of documents in the index at a given instant).
As we can see, both functions tend to converge, however this is clearer for the node-
based degree, reaching nearly 4,000 nodes, through only 9 hyperedges, on average.
Figure 8.4 illustrates the average undirected hyperedge cardinality over time, with
a convergence behavior that approximates 300 nodes per hyperedge, after rising to
an average of 411.88 nodes for L = 25 documents.

Figure 8.5 illustrates the evolution of the average path length and the diameter
of the hypergraph over time. For a single document, these values reached 126.1
and 491, respectively, while, for just two documents, they immediately lowered
to 3.8 and 10. For higher values of L, both statistics increased slightly, reaching
7.2 and 15 for the maximum number of documents. Notice that these last values
are equivalent to those computed in Table 8.1 (8.4 and 17, respectively), despite
resulting in different amounts. This is due to the precision errors in our estimation
approach, resulting in a difference of 1.2 and 2, respectively, which is tolerable when
computation resources are limited. In Figure 8.6, we illustrate the evolution of the
clustering coefficient, which rapidly decreases from 0.59 to 0.11. The low average
path length and clustering coefficient point towards a weak community structure,
possibly due to the coverage of diverse topics. However, we would require a random
hypergraph generation model, like the Watts–Strogatz model [348] for graphs, in
order to properly interpret the statistics.

Figure 8.7 illustrates the evolution of the density over time. The density is con-
sistently low, starting from 1.37e−03 and progressively decreasing to 3.91e−06 as
the number of documents increases. This shows that the hypergraph-of-entity is
an extremely sparse representation, with limited connectivity, which might benefit
precision in a retrieval task.

Figure 8.8 displays the number of nodes (8.9a) and hyperedges (8.9b) created
over time, as the index grew. Both presented a sub-linear growth behavior, reaching
4,566 nodes and 803 hyperedges for 10 documents, 238,141 nodes and 89,348 hyper-
edges for 2,000 documents, and 607,213 nodes and 253,154 for the whole collection
of 7,487 documents. The ratio of hyperedges per node evolved from 0.18, to 0.38,
to 0.42, always staying below one. This means that the number of hyperedges in-
creased slower than the number of nodes. Moreover, we know that nodes represent
terms and entities, which will eventually converge to a finite vocabulary, further
decreasing index growth rate.
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Figure 8.4: Average hyperedge cardinality
over time for the base model.

Figure 8.5: Average estimated diameter and
average shortest path over time for the base
model.

Figure 8.6: Average estimated clustering co-
efficient over time for the base model.

Figure 8.7: Average density over time for
the base model.

As shown in Figure 8.9, we also measured the space usage of the hypergraph,
both in disk (8.10a) and in memory (8.10b). In disk, the smallest snapshot required
43.8 KiB for one document, while the largest snapshot required 181.9 MiB for the
whole subset. Average disk space over all snapshots was 37.5 MiB ± 58.9 MiB. In
memory, for our particular application1, the smallest snapshot used 1.0 GiB for one
document, including the overhead of the data structures, and the largest snapshot
used 2.3GiB for the whole subset. Average memory space over all snapshots was 1.3
GiB ± 461.1 MiB. Memory also grew faster for the first 1,000 documents, apparently
leading to an expected convergence, although we could not observe it for such a
small subset.

Finally, Figure 8.10 illustrates the base model run times of the following opera-
tions for an increasing number of documents: index creation (8.10a); the computa-
tion of the global statistics (8.10b), also shown in Table 8.1; the computation of all
node degrees (8.10c); and the computation of all hyperedge cardinalities (8.10d). As
we can see, the most significant increase in run time happens around 1,000 docu-
ments, with the exception of the global statistics computation, which shows an in-
creased run time for the first added documents. A possible reason for this anomaly
is that this is the first analysis operation that we run after creating the index, which
might influence the caching mechanisms of the system, thus reducing run time af-
ter the first documents and then resuming regular behavior. Indexing time took
1m09s for 1,000 documents and 4m13s for a maximum of 8,000 documents. The
computation of global statistics took 17m26s for 1,000 documents and 41m18s for
a maximum of 8,000 documents. Node degrees were computed in 4m27s for 1,000
documents, taking 20m55s at most, while hyperedge cardinalities were computed
in only 19s for 1,000 documents, taking 44s at most, making it the most efficient
statistic to compute.

1 We relied on the Grph Java library, available at http://www.i3s.unice.fr/~hogie/software/index.php?
name=grph, to represent the hypergraph in memory.
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Figure 8.8: Number of nodes and hyperedges over time for the base model.

(a) Nodes. (b) Hyperedges.

Figure 8.9: Required space for storing and loading the base model over time.

(a) Disk. (b) Memory.

8.4 analyzing the structural impact of different
index extensions

In this section, we continue the characterization work by taking into considera-
tion the index extensions, applied over the hypergraph-of-entity base model, as
described in Section 7.4.1.4. In Sections 8.4.1 and 8.4.2, we study the structural im-
pact of synonyms and context, respectively. In Section 8.4.3, we study the structural
impact of the TF-bins index extension, while also considering different numbers of
bins.

8.4.1 Synonyms

The base model for the hypergraph-of-entity establishes n-ary connections, both
directed and undirected, among nodes that represent terms and entities. Most
visibly, document hyperedges group all terms and entities mentioned in a docu-
ment, a lot like a bag of words and entities that integrates both unstructured and
structured evidence. This model can easily be extended with synonyms, that es-
tablish new bridges between documents. In particular, we used the synsets from
WordNet 3.0 [304], based on the first sense of each term in the hypergraph, and
only considering its noun form. Each synset was modeled as a synonym hyperedge.
In this section, we characterize the hypergraph-of-entity when using the synonyms
extension. We repeat the analysis described in Section 8.3, but only cover results
that show a different behavior from the base model.

Table 8.2 shows the global statistics for the synonyms model. As we can see, the
number of terms increased from 323,672 (cf. Table 8.1) to 326,671. This means that
2,999 synonym terms that did not originally belong to the collection were added.
The number of undirected hyperedges increased significantly, with 10,650 new syn-
onymy relations. The average degree slightly increased, with the average clustering
coefficient and the density remaining stable. The diameter also remained at 17,
however the average path length decreased almost a unit, from 8.37 to 7.53, ap-
proximating nodes through the relation of synonymy. This is an indicator of the
usefulness of using synonyms to establish new bridges between documents. In fact,
we found 4,558 new paths created by this extension, resulting in 65.29 documents
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(b) Global statistics computation.
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(d) Hyperedge cardinalities computation.

Figure 8.10: Base model run time statistics.

Table 8.2: Global statistics for the synonyms model.

Statistic Value

Nodes 610,212

term 326,671

entity 283,541

Statistic Value

Hyperedges 263,804

Undirected 25,588

document 7,484

related_to 7,454

synonym 10,650

Directed 238,216

contained_in 238,216

Statistic Value

Avg. Degree 0.8646

Avg. Clustering Coefficient 0.1168

Avg. Path Length 7.5333

Diameter 17

Density 3.88e-06

linked on average per synonym. Besides global statistics, we also identified four
interesting changes or new characteristics when compared to the base model:

• Term node degree distribution;

• Synonym hyperedge cardinality distribution;

• Average hyperedge cardinality over time;

• Average estimated diameter and average path length over time.

term node degree distribution Figure 8.11 illustrates the node-based node
degree distribution for entity and term nodes in the hypergraph-of-entity with the
synonyms extension. While the behavior for entity nodes is similar to the base
model, term nodes show a combination of a power law like behavior for the lower

Figure 8.11: Node-based node degree distribution,
for the synonyms model (log-log scale).

Figure 8.12: Synonym hyperedge car-
dinality distribution (log-log scale).
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Figure 8.13: WordNet 3.0 noun synonyms distribution (log-log scale).

Figure 8.14: Average hyperedge cardinal-
ity over time for the synonyms model.

Figure 8.15: Average estimated diameter
and average shortest path over time for
the synonyms model.

degrees, with a log-linear behavior for the remaining degrees. This is due to the
introduction of synonyms from WordNet, which, as we can see in Figure 8.13, follow
a distribution close to a power law.

synonym hyperedge cardinality distribution Figure 8.12 illustrates the dis-
tribution of synonyms per hyperedge. As we can see, most synonym hyperedges
either contain two or three terms, while less than 100 hyperedges contain more
than five synonyms. Most synonymy relations are ternary and, while there is not
enough data to conclude it, the overall behavior approximates a power law.

average hyperedge cardinality over time Consistent with the fact that most
synsets introduced as undirected hyperedges have a low cardinality (two or three
elements), the average hyperedge cardinality over time is overall lower than the base
model. This is visible when comparing Figure 8.14 with Figure 8.4. Additionally,
the behavior also changed from a fast growth and convergence behavior, in the
base model, to a consistent sub-linear growth behavior. While convergence is not
immediately clear in the synonyms model, the trend does point to such behavior.

average estimated diameter and average path length over time With
synonymy relations, both the average path length and the diameter start at a lower
value than the base model, for only one document. Apart from the initial values,
when comparing Figure 8.15 with Figure 8.5, we find a similar behavior, although
the average path length decreases from 8.37, in the base model, to 7.53, in the syn-
onyms model, when comparing a representation of the whole collection (cf. Tables
8.1 and 8.2). Despite the similar behavior, a unitary difference is quite significa-
tive in a network (e.g., in a social network like Facebook, the average path length is
4.74 [349], while in the original small-world study by Milgram [350, 351] the average
path length was 6.2).

temporal statistics of run times Finally, Figure 8.16 illustrates the syn-
onyms model run times of the following operations for an increasing number of
documents: index creation (8.16a); the computation of the global statistics (8.16b),
also shown in Table 8.2; the computation of all node degrees (8.16c); and the com-
putation of all hyperedge cardinalities (8.16d). As we can see, similarly to what
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(b) Global statistics computation.
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(c) Node degrees computation.
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(d) Hyperedge cardinalities computation.

Figure 8.16: Synonyms model run time statistics.

happened for the base model, the most significant increase in run time happens
around 1,000 documents, with the exception of the global statistics computation,
which shows an increased run time for the first added documents. We predict that
the same caching mechanisms described for the base model are responsible for this
anomaly. In Figure 8.16c, we also find a slight decrease in run time from 5,000
to 8,000 documents, which we do not find significant, as it was perhaps due to
temporary load on the virtual machine. Indexing time took 1m13s for 1,000 docu-
ments and 4m22s for a maximum of 8,000 documents. The computation of global
statistics took 17m07s for 1,000 documents and 39m13s for a maximum of 8,000
documents. Node degrees were computed in 4m11s for 1,000 documents, taking
19m03s at most, while hyperedge cardinalities were computed in only 20s for 1,000
documents, taking 44s at most, and maintaining the top rank in the most efficient
statistic to compute, when compared to the base model.

8.4.2 Contextual similarity

Another way that we extended the base model was by using the contextual simi-
larity between terms, as established based on the k-nearest neighbors according to
word embeddings. For this particular analysis, word embeddings were obtained
through word2vec, trained on a larger subset of the INEX 2009 Wikipedia collec-
tion, built from the documents mentioned in the relevance judgments for all 52

topics. The extracted vectors were of size 100, using sliding windows of 5 words
to establish context, and ignoring words that appeared only once. Only the two
nearest neighbors, with a similarity above 0.5 were considered to build the similar-
ity graph. Contextual similarity hyperedges were then derived from this graph by
iterating over each term and building sets that included the original term as well as
incoming and outgoing terms.

Table 8.3 shows the global statistics for the context model. As we can see, the
number of terms significantly increased from 323,672 (cf. Table 8.1) to 413,527. This
means that 89,855 contextually similar terms that did not originally belong to the
collection were added — they were however a part of the larger 52 topics collec-
tion, otherwise no new terms would have been added. The number of undirected
hyperedges also increased significantly, with 157,217 new context relations. The
average degree also increased from 0.83 to 1.18, with the average clustering coeffi-
cient remaining stable and the density decreasing from 3.88e−06 to 2.75e−06. The
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8.4 analyzing the structural impact of different index extensions

Table 8.3: Global statistics for the contextual similarity model.

Statistic Value

Nodes 697,068

term 413,527

entity 283,541

Statistic Value

Hyperedges 410,371

Undirected 172,155

document 7,484

related_to 7,454

context 157,217

Directed 238,216

contained_in 238,216

Statistic Value

Avg. Degree 1.1774

Avg. Clustering Coefficient 0.1423

Avg. Path Length 1.9333

Diameter 3

Density 2.75e-06

Figure 8.17: Node-based degree distribution for
the context model (log-log scale).

Figure 8.18: Context hyperedge cardi-
nality distribution (log-log scale).

diameter significantly decreased from 17 to 3, as did the average path length, which
decreased from 8.37 to 1.93, strongly approximating nodes through the relation of
contextual similarity. This is an indicator of the impact of using word embeddings
to establish new bridges between documents, although we need to assess whether
retrieval effectiveness will be affected by context as a kind of noise introduced in the
process rather than a good discriminative feature. We found 42,145 new paths cre-
ated by this extension, resulting in 23.03 documents linked on average per context.
Notice that, although synonyms established a lower number of bridges, they also
connected a higher number of documents on average (2.83× more than context).
Only by studying retrieval effectiveness are we able to assess which characteristic
translates into a better performance in the model. Besides global statistics, we also
identified four interesting changes or new characteristics when compared to the
base model:

• Term node degree distribution;

• Context hyperedge cardinality distribution;

• Average hyperedge cardinality over time;

• Average estimated diameter and average path length over time;

term node degree distribution Figure 8.17 illustrates the node-based node
degree distribution for entity and term nodes in the hypergraph-of-entity with the
context extension. The behavior for entity nodes is similar to the base model and
to the synonyms model. However, like in the synonyms model, term nodes show
a combination of a power law like behavior for the lower degrees, with a log-linear
behavior for the remaining degrees. Given the higher number of terms introduced
through contextual similarity, we also find a distribution plot that is visually denser.

context hyperedge cardinality distribution Figure 8.18 illustrates the dis-
tribution of terms per context hyperedge. As we can see, the behavior approximates
a power law, with only a few context hyperedges containing around 50 nodes and
one of them even reaching 156 nodes.
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8.4 analyzing the structural impact of different index extensions

Figure 8.19: Average hyperedge cardinal-
ity over time for the context model.

Figure 8.20: Average estimated diameter
and average shortest path over time for
the context model.
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(b) Global statistics computation.
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(d) Hyperedge cardinalities computation.

Figure 8.21: Contextual similarity model run time statistics.

average hyperedge cardinality over time Given the high number of intro-
duced context hyperedges, most of them with a low cardinality, the average hyper-
edge cardinality was driven down, as we can see in Figure 8.19. In a similar way to
the synonym hyperedges, the behavior also changed from a fast growth and conver-
gence behavior, in the base model, to a consistent sub-linear growth behavior.

average estimated diameter and average path length over time Per-
haps one of the most interesting results of this analysis is the impact of index ex-
tensions in the diameter and average path length. This is particularly visible with
the context extension — the diameter decreased from 17, in the base and similar-
ity models, to only 3, in the context model. A similar behavior was identified for
the average path length that decreased from 8.33 in the base model and 7.53 in
the synonyms model, to only 1.93 in the context model. This behavior over time
is seen in Figure 8.20, where, contrary to the base and synonyms model, we can
find shorter geodesics immediately for a low number of documents. As an increas-
ing part of the collection is considered, the length of the geodesics increase. This
might be correlated with an increasing diversity of topics, thus being indicative of
the discriminative power of the context extension, an aspect that should be further
investigated in the future.

temporal statistics of run times Finally, Figure 8.21 illustrates the contex-
tual similarity model run times of the following operations for an increasing number
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Table 8.4: Global statistics for the TF-bins model (bins=2 and bins=10).

Statistic Bins
2 10

Nodes 607,213 607,213

term 323,672 323,672

entity 283,541 283,541

Statistic Bins
2 10

Hyperedges 268,100 281,642

Undirected 29,884 43,426

document 7,484 7,484

related_to 7,454 7,454

tf_bin 14,946 28,488

Directed 238,216 238,216

contained_in 238,216 238,216

Statistic Bins
2 10

Avg. Degree 0.8831 0.9277

Avg. Cl. Coef. 0.1021 0.1014

Avg. Path Len. 6.8333 6.9000

Diameter 13 14

Density 7.58e-06 7.86e-06

of documents: index creation (8.21a); the computation of the global statistics (8.21b),
also shown in Table 8.3; the computation of all node degrees (8.21c); and the com-
putation of all hyperedge cardinalities (8.21d). As we can see, similarly to what
happened for the base model, the most significant increase in run time happens
around 1,000 documents. When compared to the base model and the synonyms
model, the global statistics computation does not show an increased run time for
the first added documents. This further supports the hypothesis of this being an
anomaly that happened due to initial caching or load issue, particularly since the
synonyms model is quite similar, structurally, to the context model. Indexing time
took 1m35s for 1,000 documents and 5m05s for a maximum of 8,000 documents.
The computation of global statistics took 5m44s for 1,000 documents and 24m20s
for a maximum of 8,000 documents. Node degrees were computed in 5m15s for
1,000 documents, taking 24m37s at most, while hyperedge cardinalities were com-
puted in only 24s for 1,000 documents, taking 56s at most, making it the most
efficient statistic to compute, and maintaining the top rank in the most efficient
statistic to compute, when compared to the base model and the synonyms model.

8.4.3 Term frequency bins

In this section, we analyze the TF-bins extension, which is based on the discretiza-
tion of the term frequency per document. This way, term frequency can be added
to the hypergraph-of-entity, while having a low impact in scalability (i.e., we re-
main focused on forming groups of nodes to minimize the space complexity of the
representation model).

Table 8.4 shows the global statistics for the TF-bins model. As we can see, the
number of nodes is the same as the original model, also remaining unchanged
with the number of bins. The number of undirected hyperedges increased from
14,938 to 29,884 for two TF-bins, or to 43,426 with ten bins. The average degree
slightly increased from 0.83 to 0.88 for two TF-bins per document, and then to
0.93 for ten TF-bins, with the average clustering coefficient remaining stable and
the density increasing from 3.88e−06 to 7.58e−06 for two TF-bins, and then again
slightly to 7.86e−06 for ten TF-bins. The diameter decreased from 17 to 13 for two
TF-bins, and 14 for ten TF-bins, as did the average path length, which decreased
from 8.37 to 6.83 and 6.90 for two and ten TF-bins, respectively. When considering
two TF-bins, we found 156,200 new paths created by this extension, resulting in
30.64 documents linked on average per TF-bin. When the number of bins increased
to ten, the number of new paths decreased to 153,979, but the average number of
documents linked per TF-bin increased to 37.99. Besides global statistics, we also
identified seven interesting changes or new characteristics when compared to the
base model:

• TF-bin hyperedge cardinality distribution per number of bins;

• Number of undirected hyperedges per number of bins;

• TF-bin hyperedges per number of bins;
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Figure 8.22: TF-bin hyperedge cardinality distribution (log-log scale).

Figure 8.23: Number of hyperedges, per number of bins, for the TF-bins model.

(a) Undirected hyperedges. (b) TF-bin hyperedges.

• Diameter and average path length per number of bins;

• Average hyperedge cardinality over time per number of bins;

• Average density over time per number of bins.

• Average estimated diameter and average path length over time per number of
bins;

Notice that, contrary to the synonyms and context extensions, the TF-bins exten-
sion did not affect the behavior of term node degree distribution, since it does not
introduce external terms to the collection.

tf-bin hyperedge cardinality distribution Figure 8.22 illustrates the cardi-
nality distribution of tf_bin hyperedges, for different numbers of bins. The behavior
is similar to the related_to hyperedges, however, as the number of bins increases,
lower values of cardinality become more frequent and the behavior starts tending
towards a power law.

number of hyperedges per number of bins As expected, in Figure 8.24a,
we find a growth in the number of undirected hyperedges, from 29,884, for two bins,
to 43,426, for ten bins. The same happens for the tf_bin hyperedges (Figure 8.24b),
which are responsible for propelling such growth. The amount of hyperedges gener-
ated by increased TF-bins will eventually converge, since there is a limited number
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Figure 8.24: Geodesic-based metrics, per number of bins, for the TF-bins model.

(a) Diameter. (b) Average path length.

Figure 8.25: Average hyperedge cardinal-
ity over time, per number of bins, for the
TF-bins model.

Figure 8.26: Average density over time,
per number of bins, for the TF-bins
model.

of terms per document to segment. However, for this collection, it is clear that
the number of TF-bins can range from two to ten, while always generating new
hyperedges, increasing the granularity at which term frequency contributes to the
model.

diameter and average path length per number of bins As show in Fig-
ure 8.24, both the diameter and the average path length, which correspond to the
maximum and average geodesic distances in the hypergraph, show a high variabil-
ity with the number of bins. In particular, the diameter and average path length
both reach their maximum values of 18 and 8.30 when using 6 TF-bins. The mini-
mum diameter of 11 is reached when using 9 TF-bins, while the minimum average
path length of 5.93 is reached when using 7 TF-bins. This suggests that the num-
ber of bins might influence retrieval effectiveness, if varying the diameter and the
average path length also affects performance directly.

average hyperedge cardinality over time Figure 8.26 shows the evolution
of the average hyperedge cardinality for different numbers of bins. The behavior
is similar to the base model (cf. Figure 8.4), which is equivalent to having one TF-
bin. As the number of TF-bins increases, the overall average hyperedge cardinality
decreases, which is the expected behavior. This is less visible as the number of
bins reaches a higher value, at which point the overall cardinality is less affected,
showing a progressively lower decreasing behavior. While the number of TF-bins
affects this characteristic of the hypergraph, the overall behavior is maintained.

average density over time The average density shown in Figure 8.26 follows
a similar behavior to the base model (cf. Figure 8.7), regardless of the number of
TF-bins. However, there is a small variation for the interval of approximately 100
to 1,000 documents, after which it is once again reduced to the same value for
the different numbers of TF-bins. It is perhaps the diversity in term frequency
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Figure 8.27: Average estimated diameter and average shortest path over time, per number of
bins, for the TF-bins model.
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(b) Global statistics computation.

Figure 8.28: TF-bins models run time statistics (part 1).

introduced for documents in this interval that promotes such a difference. This
would explain the creation of a higher number of tf_bin hyperedges, without empty
TF intervals (e.g., ]2, 2]).

average estimated diameter and average shortest path over time Fig-
ure 8.27 shows the evolution of the diameter and average path length, over an
increasing number of documents and TF-bins. Apart from both metrics reaching
higher values for a single document as well as for five TF-bins, the behavior is
similar to the base model (cf. Figure 8.5).

temporal statistics of run times Finally, Figures 8.28 and 8.29 illustrate the
TF-bins model run times of the following operations for an increasing number of
documents: index creation (8.28a); the computation of the global statistics (8.28b),
also shown in Table 8.4; the computation of all node degrees (8.29a); and the com-
putation of all hyperedge cardinalities (8.29b). As we can see, similarly to what hap-
pened for the base model and the synonyms model, the most significant increase in
run time happens around 1,000 documents, with the exception of the global statis-
tics computation, which shows an increased run time for the first added documents.
Indexing time took 1m11s for 1,000 documents and 4m27s for a maximum of 8,000
documents. The computation of global statistics took 16m38s for 1,000 documents
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(b) Hyperedge cardinalities computation.

Figure 8.29: TF-bins models run time statistics (part 2).

and 52m50s for a maximum of 8,000 documents. Node degrees were computed in
3m54s for 1,000 documents, taking 32m23 at most, while hyperedge cardinalities
were computed in only 19s for 1,000 documents, taking 50s at most, making it the
most efficient statistic to compute, maintaining the top rank in the most efficient
statistic to compute, in line with the other studied models models.

8.5 an application to information retrieval
So far, we have analyzed the structural impact of different index extensions in re-
gard to the characteristics of the hypergraph. However, there is little value in under-
standing the behavior of structural features without the context of its application,
which in this case is in the area of information retrieval [303]. Thus, we assess the
effectiveness of each model, with different extensions and parameter configurations,
through a classical information retrieval evaluation process, based on the 10 topic
subset of the INEX 2009 Wikipedia collection (Section 10.2.2).

We launched three evaluation runs per index configuration, i.e., for different
versions of the HGoE (HyperGraph-of-Entity) representation model based on dif-
ferent extensions. We relied on the RWS function, experimenting with different
random walk lengths ` ∈ {1,2,3}, and a fixed configuration for the remaining param-
eters: r = 10,000, expansion disabled (i.e., without seed node selection [303, §4.2.1]),
and weights enabled (i.e., considering tf_bin hyperedge weights, the only available
weights in the indexes).

Table 8.5 shows the mean average precision (MAP), normalized discounted cumu-
lative gain for the top 10 results (NDCG@10), and precision for the top 10 results
(P@10), computed for the relevance judgments provided by the INEX 2010 Ad Hoc
track [248]. As we can see by analyzing the maximum values per column (in bold),
the TF-bin models were able to obtain significantly better results overall, when com-
pared to the base model, the synonyms model, and the context model. None of
the HGoE models is yet able to outperform the baselines, although TF-bins are able
to approximate TF-IDF in regard to NDCG@10 and P@10. The hypergraph-based
models need to be reiterated over and improved. Herein lies the usefulness of com-
puting the properties of the hypergraph structures and analyzing the hypergraph-
of-entity. While there is no clear pattern of effectiveness correlated with the number
of bins, if we consider the NDCG@10 scores, the best model for ` = 1 is TF-bins2,
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Table 8.5: Evaluating the different models in the ad hoc document retrieval task.

Model MAP NDCG@10 P@10 MAP NDCG@10 P@10 MAP NDCG@10 P@10

Lucene TF-IDF 0.2160 0.2667 0.2800 0.2160 0.2667 0.2800 0.2160 0.2667 0.2800

Lucene BM25 0.3412 0.5479 0.4900 0.3412 0.5479 0.4900 0.3412 0.5479 0.4900

HGoE RWS ` = 1 ` = 2 ` = 3

Base model 0.0046 0.0799 0.0400 0.0039 0.0718 0.0400 0.0028 0.0576 0.0400

Synonyms 0.0013 0.0440 0.0200 0.0024 0.0799 0.0400 0.0023 0.0718 0.0400

Context 0.0000 0.0000 0.0000 0.0010 0.0220 0.0100 0.0010 0.0220 0.0100

TF-bins2 0.1082 0.2443 0.2100 0.1025 0.1730 0.2000 0.0918 0.1302 0.1400

TF-bins3 0.0911 0.2004 0.2200 0.0989 0.0954 0.1200 0.0868 0.0751 0.1000

TF-bins4 0.0957 0.1969 0.2000 0.1107 0.2007 0.1900 0.0928 0.1669 0.1700

TF-bins5 0.1049 0.2355 0.2400 0.1050 0.1364 0.1400 0.0954 0.1121 0.1400

TF-bins6 0.1057 0.2405 0.2600 0.1108 0.1906 0.2000 0.1022 0.1792 0.1900
TF-bins7 0.1000 0.2212 0.2500 0.1072 0.1255 0.1200 0.0939 0.0934 0.1000

TF-bins8 0.0894 0.2131 0.2100 0.1078 0.0988 0.1100 0.0966 0.0641 0.0800

TF-bins9 0.0954 0.1494 0.1500 0.1107 0.1402 0.1500 0.0958 0.1069 0.1200

TF-bins10 0.1062 0.2127 0.2200 0.1133 0.1436 0.1600 0.1079 0.1143 0.1300

Table 8.6: Comparing the global statistics for the different models.

Model Nodes Hyperedges Degree Cl. Coef. Avg. Path Len. Diam. Density

Base model 607,213 253,154 0.8338 0.1148 8.3667 17 3.88e-06

Synonyms 610,212 263,804 0.8646 0.1168 7.5333 17 3.88e-06

Context 697,068 410,371 1.1774 0.1423 1.9333 3 2.75e-06

TF-bins2 607,213 268,100 0.8831 0.1021 6.8333 13 7.58e-06

TF-bins3 607,213 270,359 0.8905 0.1011 6.7667 13 7.65e-06

TF-bins4 607,213 272,649 0.8980 0.0999 7.0333 14 7.60e-06

TF-bins5 607,213 274,698 0.9048 0.0996 6.7000 16 7.73e-06

TF-bins6 607,213 276,615 0.9111 0.1029 8.3000 18 7.69e-06

TF-bins7 607,213 278,087 0.9159 0.1010 5.9333 14 7.82e-06

TF-bins8 607,213 279,356 0.9201 0.1034 6.6000 14 7.83e-06

TF-bins9 607,213 280,524 0.9240 0.0994 6.8667 11 7.84e-06

TF-bins10 607,213 281,642 0.9277 0.1014 6.9000 14 7.86e-06

the best model for ` = 2 is TF-bins4, and the best model for ` = 3 is TF-bins6. This
might indicate that a higher number of bins works best with a longer random walk
length. However, there is no concordance to support this hypothesis when looking
at the MAP and P@10 metrics, thus further investigation is required.

In order to better understand whether there is a direct relation between any of
the computed structural features of the hypergraph and the effectiveness of the re-
trieval model, we first summarize the structural features for each model in Table 8.6.
By comparing each feature with the evaluation metrics from Table 8.5, we are able
to find some indicators of (in)effectiveness in a graph-based retrieval model. Ac-
cording to Table 8.5, context was the worst performing model, over all values of `.
The context model also has the highest average degree and clustering coefficient, as
well as the lowest average path length and diameter (cf. Table 8.6). This indicates
that a higher local connectivity and an overall lower distance between nodes might
not beneficial for retrieval effectiveness. We also observe that the TF-bin models,
which have the best performance, also have a lower clustering coefficient than the
base, synonyms and context models, ranging between 0.0994 and 0.1034.

We also studied the structural impact of each extension, through the relative
change to individual features, in comparison to the base model. Figure 8.30 shows
a heatmap based on the change percentages in regard to the base model, which,
by definition, has a 0% change over all features, in comparison to itself. As we
can see, the context model suffered the most evident overall change, with a −467%
change in diameter, and a −333% change in average path length. This model is of
particular interest, as it resulted in the worst retrieval performance, when compared
to the remaining models. Interestingly, this is also visible in its structural features.
The clustering coefficient for the context model also suffered a substantial increase
in relation to the base model, with a change of 19%, as did the degree, with a
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Figure 8.30: Relative change of structural features when compared to the base model.

Table 8.7: Spearman’s ρ between evaluation metrics and structural features.

Nodes Hyperedges Degree Cl. Coef. Avg. Path Len. Diam. Density

` = 1

MAP -0.6504 0.0559 0.0559 -0.5245 0.0979 0.1000 0.5009

NDCG@10 -0.6504 -0.0350 -0.0350 -0.3636 -0.1119 0.2000 0.4308

P@10 -0.6527 0.1018 0.1018 -0.4667 -0.0982 0.3047 0.5800

` = 2

MAP -0.6516 0.4098 0.4098 -0.5464 0.2172 0.1449 0.8035

NDCG@10 -0.5913 0.0699 0.0699 -0.5804 0.2797 0.1036 0.4448

P@10 -0.6242 0.0035 0.0035 -0.5519 0.2882 0.0593 0.4049

` = 3

MAP -0.6504 0.4615 0.4615 -0.4685 0.0699 0.1965 0.8932

NDCG@10 -0.5322 -0.0280 -0.0280 -0.5524 0.3357 0.2000 0.3573

P@10 -0.6242 -0.0211 -0.0211 -0.6151 0.2707 0.1993 0.3873

change of 29%. When looking at the density for all models, there was no change
for the synonyms model, but there was a positive change, rounding 50% (in green),
for the TF-bins models, and there was a negative change of −41% for the context
model. The number of nodes suffered no change for the TF-bins models, but there
a slight increase for synonyms (as new terms from synsets were added), and a
more significative increase for the context model. The number of edges suffered
a consistently larger increase for TF-bins models, as the number of bins increased,
with the synonyms model showing a slight increase, and the context model once
again showing a more significative increase.

8.5.1 Correlating evaluation metrics and structural features

In Table 8.7 we further organize this approach, by comparing the evaluation results
of each metric with the values of each structural feature. By using Spearman’s rank
correlation coefficient (ρ), we can verify whether the retrieval model’s performance
ranking given by the evaluation metrics (our ground truth) can compare with the
ranking given by any of the structural features, as computed for each model. Let
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Table 8.8: Indicators of graph-based retrieval model performance.

Ranking indicators Anomaly indicators

Cl. Coef. Ascending order ∼ 50% correlated
with retrieval performance.

Degree Abnormally high values (> µ+ 2σ)
indicate a low performing model.

Density Descending order ∼ 50% correlated
with retrieval performance.

Diameter Abnormally low values (< µ − 2σ)
indicate a low performing model.

us first follow up with the indicators we put forth in the manual comparison of the
two tables.

We proposed that a high average degree and clustering coefficient would result
in a low MAP, NDCG@10 and P@10, which does not necessarily mean that either
feature is a good overall discriminator of model performance. In fact, the average
degree does not show correlation consistency among the different evaluation met-
rics and parameter configurations. On the other hand, the clustering coefficient is
negatively correlated with each evaluation metric over the different random walk
length parameter configurations, ranging between −0.61 and −0.36. This makes the
clustering coefficient a weak, but consistent indicator of the performance of graph-
based retrieval models (i.e., higher values of the clustering coefficient indicate a low
retrieval effectiveness). Absolute correlation is not particularly high, since retrieval
performance does not solely depend on the structure of the graph, but also on the
semantics of the representation model.

We also proposed that a low average path length and diameter would be in-
dicative of low model performance. While the average path length and diameter
correlations with the evaluation metrics are mostly positive, these are not suffi-
ciently consistent to be considered good global indicators of performance. There
are, however, special cases when the average path length serves as a slight indicator
of performance, namely for ` > 1 and for the top 10 results. For ` = 1, there is a
slight negative correlation that could be explained by the fact that this model only
relies on the immediate neighborhood within the hypergraph and does not depend
on short paths for connectivity. The diameter, on the other side, always shows a
positive correlation with the evaluation metrics, but its absolute value is overall
low and inconsistent for it to provide a good discriminative indicator of retrieval
performance.

With a similar behavior to the clustering coefficient, but with an inverse sign,
the density was overlooked as a good indicator of model performance. In partic-
ular, the worst performing model (context model) also has the lowest density of
2.75e−06, followed by the base model and the synonyms model, tied at a density
of 3.88e−06, and then by the TF-bin models, with densities ranging from 7.58e−06
to 7.86e−06. While the density is a good discriminative of graph-based retrieval
models, its granularity is low, only properly distinguishing between models with
an obvious difference in performance.

8.5.2 Design rules for modifying or extending the model

After the analysis of the impact of structural features in the performance of the re-
trieval models, we reflect on the implications of our findings. We use these findings
to prepare a set of rules that serve as indicators or as a guide for the continued re-
design of the hypergraph-of-entity. In particular, the guidelines we propose should
be helpful in the process of comparing different versions based on modifications or
extensions to our model. We propose two classes of indicators:

ranking indicators Structural features that can be used to rank different graph-
based models in regard to their predicted retrieval performance.
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anomaly indicators Structural features that cannot be used to rank graph-based
models based on retrieval performance, but can, however, be useful for iden-
tifying anomalous models with a high chance of a low performance.

Table 8.8 shows the identified ranking and anomaly indicators according to the
analysis carried at the beginning of this section. The clustering coefficient and the
density were both identified as ranking indicators with an approximate certainty
rate of 50%, based on an ascending and descending order, respectively. The degree
and diameter were identified as anomaly indicators, with the degree being used to
identify abnormally high values, for example larger than two standard deviations
(2σ) above the mean (µ), and the diameter being used to identify abnormally low
values, for example less than two standard deviations below the mean.
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summary
In this chapter, we characterized the hypergraph-of-entity representation model,
based on the structural features of the hypergraph. We analyzed the node degree
distributions, based on nodes and hyperedges, and the hyperedge cardinality dis-
tributions, illustrating their distinctive behavior. We found that hyperedge-based
node degrees are distributed as a power law, while node-based node degrees and
hyperedge cardinalities are log-normally distributed. We also analyzed the tempo-
ral behavior, as documents were added to the index, studying average node degree
and hyperedge cardinality, estimated average path length, diameter and clustering
coefficient, as well as density and space usage requirements. We found that most
statistics tend to converge after an initial period of accentuated growth in the num-
ber of documents.

We then expanded on the characterization work by analyzing different model
extensions based on synonymy, contextual similarity, and the newly introduced
concept of TF-bins, and we also measured the run time of several operations, like in-
dexing and the computation of hypergraph properties. Our contributions included
the application of two strategies for the approximation of statistics based on the
shortest distance, as well as the clustering coefficient. Additionally, we proposed a
simple approach for computing the density of a general mixed hypergraph, based
on an induced bipartite mixed graph.

Finally, we focused on the application of this characterization work, which can
be used to inform the design of graph-based representation models for information
retrieval. In particular, we studied the change in structural features, when compared
to the base model, as well as the correlations between retrieval effectiveness metrics
(MAP, NDCG@10, P@10) and structural features (e.g., average degree, clustering
coefficient). While structural features rarely presented a higher than 50% absolute
correlation with any of the evaluation metrics, we identified some of them as useful
indicators for ranking the retrieval models according to their effectiveness, or for
identifying anomalies that lead to low effectiveness.

More importantly, we have provided an analysis framework for hypergraphs that
can easily be implemented and applied to both small and large-scale hypergraphs.
We have also provided a characterization based on this framework, illustrating the
behavior of several statistics, for instance showing that, while the degree distribu-
tion based on hyperedges still follows a power law, like in real-world networks rep-
resented as graphs, the degree distribution based on nodes instead approximates a
log-normal distribution. During the development of this work, we have also found
that:

• Few attention has been given to hypergraph characterization in the real-world;

• The community is still lacking in tools to analyze hypergraphs:

– There is no de facto library for hypergraph analysis;

– Few file formats support hypergraphs, namely with directed hyperedges.

• Polyadism introduces additional complexity and calls for novel metrics that
take the information within collective relations into account.
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In Chapter 7, the hypergraph-of-entity was conceptualized and described as a gen-
eral model for entity-oriented search. In Chapter 8, we characterized the structure
of the representation model. In this chapter, we focus on evaluating the retrieval
effectiveness of the hypergraph-of-entity, applying the random walk score to multi-
ple entity-oriented search tasks, while testing a wide range of configurations both
for the representation model and the ranking function. Although our goal is to im-
prove effectiveness, or a the very least ensure a minimum level of effectiveness, we
also measure the efficiency of each run, in order to understand the overall impact
and tradeoff of each configuration.

We begin by measuring the performance over a single retrieval task, ad hoc doc-
ument retrieval (leveraging entities), in order to focus on different versions of the
hypergraph-of-entity representation model. We then expand this line of research
to other retrieval tasks, also evaluating ad hoc entity retrieval, and entity list com-
pletion. We do this over a common index data structure and using the random
walk score as a universal ranking function. Since the different tasks cannot be com-
pared among each other, we also attempt to scale the model, so that it can index
the complete INEX 2009, as opposed to just the subsets that we rely on for the
first experiments. We do this by indexing the top keywords for each document,
reducing complexity by partially lowering the number of nodes and, indirectly, the
number of hyperedges linking terms to entities. This enables us to compare the ef-
fectiveness of the hypergraph-of-entity with the results obtained by the participants
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of the INEX tracks for the considered tasks. Despite its low performance, we find
this to be a viable approach that is, to our knowledge, the first attempt at a general
representation model that supports a universal ranking function for entity-oriented
search tasks.

The structure of this chapter is organized as follows:

• Section 9.1 describes several experiments over the INEX 2009 Wikipedia sub-
sets, mainly over the INEX 2009 52T-NL, which includes all topics but only the
documents present in the relevance judgments. We provide statistics about
the created hypergraph-of-entity indexes [§9.1.1], a study of rank stability for
the nondeterministic random walk score [§9.1.2], a performance assessment
for six hypergraph-of-entity models combining different index features [9.1.3],
and a comparison with the graph-of-entity, commenting on the scalability of
the models in regard to number of edges over the number of nodes [§9.1.4].

• Section 9.2 describes the experiments carried during the TREC Common Core
track, over the TREC Washington Post Corpus, where we measured the effec-
tiveness of the hypergraph-of-entity. We compare two runs, one for a text-only
model and another one for DBpedia based model that also contains entities
and their relations [§9.2.1]. We then analyze the effectiveness for each run, as
well as the best and worst queries, manually investigating some of the poten-
tial paths taken by random walks from the terms in those queries [§9.2.2].

• Section 9.3 describes the assessment carried over the complete INEX 2009

Wikipedia collection, relying on the base mode of the hypergraph-of-entity,
while exploring the random walk score as a universal ranking function, evalu-
ating it for the three following tasks: ad hoc document retrieval, ad hoc entity
retrieval, and entity list completion. We also argue that, for our model, the
latter task is able to generalize related entity finding [§9.3.1]. We present a
short overview on keyword extraction, identifying graph-based approaches
[§9.3.2]. We describe the TextRank simplification used to build document pro-
files of a shorter length, and we also provide a study of the influence of the
cutoff ratio applied to the selection of the top keywords [§9.3.3]. Finally, we
describe the experimental framework, assessing the performance of each task
over the joint representation model and the universal ranking function, and
comparing it with the results for the most recent occurrences of the respective
INEX tracks [§9.3.4].

• Section 9.4 offers a reflection on retrieval heuristics, covering its pillar con-
cepts [§9.4.1], using BM25 to exemplify how different heuristics influence
those core concepts for supporting the creation of different ranking functions
[§9.4.2], and commenting on the presence or absence of the pillars of informa-
tion retrieval in the hypergraph-of-entity [§9.4.3].

9.1 joint representation model evaluation:
inex 2009 wikipedia subsets

We experimented with multiple variations of the hypergraph-of-entity, resulting in
six different models: (i) the base model; (ii) the base model extended with synonym
undirected hyperedges; (iii) the base model extended with undirected context hy-
peredges based on word embedding similarities; (iv) the base model extended with
synonyms and then context; (v) the base model extended with context and then syn-
onyms; and (vi) the base model extended with synonyms, context, and node and
hyperedge weights1. Table 9.1 provides an overview of the tested models, showing

1 At this stage of the research, TF-bins had not been introduced yet, thus we could not include them here.
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Table 9.1: Hypergraph-of-entity model overview. Superscript numbers beside the check
marks indicate the integration order of a node or hyperedge in the model.

(a) Model nodes. Term nodes can be created based on the document, as well as expanded with synonyms
external to the collection and contextually similar terms based on any corpus.

Model term entity
Doc. Syn. Cont.

Base Model X X
Syns X
Context X
Syns+Context (1) (2)

Context+Syns (2) (1)

Syns+Cont.+Weights (1) (2)

(b) Model hyperedges. Each hyperedge is depicted with either a tuple of sets (directed) or a single set
(undirected). Elements that can be repeated are displayed with a subscript and elements that only appear
once have no subscript. We use t to represent term nodes and e to represent entity nodes.

Model document contained_in related_to synonym context weight
{tn,em} ({tn}, {e}) {em} {tn} {tn}

Base Model X X X
Syns X X
Context X X
Syns+Context (1) (2) X
Context+Syns (2) (1) X
Syns+Cont.+Weights (1) (2)

which nodes and hyperedges were enabled for each model. In particular, it is rele-
vant to notice that the integration order of synonyms and context matters — if we
introduce synonyms and only then context, the term vocabulary might increase and
word embeddings will also be computed for the synonym terms; on the other hand,
if we introduce context and only then synonyms, the opposite might happen, given
the word embeddings model has been trained with an external collection whose
term vocabulary does not coincide with that from the original collection (this is not
the case in the experiments we present here).

In the remainder of this section, we characterize an instance of the hypergraph-
of-entity, with all the extensions, including synonyms, context and weights (Sec-
tion 9.1.1), we study rank stability, since random walk score is not deterministic
(Section 9.1.2) and, finally, we assess the performance of the hypergraph-of-entity
representation and retrieval model, measuring effectiveness, as well as indexing
and querying efficiency (Section 9.1.3).

9.1.1 Hypergraph-of-entity statistics

We characterize the hypergraph-of-entity representation for the INEX 2009 Wikipe-
dia subset, indexed using the base model, with undirected document hyperedges,
along with synonym, context and weight extensions. We begin by providing overall
statistics regarding the number of nodes and hyperedges in the graph. We then ana-
lyze the connectivity power of synonym and context hyperedges, that is, their ability
to establish new paths between documents. We finish by providing an overview of
the weight distributions for different types of nodes and hyperedges.

Regarding disk space, the base model (the smallest index) required a total of 654
MiB for a collection of 203 MiB (compressed). Out of the 654 MiB, 540 MiB were
used to store the hypergraph, 100 MiB to store node metadata and 15 MiB to store
hyperedge metadata. On the other hand, the base model extended with synonyms,
context and weights (the largest index) required a total of 715 MiB of space, out of
which 582 MiB were used to store the hypergraph, 102 MiB to store node metadata,
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Table 9.2: Number of nodes and hyperedges of the largest index (Syns+Cont.+Weights).

(a) Nodes.

Node Count

term 1,126,685
entity 905,163

Total 2,031,848

(b) Hyperedges.

Hyperedge Count

contained_in 784,672

Total directed 784,672

document 37,775
related_to 37,608
synonym 13,749
context 268,505

Total undirected 357,637

Total 1,142,309

19 MiB to store hyperedge metadata, 8 MiB to store node weights and 4.5 MiB to
store hyperedge weights.

Table 9.2 shows the number of nodes and hyperedges for each type, also dis-
criminating against direction. As we can see, the total number of hyperedges is
significantly lower (almost half) than the number of nodes. This is the opposite
behavior that we had found in the graph-of-entity, which didn’t even include syn-
onyms or contextual information. Most of the nodes in the hypergraph are used to
represent terms, closely followed by entities. Most of the hyperedges are directed,
specifically used to link terms and entities. Out of the undirected hyperedges, most
are used to establish context — we might consider increasing the acceptance thresh-
old for contextually similar terms, when building the word2vec similarity network,
in order to lower the number of context hyperedges.

Relations of synonymy and contextual similarity were responsible for establishing
new connections between documents, which in turn had the potential to improve
recall over the base model. We analyzed the base model with synonyms and we
found that synonyms established 6,968 new paths between documents, with 219.90
documents linked on average per synonym, with each synonym ranging between 1
and 12,839 linked documents. We did a similar analysis for the base model with con-
text and we found that contextual similarity established 125,333 new paths between
documents, with 53.71 documents linked on average through contextual similarity,
ranging from 1 to 29,333 linked documents. The significantly higher number of new
paths introduced by context, when compared to synonyms, might be explained by
the fact that, despite only considering noun synonyms, potentially every word was
a candidate for context extraction. On the other hand, we notice that, on average,
context established a smaller number of links between documents than synonyms,
despite the higher number of paths between each linked document.

Figure 9.1 illustrates the distribution of node and hyperedge weights. As we can
see, the selected weights are generally left skewed, showing a long left tail with most
of the values within a range of 0.95 and 1.00 (note that we used a bin width of 0.05).
This is less evident for contained_in hyperedges and does not happen for document
hyperedges (not shown in the figure), since their weight is constant (0.5). Both
contained_in and synonym hyperedge weight distributions have multiple missing
ranges of values. This means that, granularity-wise these weighting functions are
not ideal, regarding their discriminative power. In fact, this is also true for the
remaining weighting functions.

9.1.2 Studying rank stability

While methods based on random walks usually converge to a limiting distribution,
there is still a nondeterministic nature to this retrieval approach. This means that
the probability distribution of visiting a set of nodes, given a departing set of seed
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Figure 9.1: Hypergraph-of-entity weight distributions for INEX 2009 Wikipedia subset.

nodes, where random walkers start from, will eventually reach similar values for
repeated experiments, given a sufficiently large number of iterations r. Measuring
the performance of the random walk score only makes sense when in context with a
rank stability analysis, through the measurement of rank convergence, for different
runs with the same topic and parameter configuration.

We measured rank stability based on the Kendall’s coefficient of concordance
(Kendall’s W) using fixed configurations of the random walk score as the ranking
function. We repeated the same query multiple times, for a given configuration of
` and r, and then normalized each ranking list to ensure that they all contained the
same set of documents. Missing documents were added to the end of the list, sorted
by doc_id to ensure consistency in the calculation of Kendall’s W, for equivalent
rankings, with the same set of missing documents.

Table 9.3a summarizes the results for ` ∈ {2, 3, 4} and r ∈ {10, 50, 100}, using the
geometric mean1 over 100 repeats for each of the 52 topics of the INEX 2009 Wiki-
pedia subset. For such low values of r, we did not find a significant difference in
concordance, beyond a slight indication that a higher walk length ` tends to lower
the concordance W. This is expected, since the longer the length of the walk, the
higher the number of available path choices. More importantly, we found that, even
for low values of r, we already achieve a concordance of over 80%. Nonaggregated

1 We used the geometric mean, since it is less sensitive to outliers and always smaller than the arith-
metic mean, thus providing a more conservative result. However, for this particular case, the difference
between arithmetic and geometric means was negligible.
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Table 9.3: Measuring the stability of random walk score using Kendall’s coefficient of con-
cordance (W), for different parameter configurations.

(a) INEX 2009 Wikipedia subset
(52 topics; 37,788 documents).

` r W

2 10 0.8719

2 50 0.8465

2 100 0.8450

3 10 0.8572

3 50 0.8312

3 100 0.8327

4 10 0.8439

4 50 0.8196

4 100 0.8224

(b) INEX 2009 Wikipedia smaller subset
(3 topics; 2,234 documents).

` r W W ′

2 100 0.7670 0.8386

2 1000 0.7646 0.9428

2 10000 0.9020 0.9857

3 100 0.7356 0.8733

3 1000 0.7881 0.9617

3 10000 0.9124 0.9901

4 100 0.7144 0.8957

4 1000 0.8178 0.9698

4 10000 0.9203 0.9930

values for Kendall’s W, for each topic and parameter configuration, ranged from
0.7547 to 0.9521, with the first quartile already reaching 0.8030. Standard devia-
tions were under 0.0521, showing stability over different topics. In order to better
understand the behavior of concordance for higher values of r, we also replicated
the experiment for the smaller subset with r ∈ {100, 1000, 10000}. Results, shown in
Table 9.3b, illustrate the overall effect of increasing r — higher values of r result in
a higher concordance. Even for low values of r, the results given by the random
walk score are already considerably stable, which increases trust that a performance
assessment should remain fairly unchanged for different runs with the same param-
eter configuration. Both tables show the concordance coefficient for r = 100, which
is lower for the smaller subset. Given the geometric mean was calculated over only
three topics, the influence of a single topic was quite impactful. In particular, we
found that topic 2010023 ([ retirement age ]) resulted in a much lower concordance
coefficient, ranging from 0.4544 to 0.7905. Further analysis of the remaining two
topics showed that their concordance coefficients were in fact higher than the geo-
metric mean depicts, ranging from 0.8189 to 0.9936. These values were also more
in agreement with the experiment for the larger subset, as we can see from the geo-
metric mean W ′, calculated after removing topic 2010023. Based on the limited but
consistent evidence of this analysis, where an incremental behavior of concordance
was found for increasing values of r, we chose r = 103 as a good compromise that
should provide an evaluation reliability of approximately 95%.

9.1.3 Assessing model performance

In the previous section, we have measured the stability of a ranking approach based
on random walks. In this section, we describe how similar parameter configurations
affect the performance of the retrieval model. In order to evaluate retrieval over the
hypergraph-of-entity, we used the title of each topic from the INEX 2010 Ad Hoc
Track as a search query. We then assessed effectiveness based on whether or not re-
trieved documents contained relevant passages, according to the provided relevance
judgments. In order to measure efficiency, we also collected indexing and search
times, as to understand the cost of using such a hypergraph-based representation,
as well as different parameter configurations for the random walk score.

We tested each of the variations presented in Table 9.1, assessing the effective-
ness of the Random Walks Score, using a combination of parameter configurations
based on low walk lengths and high walk repeats, according to the intuition that
closer nodes to the seeds (and therefore to the query) lead to more relevant docu-
ments/entities and that a higher number of repeats leads to convergence and there-
fore trustworthy results. We obtained the best hypergraph-of-entity MAP for the
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Table 9.4: Best overall parameter configuration according to the mean average precision.

(a) Effectiveness (highest values for Lucene and hypergraph-of-entity in bold; differences in MAP are not
statistically significant, except between the Lucene baselines and the hypergraph-of-entity indexes).

Index Ranking GMAP MAP Precision Recall NDCG@10 P@10

Lucene TF-IDF 0.1345 0.1689 0.0650 0.8476 0.2291 0.2346

BM25 0.2740 0.3269 0.0647 0.8598 0.5607 0.5250

Hypergraph-of-Entity: Random Walk Score (` = 2, r = 103)

Base Model RWS 0.0285 0.0864 0.0219 0.8003 0.1413 0.1269
Syns RWS 0.0281 0.0840 0.0225 0.8099 0.1301 0.1231

Context RWS 0.0134 0.0811 0.0220 0.8027 0.1218 0.1192

Syns+Context RWS 0.0299 0.0837 0.0236 0.8069 0.1310 0.1231

Context+Syns RWS 0.0296 0.0814 0.0242 0.8148 0.1256 0.1250

Syns+Cont.+Weights RWS 0.0313 0.0884 0.0274 0.8059 0.1256 0.1154

(b) Efficiency (lowest times for Lucene and hypergraph-of-entity in bold).

Index Ranking Indexing Time Search Time
Avg./Doc Total Avg./Query Total

Lucene TF-IDF
2.16ms 1m 21s 382ms 1s 148ms 59s 698ms

BM25 1s 220ms 1m 03s 461ms

Hypergraph-of-Entity: Random Walk Score (` = 2, r = 103)

Base Model RWS 6.52ms 4m 05s 612ms 3m 22s 826ms 2h 55m 47s
Syns RWS 6.22ms 3m 54s 587ms 3m 31s 038ms 3h 02m 54s
Context RWS 6.35ms 3m 59s 446ms 3m 35s 623ms 3h 06m 52s
Syns+Context RWS 6.29ms 3m 57s 264ms 3m 33s 000ms 3h 04m 36s
Context+Syns RWS 6.33ms 3m 58s 659ms 3m 36s 487ms 3h 07m 37s
Syns+Cont.+Weights RWS 6.52ms 4m 05s 984ms 10m 55s 590ms 9h 28m 11s

base model extended with synonyms, contextually similar terms and weights, with
` = 2 and r = 103 (cf. Table 9.4a) — we verified that increasing values of r suggested
an increasing and plateauing performance. None of the hypergraph-of-entity vari-
ations were able to surpass the Lucene baselines, reaching MAP values between
0.0811 and 0.0884, when compared to 0.1689 for TF-IDF and 0.3269 for BM25. The
best hypergraph-of-entity model according to GMAP, MAP and precision was Syns
+ Cont. + Weights, however the Base Model without extensions was able to reach the
best results for NDCG@10 and P@10. We carried a Student’s t-test for the 28 pairs
of models, comparing average precisions for MAP and individual P@10 values per
topic, using a p-value of 0.05. Results showed that the difference in MAP, as well as
P@10, was statistically significant for TF-IDF and BM25, as well as for any Lucene
baseline and any hypergraph-of-entity model, but not among different versions of
our model.

The introduction of weights shows the flexibility of the model, in the sense that
it is able to easily support the boosting of terms and entities, as well as the boost-
ing of documents and other relations, in order to assign, for instance, a degree of
certainty to each piece of information. Experiments also showed that the higher the
walk length `, the worse the retrieval effectiveness. This is, by design, the expected
behavior, since the further apart nodes are from the seed nodes (which represent
the query), the less related to the query they are and thus the less relevant they are.
The best recall for the hypergraph-of-entity was obtained for Context + Syns (0.8148),
which was close to the baselines (0.8476 for TF-IDF and 0.8598 for BM25). The Ge-
ometric Mean Average Precision (GMAP) was included in Table 9.4a because it is
less affected by outliers than MAP, thus providing additional insight. Through the
comparison of GMAP and MAP, it becomes evident that a small number of topics
are driving MAP up for the hypergraph-of-entity, despite many individual topics
resulting in a low average precision — in some cases achieving values as low as
zero (e.g., for topic 2010006 on the best Context model).

In Table 9.4b, we find the indexing and search times for the runs with the best
MAP per variation. The hypergraph-of-entity took 2.9 times longer to index than
Lucene, when comparing Syns with Lucene, as well as between 18.8 times longer to

218



9.1 joint representation model evaluation

Table 9.5: Graph-of-entity (GoE) vs hypergraph-of-entity (HGoE) with ` = 2.

(a) Effectiveness (highest values for Lucene and graph-based models in bold).

Index Ranking GMAP MAP Precision Recall NDCG@10 P@10

Lucene TF-IDF 0.1540 0.1710 0.1389 0.8007 0.2671 0.2800

BM25 0.2802 0.2963 0.1396 0.8241 0.5549 0.5000

GoE EW 0.0003 0.0399 0.1771 0.2233 0.1480 0.1500

HGoE
RWS(r = 101) 0.0000 0.0485 0.0734 0.3085 0.1229 0.1200

RWS(r = 102) 0.0546 0.1118 0.0342 0.7554 0.1474 0.1500

RWS(r = 103) 0.1017 0.1492 0.0199 0.9122 0.2074 0.2200
RWS(r = 104) 0.1224 0.1689 0.0167 0.9922 0.1699 0.1700

(b) Efficiency (lowest times for Lucene and graph-based models in bold).

Index Ranking Indexing Time
(Total)

Search Time
(Avg./Query) Nodes Edges

Lucene TF-IDF 27s 769ms 209ms N/A N/ABM25 316ms

GoE EW 1h 38m 21s 557ms 981,647 9,942,647

HGoE
RWS(r = 101)

53s 922ms

943ms

607,213 253,154
RWS(r = 102) 11s 134ms
RWS(r = 103) 1m 17s 540ms
RWS(r = 104) 13m 04s 057ms

query (best case scenario, for the Syns model with ` = 2 and r = 102 and Lucene TF-
IDF) and 1127 times longer to query (worst case scenario for Syns + Cont. + Weights
with ` = 4 and r = 103 and Lucene BM25 with k1 = 1.2 and b = 0.75). Given the
notable difference in efficiency between the weighed and non-weighted versions, it
might be a good compromise to use the Base Model with ` = 2 and r = 103, which
is the most effective model when considering the top 10. Overall, search time was
shown to range roughly between 9 and 23 minutes for l = 4 and r = 103 runs, with
MAP scores between 0.06 and 0.08 and a coefficient of concordance around 0.82.
However, if we consider l = 2 and a lower value r = 102, search time will drop to a
range roughly between 22 seconds and 1 minute, with MAP scores of roughly 0.06
and a coefficient of concordance dropping to around 0.77. This means that we can
achieve comparable effectiveness, while significantly increasing efficiency, despite
compromising the concordance of multiple similar runs with the same parameter
configuration (i.e., the ranking function won’t converge).

9.1.4 Comparing graph-of-entity and hypergraph-of-entity

We compare the graph-of-entity with the hypergraph-of-entity, regarding effective-
ness and efficiency, but also illustrate the difference in number of nodes and edges,
particularly regarding the node-edge ratio. In order to better understand the dif-
ferences in performance between the graph-of-entity and the hypergraph-of-entity,
we were required to further reduce the size of the test collection. In particular, we
used the INEX 2009 10T-NL Wikipedia subset, so that we were able to generate
the graph-of-entity in a timely manner. As detailed in Section 4.1.1, sampling was
based on the selection of 10 topics uniformly at random, filtering out documents
that were not mentioned in the relevance judgments, and obtaining a collection of
7,487 documents (80% smaller than the subset based on 52 topics).

Table 9.5 compares the effectiveness and efficiency of graph-of-entity and
hypergraph-of-entity, using Lucene as a baseline. For the graph-of-entity, we used
the Entity Weight (EW) as the ranking function. For the hypergraph-of-entity, we
used the base model (i.e., without synonyms, context or weights) and the Random
Walk Score (RWS) as the ranking function. As we can see in Table 9.5a, hypergraph-
of-entity is overall more effective than graph-of-entity, except when considering the
macro averaged precision (Precision). As shown in Table 9.5b, hypergraph-of-entity
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Document-based binary relations

Captures context by linking each 
term to its following terms within a 
sliding window of size n.

GoW

● 7,487 documents

● 492,185 vertices

● 22,906,803 edges

● |E| = 46.5 x |V|

Collection-based binary relations

Captures term sequences, 
term-entity relations based on 
substring matching and 
entity-entity relations based on a 
set of triples.

GoE

● 7,487 documents

● 981,647 vertices

● 9,942,647 edges

● |E| = 10.1 x |V|

Collection-based n-ary relations

Captures set-relations: documents 
are sets of terms and entities; 
related entities, within a given 
context, are sets of entities; a set of 
terms are linked to its entities.

HGoE

● 7,487 documents

● 607,213 vertices

● 253,154 hyperedges

● |E| = 0.4 x |V|

Figure 9.2: Comparing edge-node relation for graph-of-word, graph-of-entity, and
hypergraph-of-entity (base model), over the INEX 2009 10T-NL Wikipedia subset.

is also considerably more efficient than graph-of-entity, taking only 53s 992ms to
index when compared to 1h 38m for graph-of-entity. When analyzing search time
for the hypergraph-of-entity, we can see that there is a tradeoff between effective-
ness and efficiency that can be controlled through parameter r. For higher values,
like r = 104, we reach a MAP score of 0.1689 but search time is a lot higher than
the graph-of-entity (13m 4s when compared to 21s 557ms). On the other hand, for
lower values, like r = 101 or even r = 102, where we reach MAP scores of 0.0485
and 0.1118 respectively, search time is lower than the graph-of-entity (943ms and
11s 134ms when compared to 21s 557ms). Additionally, by lowering the value of
r, we also lower the rank stability, but even for r ∈ {10, 50, 100} we were able to
achieve coefficients of concordance of around 0.85 (cf. Table 9.3a), which might be
an acceptable compromise efficiency-wise. The gain in indexing speed is particu-
larly influenced by the growth in number of (hyper)edges when compared to the
number of nodes. While the graph-of-entity has 10 times more edges than nodes,
the hypergraph-of-entity has 2.4 times less edges than nodes. We also carried a
Student’s t-test for the 21 pairs of models, comparing average precisions for MAP
and individual P@10 values per topic, using a p-value of 0.05. Results showed that
the difference in MAP was statistically significant for TF-IDF and BM25, for BM25

and any hypergraph-of-entity model (except for r = 10), and for graph-of-entity
and the Lucene baselines. When considering P@10, behavior was similar, except for
TF-ID and any hypergraph-of-entity model, where the difference in P@10 was not
statistically significant.

Figure 9.2 provides an overview of the three main graph-based models tested
throughout this thesis. This includes GoW (Graph-of-Word), by Rousseau and Vazir-
giannis [16], as well as GoE (Graph-of-Entity) and HGoE, proposed in this thesis.
The graph-of-word was originally a document-based graph that, when converted
into a collection-based graph, would reach nearly 500 thousand term nodes and
over 22.9 million edges linking each term to the following three terms. This meant
that, for only 7,487 documents, 46.5 edges were created for each of the 492,185 terms
in the vocabulary. The original document-based approach proposed by Rousseau
and Vazirgiannis resulted in a higher efficiency, since metrics could be computed
per document, from each graph, and then stored in an inverted index. However,
this model did not support the cross-referencing of information among different
documents. The representation approach that we propose, as translated from the
original model, had the sole purpose of establishing a baseline and a foundation
for a collection-based graph. We further explored this foundation with the graph-
of-entity, described in Chapter 6, where we only considered a single following term,
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while also integrating entities. This resulted in an increased number of nodes, reach-
ing nearly 1 million, however the number of edges was significantly reduced to
nearly 10 million — 10.1 edges were created per node. Finally, in order to lower the
complexity of graph traversals in the graph-of-entity, so that we could explore index
extensions like synonymy or contextual similarity, we proposed the hypergraph-of-
entity. This model was not only stored in memory instead of relying on a graph
database, but it also significantly reduced the number of hyperedges for the number
of nodes. This was possible by simplifying relations and promoting the grouping
of multiple nodes. As a result, for 607,213 nodes, only 253,154 hyperedges were
created, which means that less than one hyperedge was created per node — two
hyperedges were created for every five nodes. Since the index size of a collection of
documents is bound by the size of its vocabulary — at the very least the unique set
of all words, or a selection of keywords, must be a part of the index — being able
to control how (hyper)edges scale is a essencial to control performance and reduce
complexity. It is a matter of how much information can we cross-reference within a
given representation model, to better solve an information need, without losing the
complexities provided by captured relations.

9.2 text-only vs joint representation model
evaluation: trec washington post corpus

We describe our participation in the TREC 2018 Common Core track, where we
experimented with hyperedge-based document ranking, over the hypergraph-of-
entity. In this work, we use the hypergraph-of-entity as an indexing data structure
for the TREC Washington Post Corpus, where we represent terms, entities and
their relations. For the base models, we explore both a text-only representation
(feup-run1) and a joint representation of text and knowledge, based on entities and
relations from DBpedia (feup-run2). We also collaborated with the University of
Alicante to experiment with reranking for diversity, based on the maximal marginal
relevance and document profiling. This second part of the work is described in the
notebook paper [270]. We evaluated retrieval effectiveness over the hypergraph-of-
entity based on the mean average precision, over the relevance judgments provided
by TREC. Our best results were for feup-run1, with a MAP score of 0.0070 and a
P@10 of 0.0680.

We assessed retrieval effectiveness based on the relevance judgments provided by
TREC and based on the 50 test topics for 2018. The provided test topics consisted of
25 topics from the 2017 Common Core track, as well as 25 new topics prepared by
NIST assessors. All experiments were run over the TREC Washington Post Corpus
using the title of the topic as a keyword query. Each submitted run was assigned
a priority, and participants were assured that at least two runs per team would be
judged, at the very least considering the top 10 documents per topic. We assigned
the top priority to the base runs (feup-run1 and feup-run2), simply because the re-
maining runs resulted from a reranking of the same set of documents, which had
a high probability of sharing a similar set of top 10 documents, given MMR (Maxi-
mal Marginal Relevance) was used for reranking. In Section 9.2.1, we describe the
submitted runs, as well as statistics about the hypergraph-of-entity indexes used.
In Section 9.2.2, we analyze the evaluation results from TREC 2018 Common Core
track regarding the two relevant runs for this thesis.

9.2.1 Submitted runs

We prepared and submitted two runs to TREC Common Core track. The first run
(feup-run1) was based on a text-only version of the hypergraph-of-entity, simply
consisting of term nodes and document hyperedges. The second run (feup-run2) was
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Table 9.6: Statistics for the hypergraphs-of-entity used in feup-run1 and feup-run2.

Version Statistic Value

Text-only

term nodes 886,298

Total nodes 886,298
undirected document hyperedges 595,037

Total hyperedges 595,037

DBpedia

term nodes 886,298

entity nodes 276,735

Total nodes 1,163,033
undirected document hyperedges 595,037

undirected related_to hyperedges 595,037

Total undirected hyperedges 1,190,074

directed contained_in hyperedges 266,962

Total directed hyperedges 266,962

Total hyperedges 1,457,036

an extension of the text-only version, where we added DBpedia [50] entities and the
respective triples for each entity, relying on entity nodes, related_to hyperedges and
contained_in hyperedges for the representation. The information extraction process
of feup-run2 was limited to the first three paragraphs of each document, due to
resource constraints — our implementation requires the hypergraph-of-entity to be
fully loaded into RAM and we were, at this point, unable to consider all triples for
all extracted entities using the available 32 GiB of RAM. Named Entity Recognition
(NER) was carried based on the Aho-Corasick string-searching algorithm [352] over
a combined list of all ‘@en’ rdfs:label for #dbo:Person, #dbo:Organisation and #dbo:Place
entities. An HTTP endpoint implementing this strategy is available in Army ANT1.
It can be run by first setting up defaults/service/ner/entity_list in config.yaml and
launching server, and then sending a POST request to http://localhost:8080/service

/ner, using the field text to get the list of identified entities. This NER strategy
was chosen so that we could more efficiently match a finite list of labels with each
document.

Table 9.6 shows several statistics for the hypergraphs-of-entity used in runs 1 and
2. No stemming or lemmatization was applied to either version, resulting in a vo-
cabulary of over 800 thousand terms. When extended with DBpedia information,
over 200 thousand people, organizations and places were extracted as entities. As
expected, there were as many document hyperedges as documents in the collection.
We also included related_to hyperedges to model co-occurrence of entities in docu-
ments, but this should be improved in the future to better take advantage of triples
associated with each document and its entities. Finally, over 200 thousand relations
were established between sets of terms and their corresponding entity — this was
based on term matching with the entity name, but it could easily use another type
of term–entity association instead, or be extended to consider other languages, for
cross-language retrieval.

9.2.2 Retrieval effectiveness

The command trec_eval -c -q -M1000 was used by TREC to calculate multiple ef-
fectiveness metrics, where -c ensures that the average is done over the complete
set of queries in the relevance judgments, -q includes per-topic evaluations, and -

M1000 considers only a maximum of 1,000 retrieved documents. Out of the provided
metrics, we selected the Mean Average Precision (MAP) as the overall effectiveness
indicator and also included the Geometric Mean Average Precision (GMAP), the
Normalized Discounted Cumulative Gain at a cutoff of p (NDCG@10), and the Pre-
cision at a cutoff of n (P@10) as a complementary indicators.

1 https://github.com/feup-infolab/army-ant/tree/trec-2018
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Table 9.7: Evaluation of TREC 2018 Common Core track runs.

Run GMAP MAP NDCG@10 P@10

feup-run1 0.0001 0.0070 0.0572 0.0680

feup-run2 0.0002 0.0051 0.0227 0.0240

Table 9.8: Characteristics of best and worst retrieved topics.

Run(s) Topic Best MAP Query Rel. Retr. Rel.
Node Matches

Text-Only DBpedia

Best

1 810 0.1429 [ diabetes and toxic chemicals ] 1 7 15-NA-52-10 21-NA-62-15

2 822 0.1312 [ Sony cyberattack ] 34 43 24-6 78-6
1 823 0.0294 [ control of MRSA ] 6 58 93-NA-2 164-NA-2

Worst

1 341 0.0000 [ Airport Security ] 0 124 32-67 621-238

1, 2 427 0.0000 [ UV damage, eyes ] 0 28 NA-10-109 NA-17-295

1, 2 819 0.0000 [ U.S. age demographics ] 0 15 7,949-3,481-2 12,850-5,896-2

As we can see in Table 9.7, the best run was feup-run1, with a MAP of 0.0070
and a P@10 of 0.0680. The difference between MAP scores for the two runs is not
statistically significant. Additionally, it is clear that, overall, precision was quite low,
with a MAP score achieving a maximum of 0.1429 for topic 810 in run 1, and the
next best score achieving a MAP of 0.1312, for topic 822 in run 2. Following topics
810 and 822 there is topic 823 with a lower MAP score of 0.0294 for run 1. Over half
of the topics for all runs resulted in a MAP score of zero. This includes for instance
topic 824 for run 1, or topic 819 for run 2.

Table 9.8 shows the keyword queries corresponding to the best and worst topics
according to MAP, over the two runs. The best results, for topic 810, were based on
the text-only version of the hypergraph-of-entity. According to this small sample,
there is no clear advantage of using the DBpedia version over the text-only version
of the hypergraph-of-entity, or vice-versa. This might become clearer with a better
usage of the triples associated with the documents, when available. The table also
shows the number of relevant documents retrieved (Rel. Retr.) versus the number
of relevant documents in the collection (Rel.), as well as the number of partial node
matches in both versions of the hypergraph-of-entity, so that we better understand
the amount of information potentially covering each term (i.e., how many nodes
are there for each keyword in the query). As we can see, with the exception of topic
822 ([ Sony cyberattack ]) very few relevant documents were retrieved. Additionally,
the highest MAP score is justified by a low overall number of relevant documents.
When looking at the number of matching nodes per query term, we found that this
is also not an indicator of effectiveness, as the worst topics can either have a high or
low number of matching nodes.

A manual investigation, however, provided a few insights as to what might have
caused such a low overall precision. First, we found a tokenization issue where
stopwords weren’t sometimes split from other words (e.g., “and.hacking”, “eco-
nomics.and”), needlessly extending the vocabulary and discarding paths for ran-
dom walks. This was also the first time we indexed a collection of news articles,
after having worked with encyclopedic content, and we found that random walks
of length ` = 2 would easily reach unrelated topics. For example, when departing
from “diabetes”, we would step into an article entitled “Can running help autis-
tic children?” and then randomly into the term “megan”, which would lead to
“Home sales in Loudoun and Fauquier counties”. The constraints provided by the
hypergraph-of-entity are still not enough, in particular to support search using ran-
dom walks over a collection of news articles. Several approaches might be taken to
improve this, namely introducing sentence, paragraph or passage hyperedges in order
to avoid taking steps into unrelated directions (such as “megan”). Obviously, de-
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Table 9.9: Best runs per team for TREC 2018 Common Core track.

Team Run ID Type MAP

UWaterlooMDS UWaterMDS_Rank Manual 0.4303

RMIT RMITUQVDBFNZDM1 Manual 0.3850

h2oloo h2oloo_enrm30.6 Automatic 0.3382

MRG_UWaterloo uwmrg Automatic 0.2761

Anserini anserini_qlax Automatic 0.2749

Sabir sab18coreE1 Feedback 0.2510

NOVASearch bt-BoWBoE Feedback 0.2468

UMass umass_sdm Automatic 0.2339

JARIR jarir_sg_re Automatic 0.2040

Webis webis-argument Automatic 0.1015

FEUP feup-run1 Automatic 0.0070

spite document scoring depending on r = 1,000 random walks for each seed node
(frequently multiple entities for a single term), allowing such unrelated walks is
still detrimental to the overall ranking. Furthermore, the hypergraph-of-entity does
not support any type of document length normalization, which is also affecting
the quality of random walks. We also did not use any stemming or lemmatiza-
tion, since we wanted to leave room for the exploration of syntactic relations, which
could only be extracted and modeled based on complete sentences. Finally, due to
scalability issues, we only relied on the first three paragraphs of each document,
which was rather detrimental to retrieval performance, reducing the chances for
matching terms, thus leading to the anomalous low MAP. Additionally, this is also
a more challenging test collection:

There are many fewer relevant documents in 2018 compared to 2017 [by de-
sign], and the percentage of uniquely retrieved relevant documents to relevant
documents is also much smaller in 2018 than in 2017.

– Ellen Voorhees, TREC Core Google Group, October 4, 2018

Accordingly, the results from our participation in TREC 2018 Common Core track
were largely inconclusive and difficult to compare with the runs from the remaining
teams.

Table 9.9 shows the best runs, according to MAP, for each participant in
TREC 2018 Common Core track. Runs are classified as Manual (a human selection of
ranked documents), Automatic (a retrieval approach according to a predetermined
ranking model), and Feedback (a retrieval approach that relies on existing relevance
judgments). As we can see, the best result was a manual ranking provided by
UWaterlooMDS that resulted in a MAP of 0.43. Results that relied on pre-existing
feedback occupied a middle position regarding retrieval effectiveness, with the re-
maining being automatic runs. Our best run placed last due to the reasons that
we listed above, namely the reduced number of indexed paragraphs in comparison
with the approaches from the remaining participants [353–361].

9.3 universal ranking function evaluation:
inex 2009 wikipedia collection

In the previous two sections, we focused on measuring the effectiveness of the ran-
dom walk score over a single task — ad hoc document retrieval — while measuring
the impact of different configurations of the hypergraph-of-entity joint representa-
tion model. In this section, however, we focus on the other aspect of our general
model for entity-oriented search, the universal ranking function. In particular, we
test the random walk score over three different tasks, ensuring that it provides a
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consistent performance with the baselines for each task. In the following sections,
we delve deeper into this analysis. In Section 9.3.1, we describe the overall evalu-
ation approach. In Section 9.3.2, we provide an overview on keyword extraction
techniques, which we apply in Section 9.3.3 to reduce the vocabulary size, as well
as the number of entities to represent using the hypergraph-of-entity — this enables
us to index the complete INEX 2009 Wikipedia collection. Finally, in Section 9.3.4,
we present and comment on the performance of our general retrieval model over
three different entity-oriented search tasks. We rely on a single index and ranking
function, merely controlling the input and output nodes and hyperedges to respond
to different tasks.

9.3.1 Approaching the evaluation of a general retrieval model

The hypergraph-of-entity was proposed as a joint representation model for text, enti-
ties and their relations, with the random walk score as a universal ranking function.
This retrieval model provides a starting point not only for exploring the compu-
tation of multiple tasks from entity-oriented search, but also for finding answers
based on a common source of cross-referenceable information. In this section, we
explore the potential of the hypergraph-of-entity for ad hoc document retrieval, ad
hoc entity retrieval, and for entity list completion, reinforcing the generalization
line that has been proposed.

Out of the four proposed tasks in Section 1.3.2, we do not directly experiment
with related entity finding, for two reasons. First, there is no dataset combining a
corpus with a knowledge base that provides topics and relevance judgments for the
four tasks — we use the INEX 2009 Wikipedia collection, which provides relevance
judgments for the ad hoc document retrieval, ad hoc entity retrieval, and entity list
completion. Secondly, we argue that entity list completion is a generalization of re-
lated entity finding, where the latter only takes one entity as input, while the former
takes one entity, as well as examples of related entities, that work as relevance feed-
back. Both related entity finding, and entity list completion are defined as follows.
Given an entity, a target type, and a relation, find other entities of the given target
type that respect the specified relation. The difference between the two tasks lies
in the fact that entity list completion also includes example entities to drive results
towards similar entities. We opted, however, to simplify the view on these tasks,
defining entity list completion as the task of finding other similar entities, given a
set of input entities. For the particular case when this set has unitary cardinality, we
consider it to be the same as related entity finding. This simplified definition makes
particular sense in the context of hypergraph-of-entity, as the model does not store
entity or relation types, making any type restrictions useless.

In order to be able to index the complete INEX 2009 Wikipedia collection, we are
also required to reduce the size of the hypergraph-of-entity. Since we do not control
the number of documents in a collection, we retain only representative keywords
for each document. This not only reduces the quantity of nodes — and, indirectly,
the quantity of hyperedges — but it also improves the overall quality of the model
and its retrieval effectiveness. Accordingly, the contribution of this work is two-fold.

• We tackle the performance issues of the hypergraph-of-entity by reducing the
number of terms in each document through keyword extraction;

• We assess the performance of a universal ranking function for three entity-
oriented search tasks:

– Ad hoc document retrieval;

– Ad hoc entity retrieval;

– Entity list completion.
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We rely on a simplified version of TextRank, for keyword extraction. This ver-
sion is more efficient but less effective than the original, which still results in an
adequate amount of text usable for indexing. Different tasks are not comparable
among each other. They are only comparable with their corresponding baselines.
Nevertheless, our main goal is to understand whether performance is consistent
and acceptable. Thus, our experiments are based on a common dataset, indexed
using the hypergraph-of-entity. A single index is used to evaluate three different
tasks, based on a universal ranking function and a set of three separate relevance
judgments.

9.3.2 An overview on keyword extraction

Keyword extraction is the process of identifying significant or descriptive words
or short expressions to illustrate a given document. In the hypergraph-of-entity,
both words and entities are represented as nodes, while relations are represented
as hyperedges. The number of words that exist in a language is finite and the
number of entities can also be considered finite, particularly for a given snapshot
of a knowledge base, which is often used. This means that, as the index grows,
the number of nodes will eventually converge. One way to reduce the size of the
hypergraph-of-entity is to limit the number of nodes it contains. We experimented
with keyword extraction to reduce document length and therefore the number of
term nodes in the model. In this section, we explore several keyword extraction ap-
proaches, distinguishing between non-graph-based [8, 9, 362] and graph-based [111,
363–365].

Table 9.10 provides a chronological overview of keyword extraction approaches.
As we can see, many approaches are based on a graph of terms, which are fre-
quently filtered by part-of-speech (POS) tags, in particular retaining nouns and ad-
jectives. In TextRank [363], they used and undirected graph; in SingleRank [364],
they also used an undirected graph, but they also included terms from similar
documents; in RAKE [365], they used an undirected weighted graph; and in graph-
of-word [111], they used a directed graph. TextRank and SingleRank both relied on
PageRank, while RAKE experimented with degree, and graph-of-word with max-
imal k-core retention. TextRank, SingleRank and RAKE also considered a post-
processing stage, where keywords were merged into multi-term keywords. Out of
the two non-graph-based approaches we covered, TF-IDF serves to illustrate one
of the first, most iconic metrics of term importance, while YAKE! shows a state-of-
the-art approach, based on other features that are not easily represented as a graph.
In particular, these include: casing (ratio of uppercase term frequency to term fre-
quency), word position (based on the median position of sentences containing the
word), word frequency (divided by the sum of the mean and standard deviation),
word relatedness to context (measuring the diversity of words co-occurring within a
left and right window), and word DifSentence (the normalized number of sentences
containing the word).

For the hypergraph-of-entity, the best keyword extraction method is not the most
effective, but the most efficient. When working with general models, we must also
consider whether the approach fits our current framework, as to prepare for a fu-
ture integration leading to improved generality. Taking this into account means
that, for our retrieval model, random walk and graph-based approaches are pre-
ferred. This leaves both TextRank and SingleRank as ideal candidates, since they
both rely on graphs and PageRank, a random walk based approach. We selected
TextRank, as SingleRank would expand to similar documents too prematurely for
our model. This would have represented not only additional overhead, but also a
redundant step that would have been analogously taken by the random walk score
in hypergraph-of-entity during search. In Section 9.3.3, we present the details on
how we further modified TextRank to reduce computation time, with very little
impact in effectiveness for our retrieval model.
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Table 9.10: Chronological overview of keyword extraction algorithms, identifying graph-
based (GB) approaches.

Algorithm Year(s) GB Description

TF-IDF [8, 9] 1957-72 7 Document keywords selected based on whether they are
frequent in the document, but rare in the collection.

TextRank [363] 2004 3 An undirected graph is built based on the co-occurrence
of terms, optionally filtered by POS tags, within a sliding
window. PageRank is applied, terms are ranked and
adjacent terms form multi-term keywords.

SingleRank [364] 2008 3 The input document is expanded with k other similar
documents. An undirected graph is built to link syntacti-
cally filtered words above a given affinity (weighted aver-
age of term frequencies per document similarity) thresh-
old. Saliency is then computed based on the PageRank
of this graph and adjacent top terms are merged into
multi-term keywords.

RAKE [365] 2010 3 Candidate keywords are generated by splitting the doc-
ument by stopwords. A weighted graph of keyword co-
occurrence is used to compute a keyword score (term fre-
quency, degree and tf-degree ratio were tested as weight-
ing functions). Wrongly split keywords are merged
based on whether that instance repeats in the document
and their scores are summed.

Graph-of-Word [111] 2015 3 A directed graph is built based on a sliding window, fil-
tered by noun and adjective POS tags. Keywords are
then selected from the main core (i.e., largest the k-core).
A k-core is a subgraph where every node has degree at
least k. This way, there is no need to define a cutoff
based on a threshold or ratio.

YAKE! [362] 2018 7 Several term weighting functions are proposed and com-
bined to score candidate keywords: casing, word posi-
tion, word frequency, word relatedness to context, and
word DifSentence. Multi-word keywords are then con-
sidered through the combination of candidate keyword
scores, eliminating similar candidates through the Lev-
enshtein distance.

9.3.3 Simplifying TextRank for efficiency

We use a simplified version of TextRank to build document profiles, based on the
keywords extracted from each article in the INEX 2009 Wikipedia collection. This
way, we obtain shorter documents that are representative of the original Wikipedia
articles, but require less space during indexing. We also study the behavior of the ra-
tio parameter, based on a smaller subset of the test collection, in order to determine
the ideal fraction of keywords required for a good performance. Keyword extrac-
tion is done using a simplified version of TextRank [363] over the preprocessed text
(i.e., lower case, tokenized, without stopwords). We ignore POS tagging, syntactic
filtering, and keyword collapse. Each pair of terms within a sliding window of size
n = 4 is represented as two nodes connected in an undirected graph. PageRank is
then computed for this graph, and term nodes are ranked accordingly. A fraction
of the top keywords, defined by a ratio parameter, is then used to represent the
document in the index.

In order to select the ideal fraction of keywords to use, we experimented with
different ratio values based on the INEX 2009 10T-NL Wikipedia subset, for the
ad hoc document retrieval task. We compared the size of the generated index, in
bytes as well as number of nodes and edges, for several ratio values: 0.01, 0.05,
0.10, 0.20, 0.30. For each run, we computed several performance metrics: P@10,
NDCG@10, MAP, GMAP. As we can see in Table 9.11, keyword extraction results in
a considerable reduction, particularly for Lucene, where the index is 6.9× smaller
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Table 9.11: Evaluating performance for top keyword cutoff ratios ranging from 1% to 30%. In
bold we show the best values per ranking function, over keyword based runs (i.e., ignoring
full-text, as identified by missing cutoff ratios).

Index Ranking Ratio Size Nodes Edges P@10 NDCG@10 MAP GMAP

Lucene

TF-IDF

0.01 1.2 MiB – – 0.1500 0.1674 0.0769 6.50e-06

0.05 3.0 MiB – – 0.0800 0.0720 0.1172 1.00e-05

0.10 5.3 MiB – – 0.0600 0.0477 0.1310 1.31e-05

0.20 9.9 MiB – – 0.0400 0.0316 0.1335 1.31e-05

0.30 15 MiB – – 0.0500 0.0380 0.1306 1.43e-05
– 104 MiB – – 0.2800 0.2667 0.2160 1.76e-01

BM25

k1=1.2,b=0.75

0.01 1.2 MiB – – 0.1500 0.1674 0.0768 6.48E-06

0.05 3.0 MiB – – 0.0900 0.0734 0.1169 9.99E-06

0.10 5.3 MiB – – 0.0600 0.0472 0.1315 1.31E-05

0.20 9.9 MiB – – 0.0400 0.0285 0.1331 1.30E-05

0.30 15 MiB – – 0.0400 0.0285 0.1304 1.43E-05
– 104 MiB – – 0.4900 0.5479 0.3412 3.15E-01

HGoE
RWS

`=2,r=1000
exp.=false

0.01 93 MiB 291k 146k 0.2900 0.2581 0.1542 9.22e-02

0.05 101 MiB 301k 177k 0.2700 0.2724 0.1846 1.07e-01
0.10 106 MiB 312k 190k 0.3300 0.3227 0.1845 1.06e-01

0.20 114 MiB 334k 204k 0.2600 0.2299 0.1559 9.09e-02

0.30 122 MiB 360k 214k 0.2400 0.2484 0.1534 9.36e-02

– 182 MiB 607k 253k 0.1700 0.1671 0.1312 1.01e-01

for the top 30% keywords. Similarly, the hypergraph-of-entity is reduced in size,
resulting in a 1.5× smaller index for the top 30% keywords. As we can see in
Figure 9.3a, the size of the index decreases with the ratio, but always achieves a
better reduction for Lucene. When considering the top 1% keywords, the Lucene
index is reduced 86.7×, from 104 MiB to 1.2 MiB, while the hypergraph-of-entity
is only reduced 2.0×, from 182 MiB to 93 MiB. In particular, the number of nodes
is reduced 2.1×, from 607 to 291 thousand nodes, while the number of hyperedges
is reduced 1.7×, from 253 to 146 thousand hyperedges. When considering the
Mean Average Precision (MAP), the complete indexes (i.e., with all document terms)
achieve the best performance for Lucene with BM25. However, when considering
any ratio, as show in Figure 9.3b, the version reduced to a document profile based
on the top keywords consistently achieves a better MAP for the random walk score
(0.18 for the top 1% and top 5% keywords). While the overall performance is lower,
the random walk score is able to outperform TF-IDF and BM25, when available
information is limited and, perhaps, more representative or selective. In fact, the
lower the ratio, the better the MAP, reaching the ideal reduction and performance
with the top 5% keywords, after which MAP starts decreasing again, as there is too
little information in the top 1% keywords to discriminate the documents. Based on
the results of this small-scale experiment, we opted for a ratio of 0.05, despite 0.10
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Figure 9.3: Evolution of performance metrics for increasing cutoff ratios of top keywords.
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Figure 9.4: Keyword distribution for INEX 2009 10T-NL.

having reached both a higher NDCG@10 and P@10 (cf. Figure 9.3b). Our goal was
to prioritize the minimization of space requirements.

Based on the simplified version of TextRank, the absolute number of keywords,
retained based on the top 5% per document, were distributed as illustrated in Fig-
ure 9.4. On average, there were 22.9 keywords per document. There were 105

documents represented by only one keyword, 280 documents represented by two
keywords, and 351 documents represented by three keywords. Most of the docu-
ments (400) were represented by four keywords, from then on following a logarith-
mic distribution, up to a maximum of 361 keywords (not displayed in the plot for
readability).

Keyword-based reduction directly impacted the number of nodes and indirectly
impacted the number of hyperedges, since it reduced the number of links between
terms and entities, due to a lower number of terms being considered. In our exper-
iments, we used the base model of the hypergraph-of-entity, without synonymy or
contextual similarity relations. This resulted in a hypergraph with 3,506,823 nodes
(633,269 terms and 2,873,554 entities), as well as 7,721,743 hyperedges (2,653,452
documents, 2,629,544 entity relations using subject-based grouping, and 2,438,747
text-entity relations based on the term occurrence in the entity name).

9.3.4 Assessing the random walk score as a universal ranking function

While the hypergraph-of-entity is conceptually able to support multiple tasks, their
individual performance, over a common index, still needs to be tested. In order
to better understand the viability of the hypergraph-of-entity as a general model
for entity-oriented search, we assess the effectiveness and efficiency for the follow-
ing three tasks: (1) ad hoc document retrieval (based on topics and qrels from
INEX 2010 Ad Hoc track [248]); (2) ad hoc entity retrieval (based on topics and
qrels from INEX 2009 Entity Ranking track [247], for the entity ranking task); and
(3) entity list completion (based on topics and qrels from INEX 2009 Entity Rank-
ing track, for the list completion task). The approaches we describe here, including
baselines, were developed as a part of Army ANT [366]. This framework is avail-
able as open source software1 and it can be used to reproduce these experiments2.
The runs for each task were issued according to Table 7.4, using the parameter con-
figuration from Table 7.5 — i.e., ` = 2, r = 104, ∆nf = 0, ∆ef = 0, exp. = F, dir. = T ,
and wei. = F — except for TF-bins, where wei. = T was used, assigning a default
weight of 0.5 to otherwise unweighted nodes and hyperedges.

Runs were based on the hypergraph-of-entity, built over the top 5% keywords,
extracted from each document of the complete INEX 2009 Wikipedia collection
(Section 4.1.1), through TextRank. We also considered different versions of the
hypergraph-of-entity: the Base Model, without index extensions; the Syns model,
which added synonym hyperedges, per term, based on WordNet synsets; the Context
model, which added context hyperedges, per term, based on the most similar other

1 Army ANT is available at: https://github.com/feup-infolab/army-ant/tree/develop.
2 Please consult our YouTube videos to learn how to setup the framework: https://www.youtube.com/

playlist?list=PLc6NtbG0dqo1wGoYdTZkVd7I4SFNodKot.
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Table 9.12: Evaluation results for hypergraph-of-entity as a general retrieval model (best
scores per task in bold).

Index Task Ranking Avg./query MAP GMAP P@10 NDCG@10

Lucene

Doc. Index Ad hoc document retrieval TF-IDF 460ms 0.0228 0.0000 0.0692 0.0778

BM25 370ms 0.0324 0.0000 0.1173 0.1274

Ent. Index
Ad hoc entity retrieval TF-IDF 1s 370ms 0.0373 0.0000 0.0636 0.0670

BM25 798ms 0.0668 0.0000 0.1182 0.1165

Entity list completion TF-IDF 1s 230ms 0.0558 0.0044 0.1000 0.1014

BM25 1s 221ms 0.0666 0.0067 0.1250 0.1212

Hypergraph-of-Entity

Base Model
Ad hoc document retrieval

RWS
23s 405ms 0.0863 0.0278 0.2462 0.2662

Ad hoc entity retrieval 26s 330ms 0.1390 0.0002 0.2455 0.2425

Entity list completion 19s 162ms 0.0879 0.0376 0.0769 0.0594

Syns
Ad hoc document retrieval

RWS
55s 555ms 0.0937 0.0303 0.2615 0.2812

Ad hoc entity retrieval 30s 232ms 0.1337 0.0004 0.2473 0.2445
Entity list completion 19s 875ms 0.0857 0.0368 0.0635 0.0474

Context
Ad hoc document retrieval

RWS
24s 348ms 0.0869 0.0245 0.2654 0.2784

Ad hoc entity retrieval 27s 620ms 0.1304 0.0002 0.2364 0.2298

Entity list completion 19s 422ms 0.0875 0.0373 0.0692 0.0520

TF-Bins2
Ad hoc document retrieval

RWS
2m 58s 0.0172 0.0033 0.0500 0.0508

Ad hoc entity retrieval 4m 41s 0.0300 0.0000 0.1145 0.1307

Entity list completion 1m 08s 0.0006 0.0000 0.0058 0.0053

Syns+Cont.
Ad hoc document retrieval

RWS
23s 265ms 0.0882 0.0246 0.2692 0.28830

Ad hoc entity retrieval 26s 877ms 0.1313 0.0002 0.2509 0.2422

Entity list completion 19s 824ms 0.0884 0.0369 0.0788 0.0594

terms according to word2vec embeddings; the TF-bins2 model, which added tf_bin
hyperedges for the most and least frequent terms per document; and the Syns+Cont.
model, which included the hyperedges from the Syns and Context models.

Indexing took between 33h05m (Syns) and 37h16m (Syns+Cont.) to index on a vir-
tual machine with a 4-core CPU and 32 GB of RAM. The baselines were supported
on two Lucene indexes. The first was based on a text-only representation, using the
extracted keywords, and it only took 15h06m to index. The second was based on
an entity profile, built on the keywords extracted from a virtual document created
from the concatenation of sentences mentioning the entity, which took 59h17m to
index. This approach has been documented in the literature, notably in the work by
Bautin and Skiena [4]. We call these two Lucene indexes Document Index and Entity
Index.

For the ad hoc entity retrieval task over the Entity Index, entities were ranked
based on the keyword query issued over the Lucene virtual document. For
the entity list completion over the Entity Index, entities were ranked based on
an entity query, by first retrieving the virtual document for each entity in the
query, and building a concatenated entity profile. This was then used to issue a
MoreLikeThis query over the Lucene index, based on the concatenated entity pro-
files that were loaded through a StringReader. We did not impose a minimum term
or document frequency, since keywords do not repeat and should, by definition,
result in a low document frequency (and thus a high IDF). We also relied on the
default value of 25 top keywords according to TF-IDF (or, in practice, IDF, since
TF = 1) to build the query responsible for retrieving the ranked entities with a
similar profile to the input entity set.

Table 9.12 illustrates the performance of each of the three evaluated tasks, over
two Lucene and five hypergraph-of-entity representation models. With generaliza-
tion in mind, our goal is to understand whether the universal ranking function that
we propose is able to adequately provide answers for all the tasks, over a common
index. This means that we do not necessarily expect performance improvements,
but rather an indication that our representation and retrieval model has the poten-
tial to be iterated over and improved as a general solution for entity-oriented search
(and eventually retrieval).
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We provide two ranking function baselines based on Lucene TF-IDF and BM25,
which are directly comparable with the random walk score for the same task on
the hypergraph-of-entity models. While different indexes and retrieval strategies
are required for each task when using Lucene, a single index and ranking func-
tion is sufficient to support the three tasks in the hypergraph-of-entity. As we can
see, when using document or entity profiles based on the top 5% keywords, the
hypergraph-of-entity is able to outperform both Lucene TF-IDF and BM25 in every
effectiveness metric, except P@10 and NDCG@10 for the entity list completion task.
However, our model is considerably less efficient than Lucene, taking on average
from 19s162ms to 4m21s to answer a query, when compared to only milliseconds
with Lucene.

A longitudinal view over the three tasks per index, shows a consistent effective-
ness for Lucene indexes, with slight variations of the evaluation metrics. However,
for hypergraph-of-entity indexes, with the exception of TF-bins2, ad hoc document
retrieval and entity list completion showed a consistent effectiveness according to
GMAP, particularly within the same representation model, while ad hoc entity re-
trieval overall resulted in the lowest GMAP scores, but the highest MAP scores,
indicating the presence of a small subset of queries with high average precision
outlier scores. On the other hand, when focusing on the evaluation metrics over a
cutoff of 10, we obtain the best results for ad hoc document retrieval and ad hoc
entity retrieval, showing that entity list completion retrieves a similar number of rel-
evant results when compared to ad hoc document retrieval, but they are positioned
lower than the top 10 in the rank.

Overall, evaluation scores are low, possibly due to the limitations introduced
when considering only the top 5% keywords, however these values for the random
walk score are up to par with (and in fact outperform) TF-IDF and BM25 in the
same conditions. We assessed the statistical significance of the best model per task
when compared with the respective BM25 baseline. Given the non-normality of the
average precision scores, we relied on the Wilcoxon signed-rank test. We found
that that the Syns model was significantly better than BM25 in ad hoc document
retrieval (p < 0.05). The Base Model was significantly better than BM25 in ad hoc
entity retrieval (p < 0.05). The Syns+Cont. was significantly better than BM25 in
entity list completion (p = 0.057).

We further compared the hypergraph-of-entity MAP score, for each of the three
tasks, with the MAP and xinfAP [367] scores from the INEX 2010 Ad Hoc track,
and the INEX 2009 XER track. Since our model frequently ranked quite below the
state-of-the-art, in performance, for previous experiments, we compared it with the
lowest entries from participants in INEX. In the INEX 2010 Ad Hoc track [248], the
lowest MAP was 0.3177, compared to 0.0937 for our best model. In the INEX 2009

XML Entity Ranking track [247], the lowest xinfAP for entity ranking was 0.082,
compared to a MAP of 0.1390 for our best model, and the lowest xinfAP for entity
list completion was 0.100, compared to a MAP of 0.0884 for our best model.

Overall, the experiments we carried, based on a joint representation model of
corpora and knowledge bases, and a universal ranking function based on random
walks, support the first part of this thesis, stating that:

Thesis statement (part 1)

A graph-based joint representation of unstructured and structured
data has the potential to unlock novel ranking strategies, that are,
in turn, able to support the generalization of entity-oriented search
tasks [...]
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We were in fact able to propose a general retrieval model for entity-oriented search
that is viable, despite its low performance. On the other hand, our results only
partially support the second part of this thesis, stating that:

Thesis statement (part 2)

[...] and to improve overall retrieval effectiveness by incorporating
explicit and implicit information derived from the relations between
text found in corpora and entities found in knowledge bases.

While we were able to outperform the Lucene baselines in a particular scenario
where documents were represented by a reduced set of representative keywords, we
were unable to even approximate the state-of-the-art retrieval approaches described
in the literature, specifically when considering the overview reports for the most
recent INEX occurrences covering each task.

9.4 a reflection on retrieval heuristics
We reflect on the presence and effect of information retrieval heuristics in the mod-
els we proposed, based on the three foundational concepts used in search: Term
Frequency (TF), Inverse Document Frequency (IDF), and Pivoted Document Length
Normalization (PDLN). These concepts have been introduced and surveyed in Sec-
tion 2.1.1. In this section, we analyze how they were considered in the design of
graph-based entity-oriented search, in particular in the context of the hypergraph-
of-entity, establishing a parallel with BM25.

9.4.1 The pillar concepts of information retrieval

The pillars of information retrieval consist of three well-proven concepts, that we
briefly revise and comment on next:

• Term frequency — The number of times a query term is found in a document
should contribute to its relevance. The absolute term count usually suffers a
transformation that is a part of the ranking function (e.g., using log or square-
root normalization like TF-IDF, or even applying a stronger dampening factor
k1 like the one used BM25).

• Inverse document frequency — If the term used in the query is too commonly
found in the documents of the collection, then it won’t be a good discriminator
of relevance. Using the term’s document frequency establishes an inverse
relation with relevance. Similarly to TF, this relation can also be controlled
through different transformations.

• Pivoted document length normalization — A collection usually contains doc-
uments with a diverse number of words. Longer documents usually repeat
multiple terms, but also have a higher number of distinct terms, making them
more likely to rank higher in general. Normalizing documents based on the
average document length (the pivot) mitigates this issue. See Singhal et al. [11,
Figure 2] to better understand how PDLN is an approximation of the probabil-
ity of retrieval and the probability of relevance, plotted over document length,
by rotating over the pivot, where the probabilities cross.
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9.4.2 Deconstructing BM25

In this section, for the sake of discussion and context, we deconstruct BM25, depart-
ing from TF-IDF and several heuristics to alter term frequency, until we are able to
reconstruct BM25. This is an exercise to demonstrate how the core concepts of a
search engine’s ranking function, defined in a basic TF-IDF (i.e., without normaliz-
ing term count), can be extended to reach a different ranking function, in this case
the probabilistic approach given by BM25.

Let us now identify the core components in BM25 [31], starting from Equation 9.1
and building on the analysis work already carried by Rousseau and Vazirgiannis [16,
§5], as well as based on some observations by Turnbull [368]:

BM25(t,d) =
(k1 + 1)× tf(t,d)

k1 ×
(
1− b+ b× |d|

avdl

)
+ tf(t,d)

× log
N+ 1

df(t)
(9.1)

Here, tf(t,d) is the frequency of term t in document d, N is the number of doc-
uments in the collection, and df(t) is the document frequency of term t. Before
describing parameters |d|, avdl, k1 and b, let us first identify idf(t,D) = log N+1

df(t)

as the inverse document frequency of term t in collection D, so that we can build
up BM25 from a simple TF-IDF, as described in Equation 9.2.

TF-IDF(t,d) = tf(t,d)× log
N+ 1

df(t)
(9.2)

By taking a probabilistic view, and departing from the three pillars of informa-
tion retrieval, our goal should be to approximate the probability of retrieval and
the probability of relevance, not only over document length, but also over term
frequency and inverse document frequency. Were the probability of retrieval to per-
fectly match the probability of relevance and perfect a ranking could be obtained.

First, let us detail the component controlled by b, which is used to regulate the
degree of pivoted document length normalization affecting term frequency. Here,
|d| is the document length in number of words, while avdl is the average document
length for the collection:

tf ′(t,d) =
tf(t,d)

1− b+ b× |d|
avdl

(9.3)

Now, let us detail the component controller by k1, which is used to establish an
upper bound of k1 + 1 for term frequency as term count increases. This parameter
is usually set to k1 = 1.2 or optimized in the interval k1 ∈ [1.2, 2]. The logic behind
this decision is that, after a certain number of repetitions of a given term, there are
no repetitions that will increase relevance. Let us then rewrite term frequency to
approach k1 + 1 asymptotically as term count increases:

tf ′′(t,d) =
(k1 + 1)× tf ′(t,d)
k1 + tf ′(t,d)

(9.4)
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In Equation 9.5, we combine the two term frequency approaches by expanding
tf ′(t,d) in Equation 9.4, while using K = 1− b+ b× |d|

avdl for convenience:

tf ′′(t,d) =
(k1 + 1)× tf ′(t,d)
k1 + tf ′(t,d)

=
(k1 + 1)× tf(t,d)K

k1 +
tf(t,d)
K

=
(k1 + 1)× tf(t,d)�K

×�K(
k1 +

tf(t,d)
K

)
×K

=
(k1 + 1)× tf(t,d)
k1 ×K+

tf(t,d)×�K
�K

=
(k1 + 1)× tf(t,d)
k1 ×K+ tf(t,d)

=
(k1 + 1)× tf(t,d)

k1 ×
(
1− b+ b× |d|

avdl

)
+ tf(t,d)

(9.5)

Interestingly, despite relying on different normalization approaches, IDF is rarely
reiterated over in ranking models, conceptually still following the original proposal
by Spärck Jones [9]. By combining IDF with the described term frequency transfor-
mation, we obtain the well-known BM25.

We went through the exercise of illustrating BM25’s components and how differ-
ent interpretations of term frequency’s behavior result in different ranking functions.
Some of them, like BM25, represent an improvement over TF-IDF, as they rely on a
bound term frequency that is normalized for document length.

9.4.3 Deconstructing the hypergraph-of-entity

The three pillars, TF, IDF and PDLN, are always present, even if only conceptually,
in a good ranking function. This has been proven by years of research in information
retrieval and multiple successful ranking models that rely on these core principles
(TF-IDF, BM25, language models, divergence from randomness, Bayesian networks,
Markov networks; see Section 2.1.1).

Many of our experiments with the hypergraph-of-entity obtained MAP scores
lower than the TF-IDF and BM25 baselines. This might be attributed to miss-
ing implementations or analogies of one or multiple of the core principles. The
hypergraph-of-entity can be seen as a model for representation-driven retrieval,
since the random walk score is essentially a biased sampler of the hypergraph,
that depends on the query and the internal weights of the nodes and hyperedges.
As such, there might be a redundancy in relying on inverse document frequency or
document length normalization. That is, these principles might already be a part of
the model, inherently. Let us delve deeper into this possibility.

term frequency While we have explored the inclusion of term frequency in our
model, through TF-bins, there is still much work that can be done to explore the
optimal approach. For instance, the weight of tf_bin hyperedges was not computed
based on the term frequencies of its terms in the documents they belong to. Is there
a way to do this in a way that improves performance? Since the remaining weights
of the hypergraph are normalized in the range [0, 1], how could we compute a TF-
bin weight that would be on the same scale, as an indicator of relevance? We might
even need to go through a similar process that Singhal et al. [11] went through
to propose pivoted document length normalization, studying the probability of re-
trieval based on different weighting schemes and comparing it with the probability
of relevance.

inverse document frequency When a term is particularly prominent in a
collection of documents, it becomes less discriminative. In the hypergraph-of-entity,
there is no equivalent computation based on this concept. Since terms with a high
IDF are not filtered out, random walks can freely traverse through these terms from
document to document, inadvertently assigning relevance to otherwise irrelevant
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documents. Although we aggressively remove stopwords and potentially irrelevant
terms with a low length, there is still the possibility of domain-specific terms being
used in a collection, therefore remaining a part of the hypergraph-of-entity. It is a
possibility that, by removing terms with a high IDF prior to adding documents to
the hypergraph, we might improve retrieval effectiveness.

document length normalization Two aspects were identified to justify the
need for pivoted document length normalization: higher term frequencies, and a
higher number of diverse terms, in long documents. The first issue is inherently
solved in the hypergraph-of-entity, due to the lack of term repetition (documents
are represented as an undirected hyperedge, which is a set of terms and entities).
On the other hand, the second issue prevails, as long documents result in higher
cardinality document hyperedges. During manual trials, we frequently found that
longer documents were given a higher score than shorter, sometimes more relevant,
documents. This is an issue that must be addressed in the future, preferably by
modifying the structure of the hypergraph-of-entity to accommodate this concept
organically. This effort will ensure that the hypergraph remains algebraically repre-
sentable, perhaps as a tensor, which might lead to a significant improve in efficiency,
should we take advantage of a Multilinear PageRank with personalization to answer
queries.
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summary
In this chapter, we evaluated the hypergraph-of-entity representation and retrieval
model. First, we focused on exploring different configurations of the representation
model, for a single task (ad hoc document retrieval). We ran several experiments
over subsets for INEX 2009 Wikipedia collection, and over TREC Washington Post
Corpus based on our participation in TREC 2018 Common Core track. This in-
cluded statistics about the hypergraph used to index the collections, a study of
rank stability, the assessment of retrieval performance for the ad hoc document
retrieval task, and a comparison with the graph-of-entity. Then, we ran multiple
experiments to test the random walk score as a universal ranking function, by val-
idating whether it supported multiple ranking tasks over a single index, based on
the hypergraph-of-entity representation model for the complete INEX 2009 Wikipe-
dia collection. We described an approach to evaluate general retrieval models, and
proposed a strategy to scale the hypergraph-of-entity based on keyword extraction,
which enabled us to compare results with the literature for the INEX tracks. We
successfully proved the first part of our thesis statement, proposing that a graph-
based general model for entity-oriented search would be possible, and we partially
proved the second part, showing that, in some conditions, we were able to out-
perform the Lucene baselines by cross-referencing information from corpora and
knowledge bases. We closed with a discussion on the pillar concepts of information
retrieval, covering their presence or absence in BM25 and repeating this analysis for
the hypergraph-of-entity.
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Information retrieval experts have relied on different solutions to solve individual
tasks required to bring search to the user, when starting from a corpus and/or
knowledge base. Search is viewed as a set of multiple problems and multiple solu-
tions, but there is fewer work on unified approaches or joint models. In this thesis,
we have tackled multiple entity-oriented search problems through a single solution,
with the disadvantage of lacking specialization at each task, but also with the ad-
vantage of harnessing all available information so that, through a single process, we
were able to solve any information need, regardless of the retrieval task that was
used to express it. In the hypergraph-of-entity, any element can be ranked or used
to query.

We have experienced the process of designing a novel representation and retrieval
model nearly from zero and, while it partly integrates the pillar concepts of infor-
mation retrieval, it also defies the status quo of the area, by deviating from the
inverted file and the triplestore. In this process, we proposed a model for joint rep-
resentation of corpora and knowledge bases, thus promoting unified approaches
for entity-oriented search based on a common data structure. Without combining
text, entities and their relations we would might miss crucial connections between
concepts (see the astronaut and entertainer example in Section 7.1).

We proposed two main models, graph-of-entity (Chapter 6) and hypergraph-of-
entity (Chapters 7, 8 and 9), as well other adjacent graph-based concepts, such as
fatigued random walks (Appendix B), that were tested as performance enhancement
elements. In this chapter, we present an overview on the experimental process
and the obtained results per collection, discussing the limitations and potential
applications of the hypergraph-of-entity as a general model for solving information
needs, while promoting the exploration of novel views in information retrieval.
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10.1 five stages of experimentation

The structure of this chapter is organized as follows:

• Section 10.1 reflects on the five stages of experimentation undergone while
designing the hypergraph-of-entity, from conception to generalization testing.

• Section 10.2 provides a global view of the carried scientific work, including a
timeline of experiments and hypergraph-of-entity structural feature changes.
We classify experiments according to the used test collection, so that we can
compare them. In particular, we cover experiments over SSOAR [§10.2.1],
INEX 2009 10T-NL [§10.2.2], INEX 2009 52T-NL [§10.2.3], WaPo [§10.2.4], and
the complete INEX 2009 Wikipedia collection [§10.2.5].

• Section 10.3 discusses the limitations of the hypergraph-of-entity, covering
the issues with the document preprocessing pipeline [§10.3.1], keyword-based
profiles [§10.3.2], the random walk score [§10.3.3], and the usage of hyper-
graphs as a data structure for the generalization of retrieval [§10.3.4].

10.1 five stages of experimentation
A great part of this doctoral work can be summarized by instancing and describ-
ing five stages of experimentation (not necessarily in temporal order of execution)
leading to the conclusion of this thesis:

• Conception

• Representation model

• Retrieval model

• Fallback to classical

• Generalization testing

conception stage At the conception stage, we were concerned with establish-
ing a foundation for our work. We did this by exploring the graph-of-word [16]
and, inspired by this model, we attempted our own graph-of-entity model (Chap-
ter 6). The graph-of-entity deviated quite a bit from the graph-of-word, for multiple
reasons. The graph-of-word is a document-based model, which means that a graph
is created per document, enabling metrics to be extracted from the graph, as an
offline process, and even stored in an inverted index. On the other hand, the graph-
of-entity was designed to be a collection-based model, as per our goal of harnessing
“all available information”. This meant that it would not be viable to maintain the
sliding-window-based contextual connections from graph-of-word, as this would
result in a computationally intractable representation. Our first decision was then
to reduce to window size to one term, which in practice meant that each term only
connected to its following term. Another reason to do this was the addition of
semantic information, through the introduction of entities in the graph. This also
meant that the model would grow in complexity, not only because of the added
entities, but also because of the added relations, both between pairs of entities and
between terms and entities. These were strong reasons to preemptively reduce the
size of the graph. This is when we started to think about approaches that would
enable us to further reduce the size of the model, which led us to hypergraphs
(see Figure 9.2). The first advantage we identified in hypergraphs was the fact that
we would be able to group several nodes in a single hyperedge and we could test
whether such simplification, along with an increase in the number of documents
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and entities, would lead to better results. At this point, we experimented with a hy-
pergraph database1, but rapidly moved to an in-memory representation for further
increased efficiency2.

representation model stage The representation model stage was marked
by the introduction of the hypergraph–of–entity (Chapter 7), which was our main
focus throughout this doctoral work. We first designed a simplified hypergraph-
based version of the graph-of-entity, while simultaneously exploring alternative,
more efficient approaches to ranking. Inspired by the entity weight, we proposed
the random walk score, which, instead of relying on all simple paths departing
from seed nodes, relied on a sample of those paths, given by random walks. Once
this framework was established, we focused on extending the representation model
and assessing the effectiveness and efficiency for several variations of the model.
We explored a text-only version, and versions relying both on internal and exter-
nal knowledge, as well as synonyms, contextual similarity, TF-bins, weights, and
several combinations of these features, while maintaining a static configuration for
the random walk score. We also characterized the structure of the hypergraph for
many of these representation model variations, while attempting to understand the
impact of structural features in retrieval performance.

retrieval model stage At the retrieval model stage, we turned our focus to the
parameterization of the ranking function, while also characterizing rank stability,
given the nondeterminism of random walks. This mostly happened while also
exploring the variations of the representation model, although we focused on most
descriptive or overall best results to present. An exception was the node and edge
fatigue (∆nf and ∆ef), which we explored and presented in a more exhaustive
manner. Inspired by neuronal fatigue, a phenomenon of the brain, we attempted
to block node and hyperedge visitation during a given ∆nf or ∆ef cycles after
being visited. This was a failed attempt to improve efficiency without decreasing
effectiveness. In fact, it had the opposite effect in most cases. Despite the low gain
rarely provided by fatigue, we decided to further explore and develop this concept
in order to exhaust the idea. One idea we had was the translation of our step-by-step
random walk simulation to an algebraic simulation supported on Markov chains
and power iteration. This required a tensor-based representation of the hypergraph-
of-entity, which is not only a general hypergraph, but also a mixed hypergraph, i.e.,
with directed and undirected hyperedges. While we found significant advances that
might support this approach for an undirected hypergraph [115, 201], the challenge
to apply them was significant, but it also would not result in a perfect fit for our
model. As such, we decided to test the idea of fatigue in a more controlled graph-
based scenario instead, and only then come back to hypergraphs, if it first showed
promise there.

fallback to classical At this stage, we proposed Fatigued PageRank as a clas-
sical link analysis metric, based on an approximated implementation of fatigued
random walks, represented as a Markov chain and solvable through power itera-
tion. We then compared it with several other graph-based features, computed over
a link graph, measuring their impact in effectiveness over a text-based score. In
particular, we experimented with indegree, HITS authority, and PageRank, as well
as Fatigued PageRank. While the indegree had a negative impact overall and a
positive impact for the top 10 results, the remaining metrics had close to no impact
overall. As such, we moved on to the next stage of experimentation, leaving fatigue
on hold as future work.

1 http://hypergraphdb.org/
2 http://www.i3s.unice.fr/~hogie/software/index.php?name=grph
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Table 10.1: Summary of the experimental stages covered by different test collection.

Stages
Sections SSOAR

§10.2.1
10T-NL
§10.2.2

52T-NL
§10.2.3

WaPo
§10.2.4

INEX
§10.2.5

Conception 3 3

Representation model 3 3 3

Retrieval model 3

Fallback to classical 3

Generalization testing 3

generalization testing Perhaps the most central point of this thesis was the
generalization of entity-oriented search tasks. In particular, we decided to focus
on graph-based models to represent corpora and knowledge bases and to support
ranking. The generalization testing stage was about assessing the performance of
three different tasks: ad hoc document retrieval, ad hoc entity retrieval, and entity
list completion. We did this based on the complete INEX 2009 Wikipedia collection,
representing each document by its top keywords instead of the full text, in order to
reduce computational complexity. Under these specific conditions, we are able to
outperform both Lucene TF-IDF and BM25 baselines. However, based on INEX 2009

10T-NL, we also found that no hypergraph-of-entity based on extracted keywords
could outperform baselines that relied on the full text.

10.2 a global view of results per test collection
In the following sections, we comment on the overall results obtained per test collec-
tion, for different experiments. We do this based on summary tables of performance
metrics, as well as by relying on plots of the relative change according to the base-
lines defined for each specific experiment.

Table 10.1 shows how the six stages of experimentation were distributed over the
different test collections. In Section 10.2.1, we focus solely on the conception stage,
with the first proposal of graph-of-entity, tested over SSOAR using team-draft inter-
leaving, during the TREC 2017 OpenSearch track. Section 10.2.2 covers all experi-
ments over the INEX 2009 10T-NL Wikipedia subset, which re-tests graph-of-entity
and introduces hypergraph-of-entity (conception stage). In that section, we also
explore several variations of the hypergraph-of-entity (representation model stage),
as well as several parameterizations for the random walk score (retrieval model
stage). In Section 10.2.3, we mainly focus on the representation model stage, over
the INEX 2009 52T-NL Wikipedia subset. In Section 10.2.4, we study a stripped
down representation model of the hypergraph-of-entity (text-only), and we also
enter the fallback to classical stage, exploring classical link analysis approaches to
improve text-based ranking functions. We do this over TREC Washington Post Cor-
pus (WaPo), during TREC 2018 Common Core track. Finally, in Section 10.2.5, we
run our final experiments over INEX 2009 Wikipedia collection, where we explore
generalization by testing multiple entity-oriented search tasks based on a single
representation and retrieval model.

As experiments were executed, several structural changes were explored, par-
ticularly during the design of the hypergraph-of-entity. In order to make it clear
which variation of this structure was considered for each experiment, we provide
in Figure 10.1 a timeline with the feature changes at the top and a summary of
the carried experiments at the bottom. The main experimental stage ranged from
July 2017, with the participation in TREC 2017 OpenSearch track, to the present
(May 2020), with the final generalization experiments over the hypergraph-of-entity.
Initially, we had considered the introduction of document nodes in the hypergraph-
of-entity, along with directed document hyperedges, however it became clear that,
in particular for longer documents, the probability of a random walk visiting the
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Jul 2017 Nov 2017 Oct 2017 Apr 2018 Jul 2018 Oct 2018 Jan 2019 Feb 2019 Mar 2019 Sep 2019 Oct 2019 Feb 2020
Present

(May 2020)

Graph-of-entity:

● TREC 2017 
OpenSearch

● Living Labs API 
(SSOAR)

● Team-draft interleaving

Graph-of-entity vs 
hypergraph-of-entity (base model):

● Open Computer Science
● INEX 2009 10T-NL

Graph-of-entity:

● SLATE 2019
● INEX 2009 10T-NL

Hypergraph-of-entity 
characterization and TF-bin 
hyperedges introduced:

● Complex Networks 2019
● INEX 2009 10T-NL

Hypergraph-of-entity 
representation model:

● Open Computer Science journal
● INEX 2009 3T-NL / 52T-NL
● Base model / Syns / Cont. / 

Syns+Cont. / Cont.+Syns / 
Syns+Cont.+Weights

Random walk score 
stability:

● Open Computer Science 
● INEX 2009 3T-NL
● INEX 2009 52T-NL

Hypergraph-of-entity:

● TREC 2018 Common Core
● TREC Washington Post Corpus
● Text-only / external knowledge 

(NER+DBpedia)

Hypergraph-of-entity retrieval model:

● INEX 2009 Wikipedia collection
● Base model / Syns / Cont. / TF-bins / Best two
● Universal ranking function:

○ Ad hoc document retrieval
○ Ad hoc entity retrieval
○ Entity list completion

‘document’ nodes

Directed ‘document’ 
hyperedges

Undirected ‘document’ hyperedges

Undirected ‘related_to’ hyperedges
(grouped by co-occurrence in documents)

Undirected ‘related_to’ hyperedges (grouped by triple subjects)

Fatigued random walks:

● INEX 2009 10T-NL
● Fatigued random walk score
● Fatigued PageRank

Entity-related representation

Document-related representation

Feature changes (top):

Graph-of-entity

Hypergraph-of-entity

Experiments (bottom):

Multi-model comparison

Figure 10.1: Experimentation timeline (bottom) and evolution of hypergraph-of-entity model
features (top).

Table 10.2: Overall comparison of retrieval performance, for the ad hoc document retrieval
task, based on the TREC 2017 OpenSearch track SSOAR dataset.

Index Ranking Win Ratio Index Time Avg./Query Nodes Edges

GoW TW-IDF 6/(6+ 10) = 0.375 31m 59s – 201,856 9,530,421
GoE EW 2/(2+ 10) = 0.167 49m 29s – 261,215 3,482,308

document node was minimal, despite the walker frequently having visited nodes
from that same document. Thus, in July 2018 we dropped document nodes, working
only with undirected document hyperedges from then on. All experiments over the
hypergraph-of-entity that are reported on this thesis were executed over a model
with these structural conditions. Regarding the related_to hyperedge variations, only
the TREC 2018 Common Core track experiments relied on the co-occurrence of en-
tities over a common document to form a hyperedge, while the remaining exper-
iments relied on related_to hyperedges grouping entities connected to a common
triple subject (the subject was also included in the set).

10.2.1 SSOAR via Living Labs

Our initial experiments, during the conceptual stage, were focused on assessing a
collection-based implementation of graph-of-word, as well as the graph-of-entity
model that we proposed. We did this based on team-draft interleaving, through
the Living Labs platform at TREC 2017 OpenSearch track, over the Social Science
Open Access Repository (SSOAR). The evaluation result was computed as an out-
come metric based on the fraction of wins of our search engine over the original
search engine (Lucene TF-IDF). An outcome of 50% would represent an equivalent
performance, while a superior fraction would represent a better performance for
our search engine, or vice-versa. As shown in Table 10.2, we obtained 37% wins for
graph-of-word, and 16.7% wins for graph-of-entity, which means that both of these
models were outperformed by TF-ID as run in SSOAR, with graph-of-entity being
the lowest performing model. This was unexpected, since the literature supported
graph-of-word as a better algorithm than TF-IDF, sometimes even outperforming
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Table 10.3: Overall comparison of retrieval performance, for the ad hoc document retrieval
task, based on INEX 2009 10T-NL.

Index Ranking MAP P@10 Index Time Avg./Query Nodes Edges

Lucene
TF-IDF 0.1710 0.2800

27s 769ms
209ms – –

BM25 0.2963 0.5000 316ms – –

GoW TW-IDF 0.2333 0.3000 1h 23m 1m 50s 492,185 22,906,803

GoE EW 0.0399 0.1500 1h 38m 21s 557ms 981,647 9,942,647

Fixed parameters: RWS(` = 2,∆nf = 0,∆ef = 0, expansion = true)

HGoE
(Base
Model)

RWS(r = 101) 0.0485 0.1200

53s 922ms

943ms

607,213 253,154

RWS(r = 102) 0.1118 0.1500 11s 134ms
RWS(r = 103) 0.1492 0.2200 1m 18s
RWS(r = 104) 0.1689 0.1700 13m 04s

Lucene
TF-IDF 0.2160 0.2800

25s 889ms
451ms – –

BM25 0.3412 0.4900 269ms – –

Fixed parameters over HGoE variations: RWS(` = 2, r = 103, expansion = true)

Base
Model

RWS(∆nf = 0,∆ef = 0) 0.1560 0.1800

1m 10s

1m 14s

607,213 253,154

RWS(∆nf = 0,∆ef = 10) 0.1601 0.2300 1m 22s
RWS(∆nf = 10,∆ef = 0) 0.0249 0.0900 839ms
RWS(∆nf = 10,∆ef = 10) 0.0246 0.1000 834ms

Syns
+Cont.

RWS(∆nf = 0,∆ef = 0) 0.1594 0.2300

1m 4s

1m 05s

699,363 422,924

RWS(∆nf = 0,∆ef = 10) 0.1540 0.2000 1m 05s
RWS(∆nf = 10,∆ef = 0) 0.0236 0.0900 955ms
RWS(∆nf = 10,∆ef = 10) 0.0272 0.1100 924ms

Syns
+Cont.
+Weight

RWS(∆nf = 0,∆ef = 0) 0.1636 0.2300

1m 17s

5m 26s

699,363 422,924

RWS(∆nf = 0,∆ef = 10) 0.1615 0.1900 5m 31s
RWS(∆nf = 10,∆ef = 0) 0.0195 0.0700 1s 011ms
RWS(∆nf = 10,∆ef = 10) 0.0250 0.1200 1s 049ms

Lucene
TF-IDF 0.2160 0.2800

25s 889ms
451ms – –

BM25 0.3412 0.4900 269ms – –

Fixed parameters over HGoE variations: RWS(` = 2, r = 104,∆nf = 0,∆ef = 0, expansion = false)

Base M. RWS 0.0039 0.0400 – 4s 653ms 607,213 253,154

Syns RWS 0.0024 0.0400 – 4s 391ms 610,212 263,804

Context RWS 0.0010 0.0100 – 4s 179ms 697,068 410,371

TF-Bins2 RWS 0.1025 0.2000 – 15s 378ms 607,213 268,100

TF-Bins10 RWS 0.1133 0.1600 – 11s 084ms 607,213 281,642

BM25. For this reason, we decided to keep testing our models with other datasets.
Despite underperforming, graph-of-entity still contained 6 million less edges and
only 60 thousand more nodes than graph-of-word.

10.2.2 INEX 2009 10T-NL Wikipedia subset

During the conceptual stage of the hypergraph-of-entity, we required a smaller sam-
ple of the 2.6 million document INEX 2009 Wikipedia collection. Accordingly we
created the INEX 2009 10T-NL subset, that we used in three experiments based on
the ad hoc document retrieval task. As we can see on Table 10.3, the first experiment
was used to assess the performance of the hypergraph-of-entity in ad hoc document
retrieval, when compared to the previously defined graph-of-entity model, as well
as the Lucene and graph-of-word baselines. While the hypergraph-based model
was able to outperform the graph-of-entity, particularly for higher values of r, it
still could not outperform Lucene TF-IDF and BM25. For example, the best MAP
for RWS was of 0.1689, which surpassed graph-of-entity with only 0.0399, but did
not perform better than TF-IDF which achieved a MAP of 0.1710, or BM25 which
achieved a MAP of 0.2963, or even graph-of-word, with a MAP of 0.2333. With this
experiment, we also entered the retrieval model stage, by focusing on the impact
of the r parameter. Despite the improvements brought by the hypergraph-of-entity,
which were still below the baselines, there was a clear trade-off between effective-
ness and efficiency — as r increased, so did MAP, but also the average query time.
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Efficiency is a relevant problem that, while outside the focus of this thesis, needs to
be addressed if this retrieval model is to be used in a production scenario, which it
is currently far from achieving.

In the second experiment, described in Table 10.3, we explored several different
fatigue parameterizations over several variations of the hypergraph-of-entity repre-
sentation model (previously introduced, but only covered ahead in Section 10.2.3).
This experiment contributed not only to the retrieval model stage, but also to the
representation model stage. Here, fatigue was configured according to a delta (∆nf
and ∆ef) representing the number of cycles where a previously visited node or
hyperedge will be fatigued and temporarily not accepting visits — this required
that this state was tracked per node and hyperedge, however the impact was neg-
ligible. The goal of fatigue was to introduce diversification in the random walk,
with the goal of covering a larger portion of the graph. We obtained the best re-
sults for the versions without fatigue or relying only on edge fatigue (MAP ≈ 0.16),
while node fatigue had a strong negative impact on the overall performance (MAP
≈ 0.02). Overall, while the idea of implementing a fatigued random walk is inter-
esting, this particular implementation was unsuccessful, and we dropped it for the
hypergraph-of-entity after this experiment.

In the third experiment, described in Table 10.3, we introduced a preliminary
version of TF-bins, while also exploring results without query expansion, i.e., using
the term nodes directly as seed nodes, as opposed to considering the adjacent entity
nodes. Not using expansion resulted in lower effectiveness and higher efficiency —
however the results for MAP were as low as 0.0010. Regarding TF-bins, we explored
different numbers of bins, from 2 to 10 bins, however, in this summary table, we
only show the bounds of the interval. TF-bins were assigned weights in accordance
with the TF of the terms that they contained, but not directly based on the term fre-
quencies of the set — e.g., for two TF-bins (or TF-bins2), the hyperedge representing
the bin of terms with highest TF would have weight 2/2, while the hyperedge repre-
senting the bin of terms with lowest TF would have weight 1/2. While TF-bins are
inherently weighted hyperedges, in this preliminary version, we had not computed
weights for the remaining nodes and hyperedges, which resulted in a biased ran-
dom walk that highly prioritized tf_bin hyperedges, selecting the remaining nodes
and hyperedges with infinitesimal uniform probability, in practice meaning that
only tf_bin hyperedges were traversed, ignoring the remaining hyperedges of the
model. In short, the model was used as if it were a text-only version containing
only terms and tf_bin hyperedges. Although we achieved the best scores for this
implementation of TF-bins (MAP ≈ 0.10), it was still below the results obtained in
the first experiment for r = 104 (MAP ≈ 0.17), and indicator that the remaining
structure of the hypergraph-of-entity is relevant for effectiveness.

Despite relying on different pre-processing pipelines (the reason why we rely on
separate BM25 baselines per experiment), it is clear that graph-of-entity produces
the highest number of nodes (nearly 1 million) and graph-of-word produces the
highest number of edges (nearly 23 million), although the model was not designed
to be implemented as a collection-based graph, but rather as a document-based
graph. On the other hand, the hypergraph-of-entity ranges between 600 to 700 thou-
sand nodes, but even the largest hypergraph only requires a little under half-million
hyperedges, with the base model or the synonyms model requiring a little over 200

thousand hyperedges. This is a clear advantage of hyperedges, benefiting not only
storage requirements, but also retrieval efficiency, enabling for more features to be
considered. It is, however, relevant to highlight the fact that efficiency-wise the our
model is still quite below the state-of-the-art.

Figure 10.2 provides an overview of the relative change in MAP and P@10 for all
runs launched over INEX 2009 10T-NL. Each run is compared with its own BM25

baseline (not displayed in the figure). Different representation models are shown in
different colors, with the ranking function and the most relevant parameters shown
in the y-axis, and the change in MAP or P@10 shown in the x-axis. As we can see,

244



10.2 a global view of results per test collection

MAP P@10

-100% -75% -50% -25% +0% -100% -75% -50% -25% +0%

RWS(r=1e4, exp.=F)

TF-IDF (c)

RWS(nf=10, ef=10)

RWS(nf=0, ef=10)

RWS(nf=10, ef=0)

RWS(nf=0, ef=0)

TF-IDF (b)

RWS(r=1e4)

RWS(r=1e3)

RWS(r=1e2)

RWS(r=1e1)

EW

TW-IDF

TF-IDF (a)

Change

M
od

el

Graph-of-Word

Graph-of-Entity

Lucene

HGoE (Base Model)

HGoE (Syns+Cont)

HGoE (Syns+Cont+Weight)

HGoE (Syns)

HGoE (Cont)

HGoE (2 TF-bins)

HGoE (10 TF-bins)

Figure 10.2: Relative change in MAP and P@10 compared to the BM25 baseline for each
subset of experiments over INEX 2009 10T-NL.

Table 10.4: Overall comparison of retrieval performance, for the ad hoc document retrieval
task, based on INEX 2009 52T-NL.

Index Ranking MAP P@10 Index Time Avg./Query Nodes Edges

Lucene
TF-IDF 0.1689 0.2346

1m 21s
1s 148ms – –

BM25 0.3269 0.5250 1s 220ms – –

Fixed parameters over HGoE variations: RWS(` = 2, r = 103,∆nf = 0,∆ef = 0, expansion = true)

Base Model

RWS

0.0864 0.1269 4m 06s 3m 23s – –
Syns 0.0840 0.1231 3m 55s 3m 31s – –
Cont. 0.0811 0.1192 3m 59s 3m 36s – –
Syns+Cont. 0.0837 0.1231 3m 57s 3m 33s – –
Cont.+Syns 0.0814 0.1250 3m 59s 3m 36s – –
Syns+Cont.+Weight 0.0884 0.1154 4m 06s 10m 56s 2,031,848 1,142,309

none of the ranking functions was able to was able to outperform the BM25 baseline,
including TF-IDF and TW-IDF from the graph-of-word. From the MAP plot, it is
clearly visible the impact of that a high number of iterations r have in the retrieval
effectiveness, as RWS approximates TF-IDF for r = 104. This same impact is still
visible in P@10, although with less intensity. Experiments without query expansion
suffered the most negative change in regard to BM25.

10.2.3 INEX 2009 52T-NL Wikipedia subset

The experiment shown in Table 10.4 can be positioned in the representation model
stage, relying on an extended subset built from the complete set of 52 topics pro-
vided for INEX 2010 Ad Hoc track. Like other subsets, efficiency was ensured by
limiting the collection to the documents mentioned in the relevance judgments for
the 2010 topics. At this stage, we hadn’t yet proposed TF-bins. Otherwise, we tested
a representative set of combinations for all the available hypergraph-of-entity exten-
sions. This included exploring synonyms, as well as contextually similar terms,
which can be used for query expansion. However, in the hypergraph-of-entity, they
are explicitly defined in the index as a part of the representation model. We also ex-
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Figure 10.3: Relative change in MAP and P@10 compared to the BM25 baseline for each
subset of experiments over INEX 2009 52T-NL.

plored the possibility of introducing bias through a simply weighting scheme that
provided additional information per node or hyperedge type.

It is frequent for synonyms and contextually similar terms to overlap — in Fig-
ure 7.5 from Chapter 7, we had found the term results to be both contextually similar
and a synonym of the term outcome; the same happened for intent and intention. In
such cases of overlap, each extension reinforces the probability of visiting that term
during the computation of the random walk score. It was particularly interesting
to find that both synonyms and contextually similar terms were complementary.
Moreover, the order by which we added synonyms and context to the index makes
a difference. For the Syns+Cont. version, synonyms are added over the term vocab-
ulary of the original collection, and then contextually similar terms are added for
both the original terms and their synonyms. In a similar way, the opposite also
happens for the Cont.+Syns version.

We created an index for both combinations. However, in this particular case, since
the word2vec model was trained based on the same INEX 2009 52T-NL subset,
they are in fact equivalent — i.e., even after adding new terms from synonyms,
these won’t be present in the word2vec model, and, conversely, after adding context,
no new terms will be added, since the word2vec model was trained on the same
collection, and therefore no new terms from synonyms will be added. However,
depending on the train set used for word2vec, this will not always be the case, so
we included both versions at this stage. Additionally, given the nondeterministic
nature of the random walk score, it also serves to illustrate the small variations in
evaluation scores.

Regarding the actual results, and despite using expansion (i.e., seed nodes based
on terms expanded to adjacent entity nodes), which had obtained the best re-
sults over INEX 2009 10T-NL, we obtained MAP and P@10 scores that were much
lower than the TF-IDF and BM25 baselines. For example, we obtained a MAP of
0.17 for TF-IDF, compared to a MAP of 0.09 for RWS over the Syns+Cont.+Weight
hypergraph-of-entity. Additionally, for this particular subset, there was little vari-
ation over the MAP and P@10 scores for different versions of the hypergraph-of-
entity. The index time and average query time was also similar for all variations,
however, the weighted approach resulted in a significantly higher average query
time, due to the inefficiency introduced by the biased random walk implementa-
tion. Regarding hypergraph size, the number of edges was kept at half the number
of nodes, as measured for the Syns+Cont.+Weight version1.

1 We were unable to measure the number of nodes and edges for the remaining hypergraph-of-entity ver-
sions, since the index inspection method had not been implemented at the time we ran the experiments
using unbiased random walks.
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Table 10.5: Overall comparison of retrieval performance, for the ad hoc document retrieval
task, based on TREC Washington Post Corpus.

Index Ranking MAP P@10 Index Time Avg./Query Nodes Edges

Fixed parameters: BM25(k1 = 1.2,b = 0.75) | sigm(w = 1.8,k = 1,a = 0.6)

Lucene

BM25 0.2031 0.3700

–

1s 447ms – –
+ Indegree 0.1994 0.3800 1s 537ms

159,228 319,985

+ HITS Authority 0.2031 0.3720 1s 462ms
+ PageRank 0.2031 0.3700 1s 453ms
+ Fatigued PageRank 0.2031 0.3700 1s 450ms

Fixed parameters over HGoE variations: RWS(` = 2, r = 103,∆nf = 0,∆ef = 0, expansion = true)

Text-only RWS 0.0070 0.0680 20m 16s 7s 217ms 886,298 595,037

DBpedia RWS 0.0051 0.0240 29m 16s 5m 40s 1,152,850 1,447,298

Figure 10.3 provides an overview of the change in MAP and P@10 when com-
pared to the BM25 baseline. As we can see, according to MAP, the Syns+Cont.-
+Weight and the Base Model are the two best performing versions. On the other hand,
according to P@10, the Syns+Cont.+Weight model is actually the worst performing
model. The difference between the scores is not, however, statistically significant,
thus we cannot conclude there is a difference between either model. If this is the
case, the Base Model would result in the least amount of space required, and addi-
tionally it has one of the lowest average query times, making it the most promising
candidate simply for those reasons.

10.2.4 TREC Washington Post Corpus

Table 10.5 shows the two experiments ran over the TREC Washington Post Cor-
pus, based on the topics and relevance judgments from TREC 2018 Common Core
track. The first experiment represents the fallback to classical stage, where we relied
on classical link analysis to produce query-independent features. These were then
combined with the text-based ranking function through the reranking approaches
proposed by Craswell et al. [170], using the best parameters according to their ex-
periments — in particular, we relied on the sigm function, with w = 1.8, k = 1

and a = 0.6, to rerank BM25 scores using each of the tested graph-based features.
Our goal was to study the impact of Fatigued PageRank, a metric that we proposed
based on the idea of fatigued random walks, using the indegree to compute an ap-
proximation to the probability of fatigue. We compared it with other link analysis
metrics, including indegree, HITS authority, and PageRank. As we can see from
the table, all metrics, except indegree, had very little impact in retrieval effective-
ness when compared to the BM25 baseline, except for the indegree which had a
more visible behavior, decreasing MAP from 0.2031 to 0.1994, but increasing P@10

from ∼0.37 to 0.38. The results we obtained on this front were not particularly com-
pelling to keep pursuing, since this is an idea that has been thoroughly explored
before, but also because there was no visible gain, particularly based on Fatigued
PageRank, the metric that we proposed.

The second experiment shown in Table 10.5 is again based on the hypergraph-
of-entity. We indexed the TREC Washington Post Corpus, relying on a text-only
version of the representation model (i.e., considering only term nodes and document
hyperedges), as well as on a base model that relied on NER to identify entities and
on external knowledge from DBpedia to obtain triples that contained each identi-
fied entity. We submitted two runs to TREC 2018 Common Core track, based on the
two described hypergraph-of-entity models. Despite the decrease of relevant docu-
ments introduced by design in TREC 2018 Common Core track, both of our models
severely underperformed, achieving MAP scores of only 0.0070 and 0.0051 and sim-
ilarly low P@10 scores. Indexing TREC Washington Post Corpus as combined data
could not be done directly, like in the case of INEX 2009 Wikipedia collection, since
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Figure 10.4: Relative change in MAP and P@10 compared to the BM25 baseline for each
subset of experiments over TREC Washington Post Corpus.

the first was largely approached as an unstructured collection, while the second
natively provides semi-structured data. Moreover, we only relied on the first three
paragraphs of each document, in order to be able to index the complete collection,
which represented an additional challenge. One idea we might have explored if
efficiency was not an issue would have been the creation of paragraph hyperedges,
since this information was available. Nevertheless, as it stands, results were poor,
despite the increased challenge of the 2018 occurrence for the Common Core track.

Figure 10.4 illustrates the change in MAP and P@10 for the two experiments,
using BM25 as the baseline. In particular, for the first experiment, we used BM25

scores that we computed, resulting in a MAP of 0.2031 and a P@10 of 0.3700, and, for
the second experiment, we used Anserini’s BM25 [357], as submitted to TREC 2018

Common Core track with run_id “anserini_bm25”, with a MAP of 0.2284 and a P@10

of 0.4500. As we can see, for the first experiment, there is little change, with indegree
decreasing MAP, but increasing P@10. Such increase in P@10 and disagreement in
metrics is not completely unexpected. For example, in Section B.3.3 we had found
that the indegree for Wikipedia’s link graph would better approximate user click
behavior than PageRank or Fatigued PageRank (cf. Figure B.3). On the other hand,
although in that experiment HITS authority would perform better than the indegree
for predicting user clicks, the indegree exhibited an inconsistent behavior as the cut
size increased. This might explain why P@10 was lower for HITS authority than the
indegree.

10.2.5 INEX 2009 Wikipedia collection

Table 10.6 illustrates a set of three experiments where, for the first time, and to our
knowledge, the viability of a general retrieval model was assessed. In particular, we
focused on unifying three tasks from entity-oriented search: (1) ad hoc document
retrieval (leveraging entities), (2) ad hoc entity retrieval, and (3) entity list comple-
tion. Moreover, in the context of the hypergraph-of-entity, related entity finding can
be considered a specialization of entity list completion, achievable by limiting the
query to a single entity, making the model actually applicable to four tasks, despite
the lack of assessment for the final task.

A fair evaluation of a general retrieval model requires a dataset, usually semi-
structured data, that can be interpreted as, or processed to become, combined data
(e.g., entity-annotated text, where entities are linked to a knowledge base). Addi-
tionally, we must have a set of topics and relevance judgments for the tasks that
we want to support in our general retrieval model. This was the case for INEX
2009 Wikipedia collection, which was the only test collection of combined data ac-
companied by assessments for multiple entity-oriented search tasks. This is why
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Table 10.6: Overall comparison of retrieval performance, for multiple entity-oriented search
tasks, based on the complete INEX 2009 Wikipedia collection.

Index Ranking MAP P@10 Index Time Avg./Query Nodes Edges

Ad hoc document retrieval

Lucene
TF-IDF 0.0228 0.0692

15h 06m
460ms – –

BM25 0.0324 0.1173 370ms – –

Fixed parameters over HGoE variations: RWS(` = 2, r = 104,∆nf = 0,∆ef = 0, exp = F, wei = F)

Base Model RWS 0.0863 0.2462 33h 53m 23s 405ms 3,506,823 7,721,743

Syns RWS 0.0937 0.2615 33h 05m 55s 555ms 3,510,462 7,734,931

Cont. RWS 0.0869 0.2654 34h 37m 24s 348ms 3,604,185 7,929,841

TF-Bins2 RWS 0.0172 0.0500 35h 26m 2m 58s 3,506,823 10,338,867

Syns+Cont. RWS 0.0882 0.2692 37h 16m 23s 265ms 3,606,693 7,945,083

Ad hoc entity retrieval

Lucene
TF-IDF 0.0373 0.0636

59h 17m
1s 370ms – –

BM25 0.0668 0.1182 798ms – –

Fixed parameters over HGoE variations: RWS(` = 2, r = 104,∆nf = 0,∆ef = 0, exp = F, wei = F)

Base Model RWS 0.1390 0.2455 33h 53m 26s 330ms 3,506,823 7,721,743

Syns RWS 0.1337 0.2473 33h 05m 30s 232ms 3,510,462 7,734,931

Cont. RWS 0.1304 0.2364 34h 37m 27s 620ms 3,604,185 7,929,841

TF-Bins2 RWS 0.0300 0.1145 35h 26m 4m 41s 3,506,823 10,338,867

Syns+Cont. RWS 0.1313 0.2509 37h 16m 26s 877ms 3,606,693 7,945,083

Entity list completion

Lucene
TF-IDF 0.0558 0.1000

59h 17m
1s 230ms – –

BM25 0.0666 0.1250 1s 221ms – –

Fixed parameters over HGoE variations: RWS(` = 2, r = 104,∆nf = 0,∆ef = 0, exp = F, wei = F)

Base Model RWS 0.0879 0.0769 33h 53m 19s 162ms 3,506,823 7,721,743

Syns RWS 0.0857 0.0635 33h 05m 19s 875ms 3,510,462 7,734,931

Cont. RWS 0.0875 0.0692 34h 37m 19s 422ms 3,604,185 7,929,841

TF-Bins2 RWS 0.0006 0.0058 35h 26m 1m 08s 3,506,823 10,338,867

Syns+Cont. RWS 0.0884 0.0788 37h 16m 19s 824ms 3,606,693 7,945,083

the majority of carried experiments were based on ad hoc document retrieval, leav-
ing this final evaluation of generalization to be run over the INEX 2009 Wikipedia
collection. Moreover, due to the scalability issues of our model, and to be able to
position our results in regard to the INEX participants from each of the tasks, we
opted to use document profiles based on the top 5% keywords. This enabled the
index construction over the whole collection to be run in a timely manner, without
increasing memory requirements beyond our resources — we had 32 GiB of RAM
available, but still needed to create a SWAP file to accommodate the index for the
2.6 million documents, mentioned entities and relations.

As we can see in Table 10.6, we explored three different strategies based on
Lucene to provide baselines for each task. For preprocessing text, we simply re-
lied on a StandardAnalyzer. For ad hoc document retrieval, we indexed the text
block and ran queries using TF-IDF and BM25 with default parameters. For ad hoc
entity retrieval, and entity list completion, we relied on entity profiles built from
sentences mentioning the entity. We then either used a keyword query to retrieve
and rank entities, or an entity query to build a concatenated entity profile that we
used as query to retrieve similar entities. This required two indexes, one for the text
documents and another one for entity profiles.

For the hypergraph-of-entity indexes, we relied on the preprocessing pipeline
described in Section 7.4.2, where we aggressively removed stopwords, filtered small
terms, optionally replaced mentions to hyperlinks, time, money and numbers by a
common identifier per type, and applied stemming. While we initially attempted to
memorize whole sentences, so that we could, at a later stage, explore features like
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Figure 10.5: Relative change in MAP and P@10 compared to the BM25 baseline for each
subset of experiments over INEX 2009 Wikipedia collection.

syntactic dependencies, we rapidly discarded this idea, both due to the increased
preprocessing time, but also the increased vocabulary space. Thus, we relied on
an aggressive analyzer that attempted to reduce the vocabulary to a bare minimum
using the well-known classical approaches that we described.

We explored each of the most representative versions of hypergraph-of-entity,
with a combination of the two best. We also used the default weight of 0.5 as a kind
of probabilistic zero, for all nodes and hyperedges that were not TF-bins, so that
the TF-bin weighting would better discriminate high and low TF terms. Overall,
and considering the limited information provided by the top 5% of keywords, we
were overall able to outperform TF-IDF and BM25 with RWS in most tasks, with the
exception of entity list completion, when considering the performance for a cutoff
of 10 results (P@10 in the table). The worst overall model was TF-bins2, which
unexpectedly performed better when a default weight of zero was used (cf. Table 8.5
in Section 8.5). The best overall model was the hypergraph-of-entity with synonyms
for nouns from WordNet 3.0. The task with the best overall MAP scores was ad
hoc entity retrieval, although its GMAP (not shown in this table) was much lower,
positioning this task at the same level as the remaining two tasks.

For ad hoc document retrieval, BM25 achieved a MAP of 0.03, while our best
model, Syns, achieved a MAP of 0.0937. For ad hoc entity retrieval, BM25 achieved a
MAP of 0.0668, while our best model, Base Model, achieved a MAP of 0.1390. Finally,
for entity list completion, BM25 achieved a MAP of 0.0666, while our best model,
Syns+Cont., achieved a MAP of 0.0884. Although an unfair comparison, due to the
limited information provided by the keyword-based document profile, our models
still performed quite below the best AP scores for this test collection, which were
of 0.4294 (MAP) for the INEX 2010 Ad Hoc track, from participant “p22-Emse301R”,
of 0.517 (xinfAP) for the entity ranking task of INEX 2009 Entity Ranking track, for
run “2_UAmsISLA_ER_TC_ERreltop”, and of 0.520 (xinfAP) for the list completion
task of INEX 2009 Entity track, for run “5_UAmsISLA_LC_TE_LCexpTCP”.

The hypergraph-of-entity remains to be evaluated in the future, for the whole
INEX 2009 collection, without relying on keyword-based document profiles for en-
suring efficiency. Nevertheless, current results are promising, not only showing that
a generalized retrieval model can be built, but also showing that it can, for partic-
ular cases, outperform baselines like TF-IDF or even BM25, which still stands as a
strong baseline even in 2020.

250



10.3 limitations of the hypergraph-of-entity

We close this section by analyzing Figure 10.5, which shows a positive change in
MAP and P@10, achieved with the hypergraph-of-entity model. Most versions of
our model were able to outperform BM25, improving as much as 190% in MAP for
ad hoc document retrieval, or as little as 33% for entity list completion. Another
interesting behavior that is visible in the figure is that the overall highest change
happened for ad hoc document retrieval, followed by ad hoc entity retrieval, and
then entity list completion, at the bottom. This might be explained by the fact
that we focused on the first task in most of our experiments, perhaps inadvertently
optimizing the universal ranking function and the selected representation model for
this task. Additionally, since INEX 2009 Wikipedia collection represents Wikipedia
articles, that in turn represent entities, optimizing for these documents might have
also resulted in a slight optimization for ad hoc entity retrieval. Future work on the
hypergraph-of-entity should perhaps begin with entity list completion for a chance
of equally optimizing each task.

10.3 limitations of the hypergraph-of-entity
Besides a limited implementation of the core principles, discussed in the previ-
ous section, the hypergraph-of-entity has other limitations that we discuss in this
section. Namely, we discuss how document preprocessing impacts the indexing
process [§10.3.1], the nondeterminism and efficiency issues of the random walk
score [§10.3.3], and the pros and cons of using a hypergraph as the central data
structure for a general retrieval model [§10.3.4].

10.3.1 Document preprocessing

In this thesis, we report indexing times based on the total time required to read and
preprocess the collection, adding its terms, entities and relations to the hypergraph-
of-entity, and serializing the data structure from RAM to disk. In some cases, how-
ever, the reported indexing time is significantly superior than the time required to
actually add all terms, entities and relations to the hypergraph. For example, in
Section 9.3.4, we reported the indexing time of the hypergraph-of-entity to range
between 33h and 37h. In particular, the Base Model required, in total, 33h53m13s to
be created, however, only 6h24m43s were spent actually indexing the documents.
The remaining time was spent in the preprocessing pipeline (not to be confused
with the text analysis process required for indexing). This included reading the col-
lection in stream mode directly from the .tar.bz2 files1, parsing the XML for each
document, to extract text, entities and links, and instantiating a Python Document
object that was then converted to its Java version through JPype2. Only then were
documents actually indexed. This means that there is room for optimization simply
by means of engineering the code.

10.3.2 Keyword extraction for document profiling

For the final experiments (Section 9.3), where we tested the generality of the model,
we relied on keyword extraction in order to reduce the size of the index by using
document profiles [369]. In particular, we used the TextRank algorithm [363] to
identify a ranking of keywords. We then selected the top keywords based on a
cutoff ratio (e.g., top 5%). An alternative that we did not test was to instead rely
on a constant cutoff value applied over the TextRank scores. Additionally, there are
other different approaches for keyword extraction that we might have considered.
However, perhaps more importantly, we would like to have run experiments over

1 All code is available as part of Army ANT. Please refer to Section 5.2 for more information.
2 https://jpype.readthedocs.io/en/latest/
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an index that contained the complete INEX 2009 Wikipedia collection without the
need for reducing each document to its keywords. Alternatively, it would have been
useful to at least study performance over increasing cutoff ratios or values, so that
we could better predict the expected performance if the full text in the documents
were used instead. A related questions is whether a common parameterization
for building the keyword-based document profile would result in different perfor-
mance for different collections, or whether performance would remain stable across
collections, in relation to a baseline.

10.3.3 Random walk score

At its core, the random walk score is similar to a personalized PageRank, however
random walks in hypergraphs are taken in two steps, one to randomly select a hy-
peredges and another one to randomly select a node from that hyperedge. Due
to the nature of our data structure, however, we could not take advantage of the
available algebraic mechanisms for simulation (e.g., power iteration). While there
is a Multilinear PageRank that is applicable to tensors, that we could experiment
with, there is no tensor representation for hypergraphs that supports general mixed
hypergraphs and ensures that eigenvectors remain useful. While CERN and the
University of Geneva have been working on such a tensor representation [115, 201],
their application is for general undirected hypergraphs. With a few progress, this
might be an interesting solution for running the random walk score without sim-
ulating each step, greatly increasing the performance, while providing access to
GPUs for an even greater increase in processing power.

Another issue with the random walk score that we have not completely solved
is how to deal with its nondeterministic nature. While it will eventually converge,
we are currently relying on the r parameter, which dictates the number of random
walks launched from each seed node (either the query term nodes or the adjacent
entity nodes). An algebraic implementation based on Multilinear PageRank might
inherently solve the convergence problem, rendering this issue irrelevant. However,
until this is possible, we might investigate different approaches to ensure that the
random walk score only stops iterating after convergence. For now, we propose that
the nondeterminism of RWS be dealt with through a long-term caching mechanism
to ensure that different users of the search engine have access to a common ranking
of results for the same query.

10.3.4 Hypergraphs as general structures for information retrieval

During the course of this work, we were faced with challenge for representing term
frequencies in our model. The hypergraph was proposed by its author, Claude
Berge, as a data structure that “can be used to simplify as well as to generalize”.
Our initial impression was in fact that this was a flexible data structure, capable
of supporting the representation requirements that we incrementally added, as we
experimented with the model. However, when confronted with the idea of repre-
senting term frequencies, there was no obvious approach. We considered fuzzy
hypergraphs, where hyperedges are described by a set of node and weight pairs,
which could be used to store term frequencies. The downside of relying on this
extension of the hypergraph structure is that it requires the storage of as many
weights as the number of edges in the equivalent bipartite graph. We also carried
some secondary experiments with the bipartite version of one of our hypergraphs,
only to find extremely degraded performance that would not enable us to carry on
experiments. Given the likeliness of a fuzzy hypergraph with this bipartite graph,
we would say that the challenge of building such a representation and retrieval
would be even harder. This is, however, a matter that remains to be considered. Is
the hypergraph the ultimate general data structure? Can we go back to graphs and
improve performance even more? Should we explore fuzzy hypergraphs [213, 214],
or even metagraphs [220]?
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summary
This chapter was divided into two logical parts, one focused on the experiments
prepared throughout this doctoral work, and another on discussing the limitations
and possible applications of the proposed model. First, we provided an overview of
the carried experiments, looking back on the development process of experimenta-
tion, which we divided into five stages: conception, representation model, retrieval
model, fallback to classical, and generalization testing. We also analyzed the perfor-
mance of our models by grouping experiments per test collection, which provided
a general view of the impact of each approach. We then covered model limitations,
regarding both technical and conceptual issues, including the delay introduced by
the document preprocessing stage when compared to the atual indexing time, the
impact of keyword extraction in experimentation, the lack of algebraic representa-
tion for the random walk score and its efficiency issues, and the hypergraph as an
indexing data structure to support general models in information retrieval.
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Graph-based entity-oriented search is an area that combines the unification profi-
ciency of the graph data structure with the diverse tasks defined to express informa-
tion needs based on different units of information. Whether users require keywords
or entities to articulate their question, and independently of whether they are seek-
ing documents or entities to answer the question, entity-oriented search provides a
clear framework that encompasses these diverse tasks. Furthermore, graphs are a
data structure capable of representing text, as well as entities, while being used to
support a wide range of tasks from multiple domains. Network science is perhaps
the most recent area, since cognitive science, that touches on such a wide range of
domains.

Appropriately, we relied on graphs, and eventually considered hypergraphs, as
tools for developing unified frameworks, in particular with the potential of building
generalized models in information retrieval. Motivated by creativity and innovation,
we proposed the graph-of-entity, which then evolved into the hypergraph-of-entity,
a model that is, to our knowledge, the only graph-based general approach to entity-
oriented search.

This thesis has pursued a model for jointly representing corpora and knowledge
bases, which we have achieved with the hypergraph-of-entity. It has also pursued
the proposal of a universal ranking function, within a general model for informa-
tion retrieval, which we have achieved with the random walk score, as a way to
implement representation-driven retrieval. This work is far from complete. In fact,
it raises more questions than it solves. More importantly, it opens a new path of
research and attempts to yet again diversify the area of information retrieval, which,
after the deep learning absorption, might turn their interest into network science,
to find new ways for solving information needs.

The structure of this chapter is organized as follows:

• Section 11.1 presents a summary of the doctoral work described in this thesis.

• Section 11.2 concludes this endeavor with some final remarks, summarizing
the overall contributions and their impact.

• Section 11.3 provides several directions for the future, regarding the hyper-
graph–of-entity and general models for information retrieval.
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11.1 thesis summary
We began this work by providing an historical perspective on information retrieval,
and graph and hypergraph theory, link analysis, linked data and graph-based mod-
els. Then, we surveyed entity-oriented search contributions that were a result of
these combining areas. We presented the motivation for consolidating models, il-
lustrating it with applications in other domains, like physics or machine learning,
motivating the graph as the ideal data structure to support such tasks. We then
instantiated this problem for the area of entity-oriented search, defining combined
data and identifying the retrieval tasks that we would tackle during our attempt at
building a generalized retrieval model.

Our state of the art survey required an organization that was non trivial, since our
work consisted of proposing a concept that was not yet a part of this community,
and it required the integration of knowledge from multiple domains, particularly
graph and hypergraph theory, unified models in information retrieval, random walk
based approaches, and test collections useful to assess a universal ranking function
over a common representation, requiring different topics and relevance judgements
for each of the supported tasks.

We relied on empirical research based on test collections, which is common prac-
tice in information retrieval, but we also devised a systematic approach for docu-
menting our work, based on a wiki system. In fact, at some point, we were required
to repeat multiple experiments, which we could only do thanks to the quality of
our documentation system. We also contributed with two large software applica-
tions. With ANT, we provided an entity-oriented search engine prototype for the
University of Porto, which has been running since 2015, serving the community
and reaching over 700 users per week since 2018, a number that grew to 1,600

weekly users following the COVID-19 quarantine. We also developed Army ANT,
a workbench for innovation in entity-oriented search and a platform to support the
research of general models in information retrieval. This code is open source and it
is freely available at GitHub, also providing several Docker images for an accessible
installation of the system.

We carried multiple graph-based experiments in the domain of information re-
trieval, as well as some in the domain of network science, in order to study node
ranking approaches and to develop novel hypergraph-based metrics to characterize
the data structure. We proposed two main retrieval models, graph-of-entity and
hypergraph-of-entity, the former representing the conceptual stage of the latter. We
described hypergraph-of-entity in detail, along with the random walk score ranking
function, characterizing the hypergraph, while proposing novel approaches for the
the analysis of this data structure. We carried several experiments, studying the
impact of diverse index extensions applied to the representation model, as well as
several parameterizations of the random walk score. We focused on first optimizing
for ad hoc document retrieval, and then we assessed the quality of the ad hoc entity
retrieval and entity list completion tasks.

In the end, we looked back at our work, documenting the structure of the exper-
imentation approach that we followed, and discussing the overall results per test
collection. We presented a reflection on the pillar concepts of information retrieval
and how their presence or absence impacted the hypergraph-of-entity. Finally, we
discussed the limitations of our model and, further along in this chapter, we pro-
pose future applications to extend and reinforce its generality.

11.2 final remarks
Whether it is possible to successfully generalize information retrieval tasks is per-
haps one of the most important questions that we opened with this thesis. Our
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proposal for a representation and retrieval model could be considered the first
case study for generalization in information retrieval, standing on three tasks from
entity-oriented search and relying on graph-based models.

We evaluated several aspects of the hypergraph-of-entity, providing basic statis-
tics about the hypergraph, studying rank stability for a nondeterministic ranking
function, and identifying the index extensions and parameter configurations that
achieved the best performance. In some cases, we were able to obtain MAP scores
comparable to Lucene TF-IDF, or even surpass BM25 when relying on keyword-
based document profiles. More importantly, we were able to capture and integrate
heterogeneous information from corpora and knowledge bases in a joint representa-
tion model that provides explicit semantics and extreme flexibility in the definition
of n-ary relations, such as synonyms and context, as well as the subsumption or hi-
erarchical relations. We showed that the hypergraph-of-entity is significantly more
efficient than the graph-of-entity in indexing time and that it can also be configured,
through parameter r, for faster search times albeit with a penalty in effectiveness.
One of the more evident limitations of the model is the lack of consideration for
document frequency and document length. Although verbosity is mitigated (term
repetitions are not considered), vocabulary diversity in long documents that cover
multiple topics is still a problem (a kind of pivoted document length normaliza-
tion is required). Despite its performance limitations, particularly when compared
to state-of-the-art approaches, hypergraph-based representations have the potential
to more naturally model our cognition process, unlocking increasingly intelligent
information retrieval systems as we study and approach the brain.

Our main goal was to propose and evaluate a graph-based general model for
entity-oriented search. Our focus was on whether we would be able to adequately
support three specific tasks: ad hoc document retrieval (leveraging entities), ad hoc
entity retrieval, and entity list completion. We compared the effectiveness of each
task over the hypergraph-of-entity, with the lowest ranking runs of participants in
the INEX 2009 and 2010 respective tasks. We found an overall lower performance,
that consistently scaled with state-of-the-art evaluation scores (i.e., tasks that had
generally higher scores, when compared with the remaining tasks, also had higher
scores in our model). However, for all the tested tasks, and according to MAP,
GMAP, NDCG@10 and P@10, we were able to outperform Lucene TF-IDF and BM25

when representing documents by their keyword-based profile, with the exception
of the entity list completion task based on P@10 and NDCG@10. This showed the
potential for an effective hypergraph-of-entity model capable of supporting retrieval
generalization. Despite its low overall performance, we have demonstrated that a
unified framework for entity-oriented search can be built, and we have opened
several new opportunities for contributions in improving the performance of the
hypergraph-of-entity, motivating the proposal of new hypergraph-based retrieval
models, or even the exploration of novel general retrieval models, while studying
the advantages of this new approach.

11.3 future work
In this section, we present several ideas for the future, both at a high-level of ab-
straction, and at a high-level of detail. We cover the representation model [§11.3.1],
the characterization of hypergraphs [§11.3.2], the random walk score [§11.3.3], and
even promote the generalization of the hypergraph-of-entity model based on new,
unexplored applications [§11.3.4].
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11.3.1 Representation model

There are several pending improvements over the hypergraph-of-entity, even re-
garding basic tasks, like exploring the ideal preprocessing pipeline. More impor-
tantly, future work should focus on alternative approaches to reduce the complexity
of the representation model, such as the document profiles based on keywords that
we proposed here. Can we automatically identify nodes or hyperedges that can be
removed? How would other keyword extraction algorithms work, or how would
other ratio values or even a fixed cutoff value perform to select the top keywords?
We would have liked to measure the impact of pruning nodes and hyperedges from
the hypergraph, independently for each type of node and hyperedge, as well as
based on different weight thresholds. Another alternative that we would have liked
to explore was based on pruning similar hyperedges (e.g., based on subhypergraph
similarities, which is in itself a complex task). The goal is to understand how much
we can improve efficiency until effectiveness begins to degrade. In the same line
of work, we would also like to explore alternative approaches for generating the
context similarity network that we relied upon, using different word embedding
strategies, as well as avoiding non-optimal algorithms, like k-nearest neighbors, to
obtain the top similar terms. An alternative would easily be the usage of pivots for
an approximated measurement of similarity [370].

Apart from reducing the model by pruning redundancies, we would, on the other
hand, like to extend it with synonyms for verbs, adjectives and adverbs, measuring
the impact in effectiveness, and understanding whether the usage of synsets for
nouns had been sufficient. Another interesting idea, that has been shown to im-
prove query understanding [293], is the usage of dependency parsing. It would be
interesting to extract term dependencies from the documents in a collection, build-
ing a dependency graph and integrating those relations into the hypergraph (like
we did for the word2vec similarity network). The idea is that it might indirectly im-
prove query understanding, even for simple keyword queries, and thus positively
impact the overall retrieval effectiveness. On the other hand, efficiency must be sig-
nificantly improved before being able to run such experiments at a medium/large
scale. Still regarding representation, we would like to better justify the usage of
entity nodes as opposed to entity hyperedges, which is the approach proposed by
Bendersky and Croft in their query hypergraph [14]. We would also like to revise
related_to hyperedges in order to better harness the information provided by triples
associated with a document, exploring other options beyond grouping by subject.

While we focused on improving the efficiency of graph-of-entity by defining a
new hypergraph-of-entity model, there are still scalability issues to be tackled. In
particular, we would like to asses how the model scales over different datasets, for
example the DBLP co-authorship network. We predict that, as the size of the col-
lection increases, efficiency problems will become more prominent and we think
this might also be mitigated by using different approaches to compute random
walks, namely based on fingerprinting, as described by Fogaras et al. [237] or
Chakrabarti [67].

Despite having identified the capacity for an hypergraph-based model to capture
subsumption and hierarchical relations, we have not assessed the impact of such
relations in retrieval effectiveness. This is something that could be explored in the
future. Regarding node and hyperedge weighting functions, there are still many op-
portunities to explore. We are interested in studying node and hyperedge weighting
functions, with the goal of finding uniformly distributed functions with a high dis-
criminative power. We have previously explored biased random walks with basic
weighting functions, but they were skewly distributed, which was actually harmful
to overall performance. Finding such weighting functions could also provide a way
to prune the hypergraph. Finally, it is also not clear whether weights can be learned
automatically, perhaps through micro machine learning models positioned in nodes
and hyperedges, or whether such weighting models should be dependent on the
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target domain or query intent. Furthermore, there are several approaches for tack-
ling tf_bin hyperedge weighting by deriving a value based on the term frequencies
of the hyperedge members.

11.3.2 Hypergraph characterization

Regarding hypergraph characterization, we would like to further explore the com-
putation of density, since the bipartite-graph-based density that we proposed, al-
though useful, only accounts for hyperedges already in the hypergraph. We would
also like to study the parameterization of the two estimation approaches that we
proposed for computing shortest distances and clustering coefficients, based on ran-
dom walks and node sampling, respectively. Another open challenge is the defini-
tion of a random hypergraph generation model, which would be useful to improve
characterization, as it would provide a way to compare the clustering coefficient
with that of an equivalent random hypergraph, perhaps identifying the existence
of a small-world equivalent for hypergraphs. Several opportunities also exist in
the study of the hypergraph at a mesoscale, be it identifying communities, network
motifs or graphlets, or exploring unique patterns to hypergraphs. Additionally, it
would be interesting to include centrality metrics in the correlation analysis, in order
to understand for instance whether closeness or betweenness might impact retrieval
effectiveness in the hypergraph-of-entity, while considering multiple combinations
of index extensions.

11.3.3 Random walk score

Random walks in a hypergraph [55] can be seen as a form of randomized sam-
pling of the structure of the hypergraph. The longer the random walk or the higher
the number of repeats, the better the ability to capture hypergraph structure. This
means that, assuming random walks do their job of correctly sampling structure,
the representation model will then be the fundamental indicator of retrieval effec-
tiveness, hence representation-driven retrieval.

The current ranking approach is based on simulating individual steps of the ran-
dom walk, but ideally this would be based on a Markov process over a matrix or
tensor representation of the general mixed hypergraph that is the foundation for
our model. We could then take advantage of the GPU for improving efficiency.
Nevertheless, there are several challenges in this front. Only recently has CERN
been studying algebraic approaches for representing general hypergraphs, using
adjacency tensors [115, 201]. However, our hypergraph is mixed (i.e., containing
both directed and undirected hyperedges), which has not yet been explored. Fur-
thermore, given the recency of this work, there are still no widespread tools for
working with these tensors.

Regarding the random walk score, which is nondeterministic, could we find a
parameter configuration, or a different approach, that always leads to convergence,
no matter the dataset? Or could we instead experiment with reranking algorithms,
such as learning to rank approaches? Would caching be sufficient? Could our
model compete with multi-task learning to provide rankings for the three different
tasks?

We should also further experiment with IDF, beyond the probabilistic IDF pro-
posed as the weighting function for term nodes in Section 7.4.1.4, instead modifying
the hypergraph-of-entity so that it structurally provides an analogy to IDF instead
of explicitly relying on a precomputed value that will require biased random walks,
which have been shown to delay retrieval. Furthermore, we should also consider
mitigating the issue with high cardinality document hyperedges, in analogy to the
issue with long documents, particular with a diverse vocabulary, that is classically
solved by pivoted document length normalization. One way to introduce a better
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analogy to the behavior of pivoted document length normalization could be, for
instance, the replacement of traversals through document hyperedges by traversals
through sentence hyperedges, therefore providing a natural method for normaliza-
tion by restructuring the representation model.

Hypergraph structure acts as a constraint for random walking — while random
walks in the Euclidean space can essentially take a step in any direction, in hyper-
graphs they are restricted to taking steps within the structure of the hypergraph.
The idea of fatigue that we explore here is simply an added restriction, similar to
the one we introduce when moving from the Euclidean space to a hypergraph space.
Regarding fatigued random walks, it would be interesting to reiterate over the com-
putation approach of Fatigued PageRank, exploring a more approximate analogy to
the combination of PageRank and Reverse PageRank, replacing the k∗ vector with
the Markov matrix used in Reverse PageRank and studying the differences. As-
suming we could represent hypergraph-of-entity as a tensor, we could also attempt
to introduce the concept of fatigue in the Multilinear PageRank, so that we could
completely rebuild the random walk score in its algebraic version, solvable through
power iteration or other available, more efficient methods of PageRank computation,
such as Monte Carlo (see Section A.2).

11.3.4 Promoting generalization through new applications

We proposed what is, to our knowledge, the first general model for information re-
trieval. While we explored multiple tasks from entity-oriented search, some of them
analogous to recommendation, there are many other information retrieval and infor-
mation filtering tasks, that might be solvable through our model, either with slight
or no changes at all. In this section, we briefly present some of these ideas, to moti-
vate the continued research of a model that truly solves general information needs.
We classify these applications into user-based [§11.3.4.1], query-based [§11.3.4.2]
and text-based [§11.3.4.3] tasks.

11.3.4.1 User-based tasks

Adding user nodes to the hypergraph would enable us to create hyperedges mod-
eling previous query terms, possibly in bins, like with did for TF-bins, so that we
could distinguish between terms and entities (i.e., the topics) that are of a particular
interest to a each user.

personalized search A user seed node or hyperedge, representing an authen-
ticated user, could be a part of the search process, where we could even control the
degree of personalization by boosting the weight of the user node and adjacent hy-
peredges, or the nodes in the user hyperedge, depending on the chosen modeling
approach.

expert search In analogy to expert search, users could search for people, either
based on similar interests, or with a search profile that could promote trust of that
individual as a potential expert at a given topic.

11.3.4.2 Query-based tasks

While user nodes and search profiles would work as a grouping of searched key-
words, we might explicitly define query hyperedges, storing the terms most fre-
quently co-occurring in queries.

query suggestion Query autocompletion could be supported on user profiles,
query hyperedges, or even the terms from the already indexed documents. Without
the cost of building an external data structure and a specialized approach for query
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suggestion, we might promptly rely on the hypergraph for this task, since it already
contains the required information.

query entity linking In the hypergraph-of-entity model that we propose in
this thesis, there is already a contained_in hyperedge that establishes relations be-
tween terms and entities, however, there is much to be done until a robust query
entity linking system can be implemented over the hypergraph. In particular, we
have not explored the links among the entities connected to a set of terms, which
are so frequently useful for disambiguation tasks. This remains to be explored.

11.3.4.3 Text-based tasks

There are also some text-based tasks that we envisioned might be possible to im-
plement with the hypergraph-of-entity. Some of them, however, relied on the idea
that the hypergraph would retain all terms along with the syntactic structure of the
sentences. This is an idea that was not viable to explore, due to the severe impact in
efficiency that the addition of sentence hyperedges had, as well as due to the incre-
ment in preprocessing time. However, a less structured version of such ideas might
still provide interesting results.

text summarization One of these ideas was generative summarization. With
sentences and their syntactic structure intact, we might be able to generate new sen-
tences from a given document or set of documents, in order to provide a summary
of a given subject or topic. Another possibility would be extractive summarization,
again due to the fact that the model would retain syntactic structure. However, in
its current implementation, in order for efficient search to be pursued, the solution
we adopted was to greatly reduce the size of the vocabulary. With this version we
might still be able to do keyword or topic extraction, based on small chains of terms
used in queries or small documents.

text augmentation We describe text augmentation as the general task of illus-
trating text through related external elements, such as entities. The idea is inspired
by text illustration work carried by researchers like Filipe Coelho [370], who relied
on image search using a full document or passage as a query.

entity description Given a particular entity, retrieve the documents that best
describe the context of this entity. This task should be straightforward to implement
in the current version of hypergraph-of-entity, however an evaluation framework
would be required to assess the quality of the results.

lexicon construction Given the abundance of terms, linked to entities and
their relations, it would be interesting to provide an automated lexicon construction
approach that could support information science experts in the task of building
domain-specific lexicons, through the indexing of relevant collections or through
the search of a relevant topic, perhaps implemented as a subhypergraph ranking
task.
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summary
The challenges in joint representation models and universal ranking functions are
immense. They pave the way for unified information retrieval, where a general
retrieval model might support tasks like search and recommendation, but also sub-
tasks like query expansion, and word sense or named entity disambiguation. In
this thesis, we have explored multiple different ideas, that we have integrated in the
domain of entity-oriented search, through graph-based models, to propose the first
general retrieval model over a joint representation model of corpora and knowledge
bases. The hypergraph-of-entity can solve multiple tasks based on a single model
and a universal ranking function. We have also paved the way with an immense list
of ideas for future work around the hypergraph-of-entity, hypergraph theory and
analysis, and the random walk score, also proposing several different applications
to further extend and generalize the hypergraph-of-entity to new tasks. It is our sin-
cere hope that this thesis will inspire a different way of thinking about information
retrieval, opening up the area to new scientific talent and pushing it forward in a
different way.
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A PA G E R A N K- B A S E D A P P R OA C H E S :
A C O M P O N E N T- A W A R E S U R V E Y

PageRank is a random walk based approach that was introduced in 1997 as Google’s
ranking algorithm. Since then, it has been studied and extended for multiple other
applications. From query-dependent ranking to community detection and image
ranking, PageRank has proven to be flexible, robust and useful in diverse contexts.
In this survey, we provide an overview on different types of PageRank applications,
covering several interpretations, components and calculation approaches that can be
tinkered with to manipulate and model PageRank-based approaches. We provide a
normalized notation, focusing on delivering out-of-the-box, power-iteration-ready
equations for each type of PageRank we cover. In many cases, we have rewritten the
original formulas to provide a vectorized alternative. This way, we aim to provide a
comprehensive guide to PageRank, that can be directly used by anyone with access
to a linear algebra framework.

When it was first introduced in 1997, PageRank [33] was already an elegant algo-
rithm for measuring the importance of a web page. Since then, we have come a long
way to the Multilinear PagerRank [114], developed for the “world of tensors”, with
multidimensional complexity in mind. At its core, present PageRank variations
are still quite similar to the original work by the creators of Google, Larry Page
and Sergey Brin. However, its components have now been properly dissected and
explored by the scientific community. Over time, PageRank was studied, decom-
posed and reassembled into morphed versions of itself. Different authors focused
on different aspects of PageRank, from the type of smoothing that was used, to
the introduction of combined similarities or weights, and the harnessing of per-
sonalization for different applications. For instance, PageRank was originally a
query-independent weight that took advantage of the web graph to improve text-
based search, but it has now been used as a query-dependent weighting approach
as well [371, 372]. It has even been explored in the recent field of entity-oriented
search [62], where it is frequently applied to entity ranking in knowledge graphs, be
it for the query-independent ranking of resources [66, 72, 235], for keyword-based
search [65, 67], for recommendation [238], or for class ranking [239].

PageRank is now over 20 years old and, despite its age, it’s still being studied.
Several research opportunities and challenges still exist, not only regarding appli-
cations, but also for delving deeper into weakly explored aspects, like the different
types of random walks — e.g., lazy random walks and random walks with back
step [373]. Furthermore, PageRank applications to hypergraphs are only just be-
ing proposed [374, 375] and novel approaches to entity-oriented search, relying on
random walks on hypergraphs [269], are also approaching PageRank.

In this work, we survey PageRank variations and applications, starting at the
original PageRank, that emerged in 1997, and ending with Multilinear PageRank,
proposed in 2015. The goal is to provide a comprehensive guide to aid the reader in
understanding the different types of available PageRanks, the components that can
be tinkered with (and how), as well as to provide a manual for directly computing
several different PageRank variations, based on power iteration. This should save
the reader of the effort of vectorizing some of the approaches, and of spending
a large amount of time sorting through the different notations used by different
authors.

The remainder of this document is organized as follows. In Section A.1, we
present an overview of surveys on random walks and PageRank, describing their
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structure and identifying their unique strengths. In Section A.2, we provide an
insight into different variations of PageRank, based on interpretations, compo-
nents, and calculation approaches. We group approaches into several categories,
including PageRank without hyperlinks (Section A.2.3), Dirichlet PageRank (Sec-
tions A.2.4 and A.2.5), topic-sensitive PageRank (Section A.2.6), weighted PageRank
(Section A.2.7) and tensor-based PageRank (Section A.2.8). In Section A.3, we pro-
pose an organization of PageRank modeling characteristics, providing a summary
table, where we identify these characteristics and present several highlights on
each PageRank variation. Finally, in Section A.4, we present some final remarks
on PageRank and our vision for the future.

a.1 random walks in graphs and pagerank
We present a compilation of relevant surveys on random walks in graphs, as well
as directly on PageRank. Lovasz [222] covers several aspects of random walks on
graphs, starting with basic notations and facts, like the probability of visiting a node
at a given time, the transition matrix representing a Markov chain, the rule of the
walk (i.e., how to take steps), as well as the concept of a stationary walk. He then
covers the main parameters of random walks and their properties, which includes:
access time or hitting time (number of expected hops required to reach a node, from
another given node) and commute time (the round-trip number of hops between two
nodes); cover time (expected time/iterations to reach every node); and mixing rate
(indicator of the number of convergence steps). They also discuss the connection
of random walks to the eigenvalue, covering for instance the fact that the largest
eigenvalue of a Markov matrix is one. They then cover the electrical connection,
focusing on the role of harmonic functions in random walks, and they delve into
further detail regarding the mixing rate. They conclude with a section on sampling
based on random walks, a topic that is also covered more recently by Leskovec and
Faloutsos [223].

Getoor and Diehl [148] compiled a survey on an area they called “link min-
ing”, covering several PageRank approaches on their link-based ranking section.
Berkhin [230] provides a survey on PageRank computing, covering the PageRank
formulation, as well as several acceleration approaches for faster convergence. In
particular, they cover extrapolation methods, the adaptive method where the al-
gorithm stops iterating over individual converged components, a block structure
approach that computes PageRank per blocks instead of individual nodes, an ap-
proach based on the directed acyclic graph structure of the web, where blocks are
formed based on strongly connected components (i.e., sets of nodes that can all
reach each other, respecting link direction). They also cover acceleration based
on spectral and equation solvers, viewing PageRank as a linear system, as well
as based on advanced numerical linear algebra methods. Finally, they also include
personalization and PageRank variations, including topic-sensitive PageRank, block
personalization, scaled personalization, and query-dependent PageRank. And they
cover other relevant issues like stopping criteria, and computing infrastructure.

Chung [228] provides a short and straightforward survey on PageRank, that
covers its definition, as well as several methods for approximation, including the
classical iterative method, but also the push algorithm, the sharp approximate
PageRank, and the random walk based approximation. She covers applications and
generalizations of PageRank, including local partitioning and the measurement of
node importance, as well as applications like disease spreading containment, trust-
based ranking, or gene identification. She also mentions other PageRank variations,
like the Kronecker PageRank for multi-attribute networks [376] or the heat kernel
PageRank [164], both valuable contributions by the survey’s author.

Gleich [155] provides perhaps the most complete survey of existing PageRank
variations and applications, covering the mathematics and construction of
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PageRank (the notation they use is quite clear and minimalist), its applications
and generalizations. Some of the PageRank variations that are uniquely covered in
this survey include Reverse PageRank, as well as applications like GeneRank, Cit-
eRank, AuthorRank, FactRank, and several others, which are detailed in-depth in
the manuscript.

In this survey, we provide a manual or guide to different types of PageRank,
with multiple interpretations, by focusing on their components and the many ways
the algorithm can be manipulated and altered. In order to facilitate experimentation
and usage, we focus on power iteration to compute PageRank, normalizing notation
across the literature and, when required, rewriting some of the iterative approaches
to fit this computation model. Our goal is to highlight the components that make
PageRank, as well as the variations introduced in the literature, in order to facilitate
the manipulation and adoption of this pervasive algorithm for custom applications.

a.2 more than one pagerank
PageRank is an extremely flexible node ranking algorithm, that can be used in mul-
tiple different applications. From the role of query-independent feature to improve
search, to a way of measuring trust in a network of pre-identified trusted and un-
trusted sources, or even to compute image similarity, its versatility can be attributed
to its many interpretations, components, and calculation approaches.

The Markov matrix used to compute PageRank through power iteration can have
different interpretations, depending on the underlying context of application and
approach:

• Graph-based – a graph can be represented by its adjacency matrix A, which
can then be column-normalized, filling zero-columns with a uniform proba-
bility, and obtaining the Markov matrix M (e.g., this can be applied to the web
graph);

• Similarity-based – similarities between all combinations of pairs or entities
can be represented as a square matrix, which can then be normalized and
used as a Markov matrix (e.g., relying on the topic-based similarity between
two web pages, instead of using the transition probability based on the hyper-
links);

• Probabilistic – at the core of Markov processes, we directly work with prob-
abilities, without the need for an underlying graph or similarity matrix (e.g.,
considering the prior probability of query terms, the probability of a random
surfer jumping to a page given the query term, and the probability of navigat-
ing to an adjacent page).

Furthermore, we can also look at PageRank based on its components, be it the
Markov matrix and its interpretation, that we previously described, the teleporta-
tion vector, or the way both are combined:

• Markov matrix weights – the normalized adjacency matrix weights, represent-
ing a graph, can be replaced by any probability — or normalized similarity —
as long as the matrix remains stochastic (there are, however, obvious compu-
tational advantages to keeping the matrix sparse);

• History – traditionally, only the previous state (e.g., the preceding web page)
is used for computation, however we can consider a larger amount of past
states by modeling them as composite states, reducing a higher-order Markov
chain to a first-order Markov chain, or by defining a tensor-based PageRank
where each added dimension increases the length of the path to be stored (e.g.,
Multilinear PageRank).
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• Smoothing – traditionally, PageRank relies on a fixed-coefficient interpolation
method (or Jelinek-Mercer smoothing), which is a component that can be eas-
ily replaced (e.g., Dirichlet smoothing, weighted average);

• Personalization – the original PageRank by Page and Brin [113] relied on
a uniform teleport probability, but the authors also proposed personalization,
where teleport probability would be based on a prior node importance instead
(e.g., applicable to personal search);

An advantage of PageRank, in part due to its multiple contexts of application and
interpretations, is the fact that it can also be calculated based on different computa-
tion approaches:

• Iterative – starting from a uniform probability per node as the initial value of
PageRank, iterative updates are done over each node’s PageRank, based on
its neighbor PageRanks, until convergence (too slow for most applications);

• Algebraic – finds the exact solution to PageRank through linear algebra, but
it is highly demanding in computational resources, since it must compute the
inverse of a dense matrix (rarely or never used in practice);

• Power iteration – finds an approximate solution to PageRank by combining
the navigation term and the teleportation term into a Markov matrix, which
iteratively multiplied over the PageRank vector, starting from a uniform prob-
ability (the most frequent approach, reportedly used by Google);

• Gaussian elimination – looks at PageRank as a system of linear equations
where each variable is the PageRank for a node (used by igraph1 to signifi-
cantly improve efficiency, when compared to their prior power iteration im-
plementation);

• Monte Carlo – rapidly approximates PageRank based on repeated random
samples from the PageRank distribution (i.e., it simulates a series of random
walks over the underlying graph, with teleport) — in some cases, a good
approximation of PageRank can be determined with only one iteration [154].

In this section, we provide an overview on PageRank variations, covering the
previously listed items. We focused on providing ready-to-use formulas, based on
power iteration, for each type of PageRank that we cover. This required, in some
cases, that the formula was rewritten or vectorized, also modifying the notation so
that it was consistent over the whole manuscript. We used verbose, but clear and
widely adopted variables, prioritizing graph theory and then information retrieval
notation, when possible. Table A.1 provides a commented overview on the symbols
that we used in the survey.

a.2.1 PageRank (the original)

PageRank is modeled after a random web surfer. The idea is that visiting pages
in the web can either be done by clicking on a random link from the current page
(navigation) or by randomly jumping to a new page (teleportation). Teleportation
frequently happens when reaching a sink or when stuck on a cycle in the web graph,
meaning no new information is reached and the surfer eventually gets “bored”. For
applications to the web graph, the probability of navigation is usually defined as
0.85, while the probability of teleportation is usually defined as 0.15. These comple-
mentary probabilities are set by a damping factor d. The damping factor is used
for the Jelinek-Mercer smoothing (interpolation) of the two probability distributions
— d for following a link and (1− d) for jumping to another page. The PageRank

1 See the old attribute in: https://igraph.org/r/doc/page_rank.html.
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Table A.1: Notation used throughout the survey.

Notation Description

pr PageRank of a node i. In order to distinguish between different PageRank
variations, we also use other notation in a similar manner (e.g., dpr, qdpr).

PR PageRank vector for all nodes. In order to distinguish between different
PageRank variations, we also use other notation in a similar manner (e.g., TSPR,
FAPR).

d Damping factor. It always represents the probability of navigation (i.e., of fol-
lowing a link as opposed to jumping to a random node). We sometimes also
use α, β and γ either when d is not enough (e.g., three weights are used) or
when the semantics of d is different despite having a similar application (e.g.,
sometimes we use β = 1− d).

M Transition matrix without teleport. Usually obtained by normalizing the
columns of a graph adjacency matrix, after replacing empty columns by 1.

M̂ Transition matrix with teleport (or similar factors; e.g. FolkRank considers
users, tags and resources, instead of following a hyperlink or jumping to a new
page in the web).

A Adjacency matrix of a graph. Binary matrix, with ones in each column position
i, representing links from node j (columns) to node i (rows).

D Degree matrix. Usually applied as its inverse D−1 or its element-wise square
root D1/2. Since D is a diagonal matrix, the element-wise square-root is equiv-
alent to the square-root of the matrix. However, when using D−1/2, only the
diagonal is affected, otherwise the remaining elements would result in∞.

Jn,m Matrix of ones with n rows and m columns. If only n is provided, the matrix
is square.

In Identity matrix of size n. This matrix is always square and has all ones in the
diagonal and zeros in the remaining positions.

|V | Number of vertices. It corresponds to the number of nodes in the input graph.
In some cases, there is no underlying graph, but there is still an M matrix
(usually square) that can be represented as a graph and whose size corresponds
to |V |.

deg+(j) Outdegree of node j. The number of outgoing nodes/edges departing from j.

N+(j) Outgoing neighbors departing from j.

N−(j) Incoming neighbors arriving at j.

equation that the community is familiar with is only presented in the 1998 article
describing Google [151]. In this article, there is a known error where (1− d) should
have been multiplied by the uniform probability 1

|V |
of jumping to any page in the

web graph. Here, |V | represents the number of vertices in the unweighted directed
web graph G = (V ,E), as the number of documents (pages) in the collection (the
web). The corrected version is shown in Equation A.1, highlighting the missing
factor in bold and normalizing for a consistent notation across the survey. The in-
coming neighbors of a vertex i are given by N−(i) and the outdegree of a vertex j is
given by deg+(j), where the minus sign is used for incoming relations and the plus
sign is used for outgoing relations.

pr(i) =
(1− d)

|V|
+ d

∑
j∈N−(i)

pr(j)

deg+(j)
(A.1)

Equation A.1 can also be vectorized, as shown in Equation A.2, in order to di-
rectly compute the PageRank vector PR for all vertices. The column vector of ones
with |V | columns is represented by J|V |,1, the square matrix of ones of size |V | is rep-
resented by J|V | and M is the Markov matrix representing the column-normalized
adjacency matrix A of graph G, assuming that columns model outgoing edges —
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this is not always the convention, but it is useful in order to avoid the needless use
of transposition, for instance in Markov matrices.

PR =
1− d

|V |
· J|V |,1 + dM · PR (A.2)

Equation A.2 can also be rewritten as Equation A.3, where M̂ is also a Markov
matrix, making PageRank solvable through power iteration — starting with a ran-
dom probability vector PR (i.e., where L1-norm must be 1), repeat the first part of
Equation A.3 until convergence, usually measured through the L2-norm of the dif-
ference between the PR vector at iterations t+ 1 and t. Notice that in Equation A.3
we effectively multiply the teleportation term of PageRank by PR, which we did
not in Equation A.2. However, both equations are equivalent simply because, when
multiplied by a probability vector, a matrix of ones J|V | is a vector of ones J|V |,1.

PR = M̂ · PR

M̂ =
1− d

|V |
· J|V | + dM

(A.3)

Curiously, the main article about PageRank [113] presents a slightly different
version, shown in Equation A.4, where instead of Jelinek-Mercer smoothing, a mul-
tiplication by a variable d with different semantics is used — we replace d by β,
since it acts more as the factor equivalent to the complement of d in Equation A.1.
Here β is still in the interval [0, 1], however it is dynamically computed at each it-
eration based on the difference in L1-norm between the current and next PageRank
vectors, at this point without considering teleportation. Then, while still at the cur-
rent iteration, β is multiplied by E, a uniform probability vector of 1

|V |
, and added

to the partial PageRank that had been computed based only on the probabilities
of following links. The algorithm is usually initialized with a random probability
vector P and stops when convergence is achieved by minimizing δ based on a pre-
established ε (e.g., 0.001). The same convergence-control strategy is also used in
power iteration, described in Equation A.3, based on the L2-norm instead of the
L1-norm.

PR0 ← P

loop :

PRt+1 ←M · PRt
β← ||PRt||1 − ||PRt+1||1

PRt+1 ← PRt+1 +βE

δ← ||PRt+1 − PRt||1

while δ > ε

(A.4)

In their 1998 technical report [113], Page et al. also explored the various applica-
tions of PageRank:

• Web search — for improving results of underspecified queries;

• Traffic estimation — where important web pages, that receive links anywhere
from multiple low importance web pages to a small number of important web
pages, are more likely to drive traffic;

• Backlink prediction — for instance for priority crawling in order of impor-
tance;

• User navigation — for informing about page importance prior to clicking;

• Competitor analysis — for identifying the top backlinks of competing web
sites and any missing link potential.
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a.2.2 Personalized PageRank

The concept of personalization was also introduced by Page et al. [113], simply by
assigning a non-uniform teleportation probability to each vertex. For Equation A.1
this means replacing 1

|V |
with a personalized weight for page i that depends on

the particular user’s preferences (e.g., the visitation frequency of the user). For
Equation A.4, this means replacing vector E with a non-uniform vector (the per-
sonalization vector), which can be a single-page E, where all personalized weights
except one are zero, or a root-level E which only allows teleportation to web site
main pages. While personalization in PageRank is frequently achieved through the
manipulation of node weights in the teleportation term, there have also been ap-
plications based on the manipulation of edge weights in the navigation term [377,
378].

Personalization is a particularly useful characteristic of PageRank and, as such,
personalized PageRank has been researched for diverse applications. Avrachenkov
et al. [379] proposed Monte Carlo methods for the fast detection of top-k person-
alized PageRank lists for named entity disambiguation. Pathak et al. [380] pro-
posed an indexing strategy based on the precomputation of personalized PageRank
vectors for a selection of hub nodes, in order to provide real-time personalized
PageRank computations. Iván and Grolmusz [381] applied it to the study of protein-
protein interaction networks. Avron and Horesh [382] used it for community detec-
tion, while proposing a time-dependent generalization that could also be config-
ured to compute the heat kernel diffusion vector [164]. Lahoti et al. [383] used
the personalized PageRank over an endorsement graph, built using crowd-sourced
Twitter lists, to find experts for a given topic query — topics were expressed as la-
bels of the endorsement graph. Musto et al. [238] used personalized PageRank for
semantically-aware recommendations based on a tripartite user-item-entity graph —
they mapped items into DBpedia entities and extended the graph based on triples
associated with the item entity. Anil et al. [384] used personalized PageRank to
predict terrorist attacks based on a heterogeneous network — used to model multi-
ple dimensions, such as location, time, target type or organization, while assigning
each of them a prior importance.

So far we have shown that PageRank is an elegant metric, that can be modeled as
a Markov process, solved using different approaches, and even personalized with
little effort for diverse applications. Next, we move further away from the original
PageRank and explore other innovations based on this metric.

a.2.3 PageRank without hyperlinks

PageRank is, at its genesis, a graph-based metric, but it also a probabilistic metric.
As such, it can be used despite the existence of an explicit graph, as long as there are
underlying dependencies to be modeled. Kurland and Lee [261] applied the idea
of PageRank to the reranking of documents — obtained through an initial retrieval
algorithm, for a given query. They established links to the nearest-neighbor docu-
ments, based on the language models obtained from each document. Specifically,
they selected the top generator documents according to the Kullback-Leibler diver-
gence between the language models of the source and target documents. They then
proposed and evaluated several centrality metrics for structural reranking, with
and without the recursive property of PageRank, and based on the unweighted and
weighted versions of the generation graph. They found that structural reranking
represented an improvement over the initial ranking and that the weighted graph
based on Kullback-Leibler divergences for the top similar documents was a superior
option to the unweighted graph.

Jing and Baluja [97] have also proposed VisualRank, a PageRank-inspired ap-
proach for image search. As opposed to using hyperlinks, VisualRank is instead
based on the similarity matrix computed over all images, retrieved for a given key-
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word query. Similarity is calculated based on the number of shared local features
over the average number of interest points. The result is a Markov matrix that can
be used to compute PageRank for instance through the power method.

a.2.4 Dirichlet PageRank (PageRank with hub bias)

The original PageRank uses Jelinek-Mercer smoothing to combine the probability
distribution of following a link with the probability distribution of randomly jump-
ing to another page. Wang et al. [158, 385] explored another type of smoothing,
called Dirichlet smoothing, as an alternative, thus proposing a Dirichlet PageRank
(or DirichletRank). Their idea was that the outgoing links of hubs should have
a higher probability of being followed and, as such, the probability of randomly
jumping to a page should not be uniform, but dependent on the number of out-
going links — an indicator of a good hub. Another way to look at it is that the
random walk should be biased towards visiting authorities (i.e., with strong links
from hubs), as well as more likely to restart from hubs, since this more closely re-
sembles the expected surfer behavior — it’s more probable for the surfer to restart
from a good source node to increase the available paths to take.

The authors also identified a zero-one gap problem with the original PagerRank
that can be solved in an elegant manner using Dirichlet smoothing. In PageRank,
when we reach a sink, the probability of randomly jumping to another page be-
comes one, but, as soon as there is a single outgoing link, this probability immedi-
ately drops to β = (1− d), the complement of the damping factor1, usually set to
β = 0.15 (or d = 0.85).

Equation A.5 shows the formula for the DirichletRank2 using Dirichlet smooth-
ing based on the number of outgoing links of a page — the idea was inspired by
smoothing in language models, where the length of the document is used in a simi-
lar manner. Consider ω as the vector of smoothing factors, diag(ω) as the function
that generates the diagonal matrix from vector ω, J|V | the square matrix of ones
with size |V |, and I|V | the identity matrix of size |V |.

DR = M̂ ·DR

M̂ =

[
diag(ω) · 1

|V |
J|V | +

(
I|V | − diag(ω)

)
·MT

]T
ω =

[
ω1, . . . ,ωj, . . . ,ω|V |

]
ωj =

µ

deg+(j) + µ

(A.5)

The applied Dirichlet smoothing can be compared to Jelinek-Mercer smoothing
if β were to be variable and dependent on the outdegree of an incoming neigh-
bor j. This would essentially mean that βj = ωj and our damping factor — the
complement of β — is dynamic instead of static. The µ parameter in ωj can, for
example, be set to the mean number of outgoing links (i.e., the average outdegree),
thus assigning a ωj = 0.5 weight to nodes with an average outdegree, and a weight
of one to sink nodes (which always results in teleportation), with the weight for
deg+(j) > µ resulting in ωj < 0.5 and vice-versa (see Zhai and Lafferty [386] for an
example in information retrieval based on document length |d| instead of deg+(j)).

1 The authors use λ to refer to the complement of the damping factor, however we opted to use β, which
is more commonly used in language models from information retrieval.

2 Notice that calculations were made more explicit (e.g., using the identity matrix I|V |), and matrices were
transposed to match our column-stochastic M and reordered for consistency with previous PageRank
equations in the survey.
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a.2.5 Dirichlet PageRank (for trust-based ranking)

Another type of Dirichlet PageRank, now based on a Dirichlet boundary condition
and unrelated to Dirichlet smoothing, has also been proposed as a necessary tool for
ranking based on trust and distrust [387, 388]. Chung et al. proposed that a ranking
algorithm that took into account a subset S of nodes in a graph was required for
the development of trust-based ranking algorithms. They also proposed several
applications of Dirichlet PageRank, including the computation of PageRank over a
graph of negative links or the computation of PageRank taking into account a set
of trusted friends in a social network.

dpr(v) =

{
β ev + (1−β)

∑
u∈V dpr(u)Wu,v if v ∈ S

σv otherwise

W =
1

2

(
I|V | +D

−1 ·A
) (A.6)

Equation A.6 shows how to calculate the Dirichlet PageRank. Consider β = 1−d,
the teleport probability vector e, with ev being the respective teleport probability
for vertex v (e.g., 1

|V |
, if e is uniform), the lazy transition probability matrix W,

computed based on the identity matrix I|V | of size |V |, the inverse of the degree
matrix D−1 and the binary adjacency matrix A for an undirected graph, and the
boundary conditions vector σ, usually quantifying trust (positive value) or distrust
(negative value).

a.2.6 Topic-sensitive PageRank

Haveliwala [156, 389] proposed a contextual PageRank, based on a predefined set of
topics — they used the 16 top-level of the Open Directory Project1 — where context
is given by the terms in pages containing the query terms. A PageRank score is
precomputed for each topic j, based on a personalized probability vector Ej for
teleportation — each column j of E is a uniform probability vector for a topic. For
each vector Ej, the author uses 1

|Tj|
according to the number of pages |Tj| about topic

j, instead of a fixed 1
|V |

probability. When issued, queries are classified, obtaining a
distribution w over the available topics — this determines the contribution of each
topic to the query, which is then multiplied by the teleportation probability matrix
E and used for personalization.

TSPR = M̂ · TSPR
M̂ = β diag(E ·w) · J|V | + (1−β) M

(A.7)

As illustrated in Equation A.7, the topic-sensitive PageRank can be calculated using
the original PageRank equation, if the weighted teleportation probability vector
E ·w is provided as the personalization vector — the result is a simple weighted
average of the teleportation probability matrix E, according to the topic distribution,
probability vector w, over the query.

There has been more work on the topic-sensitive PageRank, namely regarding
its usefulness, improvements for better query sensitivity and the combination with
content similarity metrics. Al-Saffar and Heileman [390] compared the top ranking
pages for several combinations and variations of the global PageRank (the origi-
nal), the topic-sensitive PageRank and the personalized PageRank. The goal was
to determine whether these metrics were independently useful for varying levels of
personalization. While they found some overlap between the top ranked pages, in-
dicating that the global PageRank might be used as a starting point to compute the

1 http://odp.org
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personalized or topic-sensitive versions, the fraction of common pages was still low,
particularly for higher personalization levels, thus justifying the usefulness of the
different metrics. Hatakenaka and Miura [371] proposed a topic-driven PageRank,
as a better query-sensitive alternative to topic-sensitive PageRank. Their approach
supports multiple topics per document and is applicable to documents without
links through the creation of a graph based on content and topic similarity. They
also normalized PageRank taking into account the possibly unbalanced number of
documents per topic. Document ranking, for a given topic and query, can then
calculated as described in Equation A.8.

score(d,q) =
n∑
j=1

Tjd · PR ′jd ·Qjq (A.8)

In this equation, Tjd represents the topic similarity between topic j and document
d, PR ′jd represents the “balanced” PageRank for topic j and document d, and Qjq
represents the similarity between topic j and query q based on the word distribu-
tion of all documents in topic j. The major difference between topic-driven and
topic-sensitive PageRank is that now the probability vector for a topic is not uni-
form, and both topics and queries must surpass a given threshold of similarity with
the topic, otherwise they won’t contribute to the score — this excludes less relevant
documents and reduces topic drift. Rezvani and Hashemi [391] combined the topic-
sensitive PageRank with content similarity metrics like the cosine similarity and
the Jaccard index, experimenting with different query classifiers — naive Bayes and
maximum entropy. Equation A.9 illustrates the main idea behind their proposal,
showing how they calculate PageRank for a given topic T , represented by its docu-
ments, considering the similarity SimT (·, ·) between pages from topic T . Consider
N−(·) and N+(·) as the set of incoming and outgoing pages, respectively.

SimPRT (i) =
1−d

|T |

+d
∑

j∈N−(i)

SimPRT (j)
SimT (j, i)∑

k∈N+(j) SimT (j,k)

(A.9)

Notice that the PageRank of incoming pages is now distributed according to the
normalized similarity over all their outgoing links instead of using the outdegree as
is customary. They obtained the best results for the topic-sensitive PageRank when
using the cosine similarity metric and naive Bayes to classify queries. Richardson
and Domingos [372] have also proposed a query-dependent PageRank based on
the directed (or intelligent) surfer model, where a surfer is more likely to follow a
link that leads to a page related to the issued query. Equation A.10 illustrates the
calculation of the query-dependent PageRank for a query Q with multiple terms q.

qdprQ(i) =
∑
q∈Q

P(q) qdprq(j)

qdprq(i) = (1− d) P ′q(i) + d
∑

j∈N−(i)

qdprq(j) Pq(j→ i)
(A.10)

P(q) represents the prior probability of a query term — i.e., the probability that a
term q appears in queries. P ′q(i) represents the probability of a surfer randomly
jumping to a page i given the query term q — this can be for instance calculated
as the TF-IDF for page i and query q, normalized by the sum of all TF-IDF for
all pages. Pq(j → i) represents the transition probability from page j (one of the
incoming neighbors N−(i) of i) to page i, based on the relevance to the query —
this can be for instance calculated as the TF-IDF for page i and query q, normalized
over all TF-IDF of outgoing neighbors of j. This represents a similar, albeit more
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general approach, when compared to the one proposed by Rezvani and Hashemi
in Equation A.9.

Finally, another case of topic-sensitive PageRank, called FolkRank, was proposed
by Hotho et al. [392], over a 3-uniform undirected hypergraph for users, tags and
resources, representing a folksonomy. The hypergraph was converted into a tripar-
tite weighed undirected graph and PageRank was adapted to be computed over
this graph, taking into account its weights and the principle that “a resource which
is tagged with important tags by important users becomes important itself”. Equa-
tion A.11 shows the calculation of the folksonomy-adapted PageRank for a transi-
tion matrix M and a uniform personalization vector e. As opposed to the original
PageRank, there are three weights that sum to one — α regulates the speed of con-
vergence, β controls the probability of randomly following a link and γ controls the
probability of jumping to another vertex.

FAPR = αFAPR+βMT · FAPR+ γe (A.11)

Building on the folksonomy-adapted PageRank (FAPR), the authors proposed
FolkRank, where the personalization vector e of user preferences over other users,
certain tags or particular resources was used to determine the topic. Then, an FAPR0
was calculated for β = 1 (i.e., solely based on tripartite user-tag-resource relations)
and an FAPR1 was calculated for β < 1 (i.e., also considering user preferences). The
final score assigned to a vertex was based on the difference between the two scores
FAPR1 − FAPR0.

a.2.7 Weighted PageRank

Dimitrov et al. [157] studied the network of transitions in Wikipedia, based on the
actual number of visits from page i to page j— obtained through the merge of a link
graph, built from a Wikipedia dump1, and data from the Wikipedia Clickstream2.
Their goal was to understand which features made a link successful (i.e., generate
a high number of transitions). With that in mind, they studied network features
(degree, PageRank, coreness3), semantic similarity features (textual and topical sim-
ilarities) and visual features (area of page containing the link, and screen display
coordinates of the link). Using descriptive statistics on boolean features (e.g., tar-
get degree < source degree) and a mixed-effects hurdle model, they found that: (1)
there is a preference to move towards lower degree pages (i.e., the periphery of the
network); (2) navigation to semantically similar articles is more prominent; and (3)
there are more clicks on the top and left of the page, while navbox links, at the bot-
tom of the page, are infrequently clicked. Through the integration of these features
into Markov models they were able to propose a weighted PageRank where the
Markov matrix represented a normalized matrix for a given feature or combination
of features, generally describing the target vertex (e.g., 1√corenessj

, for a target vertex
j). Equation A.12 shows how the weighted PageRank is computed, considering a
features matrix with elements fi,j that, after normalization, assumes the role of a
Markov matrix — notice the resemblence with Equation A.9, where the similarity
SimT (·, ·) could be seen as yet another feature.

wpr(i) =
1− d

|V |
+ d

∑
j∈N−(i)

wpr(j)
fj,i∑

k∈N+(j) fj,k
(A.12)

1 https://archive.org/details/enwiki-20150304
2 https://figshare.com/articles/Wikipedia_Clickstream/1305770
3 The authors use the k-core designation to refer to the coreness of a vertex v, that is, the maximum k

over all k-cores v belongs to.
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Their best results for the weighted PageRank were obtained based on the coreness
and visual features — the Spearman rank correlation to the indegree (sum of incom-
ing transitions) was highest for these features.

a.2.8 Multilinear PageRank

Gleich et al. [114] have generalized PageRank to higher-order Markov chains, using
transition tensors to model historical information. For example, for a second-order
Markov chain, a transition tensor of three dimensions would model the probability
of visiting a vertex, given the previous two visited vertices. In order to compute
their proposed multilinear PageRank, they took advantage of tensor flattening and
the Kronecker product of the PageRank vector. Tensor flattening was used to con-
vert a tensor of arbitrary dimension to an analogous matrix. Flattening can happen
over any dimension of the tensor, but for multilinear PageRank it was done over
the first dimension — for example, an n× n× n tensor would result in an n× n2
matrix R of the horizontal concatenation of each of the n matrices that formed the
third dimension of the tensor. This can also be seen as the process of reducing the
higher-order Markov chain to a first-order Markov chain, thus ensuring it still re-
spects the Markov property. The Markov property says that a future state can only
depend on the present state (i.e., it is memoryless) — R can be seen as a matrix
where rows are target vertices and columns are source sequences of vertices, each
forming a composite, but single state. After calculating R, the Kronecker product
was used to generate an extended PageRank vector, which was then multiplied by
the flattened tensor — the result of the multiplication thus generates a vector of size
|V |, while considering additional historical information. Equation A.13 shows the
calculation of the multilinear PageRank and provides an intuition as to compute it
using power iteration — it also serves to illustrate how we can generalize the power
iteration to tensors; here, for m = 2 dimensions, we fallback to the traditional transi-
tion matrix (i.e., R = M) with only be one term in the Kronecker product, resulting
in the same equation as the original PageRank (Equation A.2).

MLPR =
1− d

|V |
J|V |,1 + d R · (MLPR⊗ . . .⊗MLPR︸ ︷︷ ︸

m−1 terms

) (A.13)

The authors also delved into other alternatives, besides power iteration, for ap-
proximating PageRank and, more importantly, they warned that a unique solution
for an order m PageRank only exists for d < 1

m−1 , which isn’t a restriction of the
original, first-order PageRank. The condition for uniqueness was then further stud-
ied by Li et al. [393], showing that a sharper bound exists than the one proposed
by Gleich et al. [114] — i.e., a more relaxed condition can be used. Meini and
Poloni [394] further analyzed multilinear PageRank, improving the theoretical un-
derstanding of this equation and its solutions, and proposing a numerical approach
that was able to solve multilinear PageRank for d ≈ 1.

Other loosely related work that deserves a mention includes vertex-reinforced
random walks [395] and the spacey random walk [396], which are at the base of
multilinear PageRank, as well as tensor spectral clustering [397], for partitioning
higher-order network structures such as triangles, and tensor factorization, for pre-
dicting user trails [398], both modeled as higher-order Markov chains. For more
details on useful mathematical tools, we also recommend Golub and Van Loan [399]
for general matrix computations, Manning et al. [77, Ch.8] for understanding low-
rank matrix approximations, Dayar [400] for learning about the relation between
Markov chains and the Kronecker product, and Wu and Chu [401] for more infor-
mation on higher-order Markov chains, tensors and the power iteration.
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Data Source

World Wide Web

● Hyperlinks
● Features

RDF

Nearest neighbors

● Content similarity
● Language models

Components

Personalization

● User
● Topic
● Query

Smoothing

● Jelinek-Mercer
● Dirichlet
● Weighted average

Context

Markov chain order

● First-order (matrix)
● Higher-order (tensor)

Application

● Importance measurement
● Trust measurement
● Search
● Recommendation

Figure A.1: PageRank modeling characteristics.

a.3 discussion
We have provided an overview on PageRank algorithms, while attempting to use a
consistent notation for an easier reference. We started from the original PageRank,
that surfaced in 1997, reaching the Multilinear PageRank in 2015, a generaliza-
tion for higher-order dependencies represented as tensors. Based on the surveyed
PageRank variants, we also propose, as shown in Figure A.1, several modeling char-
acteristics to help organize the different applications and approaches to PageRank.
In particular, we considered the data source, the context (Markov chain order
and application), and the components (type of personalization and smoothing ap-
proach). In regard to the data source, we considered the world wide web, RDF,
and nearest neighbor approaches based on content similarity or language models.
We considered the context, identifying the Markov chain order, which we classi-
fied either as first-order or higher-order1. We also identify several applications,
considering the measurement of importance (same as the classical PageRank), the
measurement of trust, and direct applications for search or recommendation. Re-
garding components, we identified personalization, considering three types: user-
based, topic-based and query-based. We also identified smoothing, considering
simple linear combinations based on Jelinek-Mercer and the weighted average, as
well as non-linear combinations based on Dirichlet smoothing. In Table A.2, we pro-
vide an overview of the surveyed PageRank variants, identifying relevant modeling
characteristics. PageRank can be used to rank nodes on a web graph or images on
a similarity graph. It can be personalized according to the topics of documents and
the issued queries, but it can also be personalized based on user interest. PageRank
can be weighted or take into account higher-order dependencies, but it always repre-
sents a stationary distribution of a Markov chain, where importance is redistributed
until the system becomes stable and further redistribution does not change the out-
come.

a.4 final remarks
We have presented an overview on several types of PageRank in an organized man-
ner. We focused on providing utility for an easy selection of which variation of
PageRank to use for a particular problem, as well as on identifying the components
that can be replaced or modified for custom applications of PageRank. We also

1 Higher-order dependencies are able to account for historical evidence (e.g., paths of length ` > 1),
apparently violating the Markov property (i.e., present states depends only on past states). However,
past states can be represented as composed states (e.g., ab→c instead of a→b→c) with an associated
overall probability. This strategy ensures that the Markov property is not broken.
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listed the different approaches to solving PageRank, as well as its multiple interpre-
tations in graph theory, probability theory, or a similarity-based context.

Despite its age already surpassing 20 years, PageRank is still a noteworthy al-
gorithm, not only for its elegance, but also for its flexibility due to its multiple
interpretations and component-wise variations. At its core, it models a random
walk, where there is both a probability of following a neighboring link, but also a
probability of jumping to a random node in the graph. The Markov chain does not
require an underlying graph, but this is what make PageRank both graph-based
and probabilistic.

a.5 challenges and ideas for the future
Challenges for the future include the continued exploration and development of
PageRank algorithms for other types of graphs, such as special cases like bipartite
or tripartite graphs, as well as analogous higher-order data structures like hyper-
graphs. Another opportunity the might arise in time is the exploration of quantum
PageRank approaches that would rely on quantum walks [402, 403], instead of
random walks, in graphs. A generalization of the previous problem would also
include an in-depth study of the impact that the choice of random walk would have
on PageRank.

Table A.2: Summary of PageRank variations and their modeling characteristics.

Variation Modeling characteristics Highlights

PageRank [33, 113,
151]

Data source:
• World Wide Web→ Hyperlinks
Context:
• Markov chain order→ First-order
• Application→ Search
Components:
• Personalization→ User
• Smoothing→ Jelinek-Mercer

• The original PageRank first appeared in 1997 [33].
• Random surfer model.
• Uses teleport as a sort of regularization.
• To avoid sinks and cycles.
• Widely known formula is in Brin and Page [151].
• Original paper was missing the 1

|V|
probability.

• Dynamic computation of d in Page et al. [113].
• Describes Google at its prototype stage.

PageRank without
hyperlinks [261]

Data source:
• Nearest Neighbors→ Language Models
Context:
• Markov chain order→ First-order
• Application→ Search (Reranking)
Components:
• Smoothing→ Jelinek-Mercer

• Used for reranking.
• Uses language models per document.
• To create a graph of nearest-neighbors.
• Measured using Kullback-Leibler divergence.
• And either weighted according to the posterior.
• Or unweighted.

VisualRank [97]

Data source:
• Nearest Neighbors→ Content Similarity
Context:
• Markov chain order→ First-order
• Application→ Search (Image)
Components:
• Smoothing→ Jelinek-Mercer

• Used for reranking.
• Based on results for a keyword query.
• Builds a similarity graph.
• Based on image features.
• Number of shared local features.
• Over the average number of interest points.

Dirichlet
PageRank [158, 385]
(Hub Bias)

Data source:
• World Wide Web→ Hyperlinks
Context:
• Markov chain order→ First-order
• Application→ Importance Measurement
Components:
• Smoothing→ Dirichlet

• Uses Dirichlet smoothing.
• Instead of Jelinek-Mercer.
• Based on the outdegree of incoming vertices.
• Analogous to document length in language models.

Dirichlet
PageRank [387, 388]
(Trust Based)

Context:
• Application→ Trust Measurement
Components:
• Smoothing→ Jelinek-Mercer

• Computed over a subset of vertices.
• Lazy transition matrix.
• Boundary condition vector.
• With positive values for trusted vertices.
• And negative values for distrusted vertices.
• Outside the subset of ranked nodes.

(Continued on next page)
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Table A.2. Graph-based models models for entity-oriented search. (Continued from previous page)
Variations Modeling Characteristics Highlights

Topic-Sensitive
PageRank [156, 389]

Data source:
• World Wide Web→ Hyperlinks
Context:
• Markov chain order→ First-order
• Application→ Search
Components:
• Personalization→ Topic; Query
• Smoothing→ Jelinek-Mercer

• Personalization is uniform per topic.
• And weighted by topic distribution over the query.

Topic-Driven
PageRank [371]

Data source:
• World Wide Web→ Hyperlinks
• Nearest Neighbors→ Content Similarity
Context:
• Application→ Search
Components:
• Personalization→ Topic; Query

• Personalization is not uniform per topic.
• It is based on the topic distribution over a document.
• And weighted by topic distribution over the query.
• Normalized based on number of documents per topic.

PageRank with
content
similarity [391]

Data source:
• World Wide Web→ Hyperlinks
• Nearest Neighbors→ Content Similarity
Context:
• Application→ Search
Components:
• Personalization→ Topic; Query

• Adaptation of topic-sensitive PageRank.
• Built a weighted graph per topic.
• Based on content similarity.
• Similarity normalized per incoming vertex.

Query-dependent
PageRank [372]

Data source:
• World Wide Web→ Hyperlinks
• Nearest Neighbors→ Content Similarity
Context:
• Application→ Search
Components:
• Personalization→ Topic; Query

• Intelligent/directed surfer model.
• Similar to topic-driven PageRank.
• And PageRank with content similarity.
• Based on the relevance of the query to all pages.
• And the relevance of the query to linked pages.

FolkRank [392]

Context:
• Application→ Search
Components:
• Personalization→ User; Topic; Query
• Smoothing→Weighted Average

• 3-uniform hypergraph converted to tripartite graph.
• Of users, tags and resources (a folksonomy).
• Uses weighted average smoothing.
• Personalizable over users, tags and/or resources.
• Computed as the difference of PageRanks.
• For folksonomy versus personalization.

Weighted
PageRank [157]

Data source:
• World Wide Web→ Features
Context:
• Markov chain order→ First-order
• Application→ Importance Measurement
Components:
• Smoothing→ Jelinek-Mercer

• Reasonable surfer model.
• Network, semantic and visual features.
• Based on target vertex.
• Normalized per incoming vertex.
• Transition matrix per feature.

Multilinear
PageRank [114]

Context:
• Markov chain order→ Higher-order
Components:
• Smoothing→ Jelinek-Mercer

• Spacey random surfer model.
• Based on higher-order Markov chains.
• Generalization based on tensor flattening.
• And Kronecker product.
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In this appendix, we introduce the concept of fatigue, which can be used to tem-
porary restrict, reduce or completely block access to individual nodes or edges in
a graph, during a traversal. This idea was inspired by neuronal fatigue, as briefly
mentioned by Jon von Neumann in his contribution to the Silliman Memorial Lec-
tures on the relations between the computer and the brain [79]. We explore two
different applications based on this cognitive analogy. First, we apply cycles of fa-
tigue to nodes and hyperedges visited during the computation of the random walk
score. We then study the performance impact in the hypergraph-of-entity general
retrieval model. Our goal is to understand whether imitating a behavior that is a
part of the brain could improve graph-based retrieval. Secondly, we propose an
approximation of fatigue as an extension to PageRank, applied over a graph us-
ing power iteration. We evaluate the quality of Fatigued PageRank as a standalone
node ranking metric, as well as a query-independent feature for improving classical
ranking functions, such as BM25.

The structure of this appendix is organized as follows:

• Section B.1 presents the idea of bringing neuronal fatigue from the brain into
the computer, in particular as an application to graph traversal computations.

• Section B.2 proposes fatigued random walks in hypergraphs, applying it to
the random walk score [§B.2.1]. We evaluate efficiency and effectiveness, mea-
suring the impact of node and hyperedge fatigue [§B.2.2], and we compare
the rankings of the baseline model with the best fatigued model, as well as
the random walk score with and without fatigue [§B.2.3].

• Section B.3 introduces a novel version of PageRank. We begin by suggest-
ing a random explorer model to illustrate the impact of fatigue in random
walks [§B.3.1], formalizing Fatigued PageRank and illustrating its computa-
tion through power iteration as an extension of PageRank [§B.3.2]. We assess
the effectiveness of Fatigued PageRank as a node centrality metric, when com-
pared with baselines like the indegree, HITS authority or PageRank [§B.3.3].
We also explore the impact of Fatigued PageRank in information retrieval,
when used as a query-independent feature, in combination with BM25, ver-
sus other graph-based metrics [§B.3.4].
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b.1 neuronal fatigue in computer science
In preparation for Yale’s Silliman Memorial Lectures1, von Neumann highlighted
the importance of jointly studying the computer and the brain [79], a work to be
published posthumously for the first time in 1958. In fact, with his lecture, he
provided enough common ground for crossover work between computer science
and neuroscience, bringing the areas closer together. One of the ideas studied in
von Neumann’s lecture was the fact that a neuron will become fatigued, for a period
of time, after having been stimulated.

However, this is not the most significant way to define the reaction time of
a neuron, when viewed as an active organ in a logical machine. The reason
for this is that immediately after the stimulated pulse has become evident, the
stimulated neuron has not yet reverted to its original, prestimulation condition.
It is fatigued, i.e. it could not immediately accept stimulation by another pulse
and respond in the standard way. [. . . ] It should be noted that this recovery
from fatigue is a gradual one [. . . ]”

– John von Neumann, The Computer and the Brain

Despite the impact neuroscience has had in computer science (e.g., neural net-
works), not many analogies with fatigue have been proposed. In fact, to our knowl-
edge, only Xu and Yu [404] have used fatigue, in the context of neural networks, as
a part of a revised version of backpropagation for spam filtering.

In this appendix, we apply fatigue to nodes and hyperedges in the hypergraph-of-
entity, treating them as neurons that have been “stimulated” by a traversal during a
random walk. We also introduce node fatigue as a signal used in the computation
of PageRank. In Fatigued PageRank, node importance is measured by exploring
the topology of the graph through random walks, while taking into account the
probability of a node getting fatigued — we call this the random explorer model.

b.2 fatigued random walks in hypergraphs
Hypergraphs are data structures capable of capturing supra-dyadic relations. We
can use them to model binary relations, but also to model groups of entities, as
well as the intersections between these groups or the contained subgroups. In
Chapters 7, 8 and 9, we explored the usage of hypergraphs as an indexing data
structure, in particular one that was capable of seamlessly integrating text, entities
and their relations to support entity-oriented search tasks. As more information
is added to the hypergraph, however, it not only increases in size, but it also be-
comes denser, making the task of efficiently ranking nodes or hyperedges more
complex. Random walks can effectively capture network structure, without com-
promising performance, or at least providing a tunable balance between efficiency
and effectiveness, within a nondeterministic universe. For a higher effectiveness, a
higher number of random walks is usually required, which often results in lower
efficiency, as we can see in Table 9.5, in Chapter 9. Inspired by von Neumann and
the neuron in the brain, we propose and study the usage of node and hyperedge
fatigue as a way to temporarily constrict random walks during keyword-based ad
hoc retrieval. We find that we were able to improve search time by a factor of 32,
but also worsen MAP by a factor of 8. Moreover, by distinguishing between fatigue
in nodes and hyperedges, we are able to find that, for hyperedge ranking tasks, we
consistently obtained lower MAP scores when increasing fatigue for nodes. On the
other hand, the overall impact of hyperedge fatigue was slightly positive, although
it also slightly worsened efficiency.

1 https://en.wikipedia.org/wiki/Silliman_Memorial_Lectures
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Initial experiments with the hypergraph-of-entity had led to acceptable indexing
times, but high search times. Depending on the collection, a query might take over
10 minutes to run for random walks of length ` = 2 and repeats r = 10,000 (cf.
Table 9.5). Although we could execute a query in approximately 10 seconds for
` = 2 and r = 100, at this point the algorithm wouldn’t converge, thus outputting
dissimilar rankings for repeated runs with the same configuration1. This made the
ranking function less useful, as it got closer to a random ranking of a random set
of documents connected to the seed nodes (i.e., nodes representing the query in the
hypergraph-of-entity). In order to make the hypergraph-of-entity useful in practice,
we need to improve efficiency for large values of r, which correspond to points of
high effectiveness and convergence2.

We adopt the idea of fatigue for random walks, introducing node and hyperedge
fatigue as the number of cycles during which a given node or hyperedge is not avail-
able for visitation or traversal, as random steps are taken. Our initial hypothesis was
that the addition of fatigue to the retrieval model would result in a significant over-
head from maintaining and decrementing several variables of fatigue per cycle. On
the other hand, regarding effectiveness, we didn’t know what to expect — we were
led by the idea that, if this was a part of the neuronal process, then it should be rele-
vant for effective cognition and thus might improve our ranking function. Contrary
to our initial hypothesis and, as you will see in Section B.2.2, we found that the
introduction of node fatigue significantly improved efficiency, however it decreased
effectiveness, maintaining the tradeoff that we had evidenced before.

b.2.1 Introducing fatigue in random walk score

Random walks have been at the core of centrality metrics like PageRank or person-
alized PageRank [113]. While PageRank is computed for the whole graph, person-
alized PageRank is computed for a localized area of the graph, based on a set of
seed nodes. In both algorithms there is the probability that we follow a random
outgoing edge. Given the complementary event that we don’t, in PageRank we
jump to a random node in the graph, but in personalized PageRank we always
jump to one of the seed nodes instead, resulting in a behavior analogous to a ran-
dom walk with restart [405]. The random walk score ranking function is similar
to personalized PageRank, where our personalization is based on a keyword query
and we use fixed length random walks, starting from each seed node, that only
jumps back to its seed node after ` steps instead of doing it randomly. Each seed
node represents an expansion of a query term to the entities it might refer to in the
hypergraph (i.e., we follow all directed links between a query term and its neigh-
boring entities). As such, departing from closer together seed nodes reinforces the
weight of the nodes/hyperedges they all cover, while departing from further apart
seed nodes leads to a middle-ground, reinforcing the weights of nodes/hyperedges
in the intersecting borders instead.

The idea is to first reach an open interpretation of the query and, only then,
as a part of the ranking process, close in on the actual sense of the query. By
cross-referencing information based on all query terms, we attempt to diminish
ambiguity, while at the same time performing ranking. For example, if we search
for [ Eiffel Tower ], we will expand to multiple entities mentioning “Eiffel” (at least
Gustave Eiffel and Eiffel Tower) and multiple entities mentioning “Tower” (e.g., Eiffel
Tower, First National Bank Tower, The Regal Tower). It is through the combination of
the neighborhoods of expanded-to entities that we can understand that the query
is referring to Eiffel Tower. While this is a straightforward example, with little am-

1 Kendall’s concordance coefficient W ≈ 0.84 for 100 iterations with ` = 2 and r = 100, as opposed to
W ≈ 0.99 with ` = 2 and r = 10,000.

2 Notice that, when mentioning high effectiveness, we are considering previous instances of the hypergraph-
based model, instead of establishing a comparison to the state of the art, as we are still far from that
target.
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biguity, more complex queries can only be segmented probabilistically based on ex-
isting knowledge [406]. Take for instance [ Gustave Eiffel tower construction ], where
we could, at the very least, consider both Gustave Eiffel and Eiffel tower as valid (but
overlapping) entities, despite only one of the options being meant by the user. On
the other hand, the user might not provide enough information for disambigua-
tion and query understanding, in which case the best option for the search engine
is to consider the most probable segmentation and interpretation according to the
corpus and/or knowledge base.

Using the seed nodes as an expanded representation of the query in the hyper-
graph, we then launch a random walk of length ` from each seed node, repeating
this process r times. Our expectation is that, given the appropriate hypergraph
structure and restrictions (e.g., node/hyperedge weights, fatigue), we should be
able to converge at a ranking of nodes/hyperedges based on the visitation fre-
quency, for a sufficiently large r. We then collect the nodes and/or hyperedges
that represent the target unit(s) of retrieval (documents and/or entities). We call
this ranking function the random walk score, RWS(Q,H, `, r), for a given query Q
and hypergraph H = (V ,E), where V is the set of all vertices and E is the set of all
hyperedges, with Ej either being a set of vertices, for undirected hyperedges, or a
tuple with two sets of vertices, for directed hyperedges.

Previous experiments with RWS, namely in TREC 2018 Common Core track (Sec-
tion 9.2.2), have resulted in low or inconsistent effectiveness and worrisome effi-
ciency, where queries frequently required several minutes to run, in order to con-
verge to a stable ranking. The hypergraph-of-entity is a collection-based represen-
tation that links all available data, structured and unstructured, for a given corpus.
This means that, whenever we query the hypergraph, we have access to a complete
body of knowledge, but also that we are potentially required to traverse a high num-
ber of paths before converging to a ranking. The question is then how to reduce the
number of traversed paths without impacting effectiveness. In this section, we intro-
duce and test fatigue in random walks in order to determine whether it can improve
efficiency by acting as a controller for exploration of the untraveled paths. Fatigue
as a restriction is not unlike the seed node introduced in personalized PageRank to
focus on local exploration.

In order to propose a fatigued extension of random walk score, let us now
consider von Neumann’s description of fatigue (Section B.1) and a neuron–node
/ neuron–hyperedge analogy. This tells us that, immediately after a node or
hyperedge is traversed, it should enter a state of fatigue, and thus block ran-
dom walk visitations for a given period of time ∆nf (node fatigue) or ∆ef (hy-
peredge fatigue). Time passes with each random step taken, meaning that, for
every visited node i ∈ V and hyperedge j ∈ E, we must initialize and main-
tain a hash table, respectively with ∆inf and ∆

j
ef fatigue statuses that are decre-

mented at each step. Each fatigued element is then excluded from the random
sampling, when deciding which node or hyperedge to visit next at a random
step. An element stops being fatigued when its fatigue status reaches zero, at
that point being removed from the appropriate hash table. The addition of fa-
tigue to the retrieval model results in a random walk score RWS(Q,H, `, r,∆nf,∆ef),
extended with the number of steps of fatigue for nodes and hyperedges, where
RWS(Q,H, `, r) = RWS(Q,H, `, r,∆nf = 0,∆ef = 0).

b.2.2 Retrieval performance assessment

Using Lucene, we indexed the text block of the smaller subset of INEX 2009 10T-NL
Wikipedia collection, using TF-IDF and BM25 with k1 = 1.2 and b = 0.75 as our
baselines. We then indexed the text and knowledge blocks (i.e., terms, entities and
their relations) using two versions of the hypergraph-of-entity: the base model, and
an extension of the base model using synonym and context hyperedges. For both
hypergraph-of-entity models, we used RWS with length ` = 2 and repeats r = 1,000.
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Figure B.1: Evaluation metrics for Lucene baselines and hypergraph-of-entity models using
different combinations of node and hyperedge fatigue for RWS.

We then experimented with all combinations of node and hyperedge fatigue cycles
within ∆nf ∈ {0, 10} and ∆ef ∈ {0, 10}, resulting in four runs for each hypergraph-
of-entity model, in addition to the two baseline runs. Our assessment was based on
the Mean Average Precision (MAP), as well as the Precision at a cutoff of n (P@10).
We also measured indexing and search times to capture the impact that different
models and parameter configurations had in efficiency.

efficiency Indexing with Lucene took 25s 889ms, averaging 3.50ms per docu-
ment. Indexing with the hypergraph-of-entity took 1m 9s 687ms, averaging 9.42ms
per document, for the base model. The times were similar for the extended mod-
els, taking 1m 4s 135ms and 1m 17s 193ms, for an average of 8.67ms and 10.43ms
per document, respectively for the non-weighted and weighted versions. Regarding
search time, Lucene took on average, per query, 451ms for TF-IDF and 269ms for
BM25. Hypergraph-of-entity was less efficient during search, taking on average, per
query, between 1m 4s 620ms and 5m 31s 286ms for the base and extended models,
when ∆nf = 0, that is, either without fatigue or with hyperedge fatigue only. On the
other hand, for ∆nf = 10, average query time ranged between 834ms and 1s 49ms,
but it also resulted in a lower overall effectiveness.

effectiveness We experimented with all four different combinations of node
and hyperedge fatigue: no fatigue (∆nf = 0, ∆ef = 0), node fatigue (∆nf = 10,
∆ef = 0), hyperedge fatigue (∆nf = 0, ∆ef = 10) and full fatigue (∆nf = 10,
∆ef = 10). Results are detailed in Table B.1. Figure B.1 shows the MAP and P@10

scores for the hypergraph-of-entity base model, extended model and weighted ex-
tended model, when compared to the Lucene TF-IDF and BM25 baselines. A dif-
ferent filling color was used for each index (i.e., for each representation model). As
we can see, none of the versions of the hypergraph-of-entity with RWS were able
to outperform TF-IDF or BM25. Moreover, node fatigue had a negative effect in
performance, while hyperedge fatigue had little to no effect on performance. We
also found that the difference in MAP was not statistically significant when com-
paring TF-IDF and the best runs for RWS (base model with hyperedge fatigue and
weighted extended model without fatigue). We obtained p-values of 0.3930 and
0.4813, respectively, for the Mann-Whitney U tests. On the other hand, when com-
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Table B.1: Performance of random walk score, with different levels of fatigue, over the
hypergraph-of-entity.

Version MAP P@10
Search Time

Avg./Query Total

Lucene TF-IDF 0.2160 0.2800 451ms 4s 510ms
Lucene BM25 0.3412 0.4900 269ms 2s 688ms

Hypergraph-of-Entity Base Model – RWS(` = 2, r = 1,000)

∆nf = 0 ∆ef = 0 0.1560 0.1800 1m 14s 12m 18s
∆nf = 0 ∆ef = 10 0.1601 0.2300 1m 22s 13m 39s
∆nf = 10 ∆ef = 0 0.0249 0.0900 839ms 8s 387ms
∆nf = 10 ∆ef = 10 0.0246 0.1000 834ms 8s 338ms

Hypergraph-of-Entity w/ Syns. & Context – RWS(` = 2, r = 1,000)

∆nf = 0 ∆ef = 0 0.1594 0.2300 1m 05s 10m 48s
∆nf = 0 ∆ef = 10 0.1540 0.2000 1m 05s 10m 46s
∆nf = 10 ∆ef = 0 0.0236 0.0900 955ms 9s 553ms
∆nf = 10 ∆ef = 10 0.0272 0.1100 924ms 9s 242ms

Hypergraph-of-Entity w/ Syns., Context & Weights – RWS(` = 2, r = 1,000)

∆nf = 0 ∆ef = 0 0.1636 0.2300 5m 26s 54m 15s
∆nf = 0 ∆ef = 10 0.1615 0.1900 5m 31s 55m 13s
∆nf = 10 ∆ef = 0 0.0195 0.0700 1s 011ms 10s 106ms
∆nf = 10 ∆ef = 10 0.0250 0.1200 1s 049ms 10s 491ms

paring the MAP for BM25 and the best run for RWS, we found that the difference
was statistically significant, with a p-value of 0.004 in both cases.

As it stands, the introduction of fatigue had little impact, except when consider-
ing the P@10 for the base model when using hyperedge fatigue. For that particular
case, we were able to increase the performance of the base model without the need
for synonyms, context or weights. Despite the small size of the sample, we were,
at the very least, able to achieve a similar performance for TF-IDF and RWS, using
a hypergraph-based model, instead of an inverted index, and a nondeterministic
random walk based approach. The model we propose has the potential to, through
its joint representation of text, entities and their relations, unlock novel ranking
strategies that take into account all available leads, be it those locked within un-
structured text or those explicitly provided through structured knowledge. Beyond
document ranking, hypergraph-of-entity can easily support entity ranking, related
entity finding and entity list completion.

b.2.3 Rank correlation analysis

We used Spearman’s rank correlation coefficient ρ to compare vectors of positions
without ties. Any missing positions were added to either vector, using the lexico-
graphical order for tied documents, based on their ID. Missing documents were
assigned synthetic incremental positions, after the last retrieved document, in order
to complete the rankings and make them comparable. Given the nondeterministic
(but overall converging) character of RWS, we computed and averaged 100 ρ values
for the same parameter configuration, in order to obtain a robust insight.

We ran two experiments. The first enabled us to further understand the differ-
ences between the baselines and our models. We compared the rankings provided
by Lucene TF-IDF, achieving a P@10 of 0.2800, with the rankings provided by RWS,
for ` = 2, r = 1,000, ∆nf = 0 and ∆ef = 10, achieving a P@10 of 0.2300 for the base
model (the best with fatigue). In the second experiment, we compared two versions
of RWS, with and without fatigue. Particularly, we focused on hyperedge fatigue,
since it resulted in a similar performance to the version without fatigue. The second
experiment was run over the extended model.
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Table B.2: Spearman’s rank correlation coef-
ficient ρ and Jaccard index J, averaged over
100 repeated retrieval events for the same
topic. 〈ρ1〉 and 〈J1〉 compare TF-IDF and the
best RWS with fatigue, while 〈ρ2〉 and 〈J2〉
compare RWS with fatigue (∆ef = 10) and
without fatigue. The mean µ and standard
deviation σ are shown at the bottom of the
table.

Topic 〈ρ1〉 〈ρ2〉 〈J1〉 〈J2〉

2010003 -0.8400 0.9639 0.0000 0.8818

2010014 -0.7707 0.9961 0.0000 1.0000

2010023 -0.6867 -0.1238 0.0000 0.2323

2010032 -0.7256 -0.4649 0.0147 0.1650

2010038 -0.7539 0.8086 0.0316 0.7475

2010040 -0.7740 0.9788 0.0000 0.8806

2010049 -0.7455 0.9460 0.0000 0.8324

2010057 -0.6500 0.9242 0.0526 0.8011

2010079 -0.7295 0.9730 0.0000 0.9382

2010096 -0.6864 0.8871 0.0000 0.7487

µ -0.7362 0.6889 0.0099 0.7228

σ 0.0541 0.5272 0.0183 0.2876

Table B.2 shows the average ρ values, 〈ρ1〉 and 〈ρ2〉, for each experiment, per topic.
It also shows the respective average Jaccard indexes, 〈J1〉 and 〈J2〉, as a complement
to correlation analysis. At the end of the table, mean (µ) and standard deviation (σ)
values are shown to summarize global behavior. As we can see, when comparing
TF-IDF and RWS, we obtained values for ρ1 that consistently approximate −1, with
a mean of −0.7362± 0.0541, an indication that TF-IDF and RWS are anticorrelated.
If we look at 〈J1〉, we find extremely low similarity values between the document
sets returned by TF-IDF and RWS, with this value ranging around 0.0099± 0.0183.
This explains the negative correlation and, interestingly, shows that RWS can still
achieve good retrieval effectiveness while returning an almost completely different
set of documents than TF-IDF. Regarding the comparison of RWS with and with-
out fatigue, we were unable to find a recurrent pattern, like we did for in the first
experiment. We found both positive and negative correlations, with lower Jaccard
index values associated with negative correlations. It is, however, clear that the us-
age of fatigue in RWS results in a different ranking than the standard RWS without
fatigue. The document set similarity between the two configurations, which is of
0.7228± 0.2876, is also higher than the first experiment, which is consistent with
the fact that we are testing a different version of the same ranking function. The
introduction of hyperedge fatigue particularly affected topics 2010023 and 2010032
for [ retirement age ] and [ japanese ballerina ], respectively. They both achieved a
similarly low P@10 (0.0 and 0.2, versus 0.1 and 0.3, respectively, when comparing
RWS with and without fatigue for the pair of topics); the behavior was similar for
P@1000. Together with a low Jaccard index (0 for topic 2010023 and 0.0147 for topic
2010032) this indicates that both approaches were able to retrieve different sets of
relevant documents.

b.3 fatigued pagerank
The graph is a well-established data structure used to model a wide range of real-
world relations, from social ties to protein-protein interactions, from co-authorship
to the web graph, from flight patterns to time series, from term dependencies to
entity relations. Network science is the area that lies between multiple domains,
providing a common set of tools to study real-world networks. One of the funda-
mental tasks in the study of a network is the measurement of node importance or
centrality, usually with the goal of obtaining an ordering or ranking. Node ranking
has been a fundamental task, not only in network science, but also in information
retrieval, where historical metrics like PageRank were used as query-independent
evidence of the authority of a web page, in order to improve retrieval effectiveness.
Many variants of PageRank have since then been developed, exploring aspects like
different smoothing approaches, or applications that rely on contextual or visual
features in addition to, or instead of, the traditional hyperlinks.

In this section, we propose a PageRank variant inspired by the analogy to neu-
ronal fatigue, as briefly mentioned by von Neumann in his last lecture (Section B.1).
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In particular, he said that, after being stimulated and activated, a neuron will tem-
porarily enter a state of fatigue, during which it will not respond. Taking this charac-
teristic as a relevant element of cognition, we decided to explore a similar idea with
random walks in a graph, proposing a PageRank application where nodes have a
probability of getting fatigued, in which case they are excluded from a particular
step of the walk. We propose that the indegree is used as an indicator of fatigue
— high indegree nodes have a higher probability of being visited and thus have a
higher probability of getting fatigued. Accordingly, we combined the indegree with
the transition matrix from PageRank, in order to obtain a Fatigued PageRank.

b.3.1 Random explorer model

Random walks have been at the core of centrality metrics like PageRank, which
models the behavior of a random surfer in the web graph. This means that, for
each random step, there is the probability that we follow a random outgoing edge.
However, given the complementary event, we simply jump to a random node in the
graph. In analogy to PageRank, we propose a random explorer model to motivate
and describe Fatigued PageRank.

The goal of the random explorer is to survey the graph space by randomly travers-
ing edges, as long as it avoids recently visited nodes in order to optimize coverage
— while the random surfer goes where the graph leads it, the random explorer ac-
tively tries to get to know the graph. We might say that the explorer gets fatigued
and doesn’t want to revisit nodes that have recently been considered — why would
an explorer want to go to places it has already seen, when there is still so much to
discover? Similar to PageRank, the explorer can also get stuck in sinks or cycles, or
even become so fatigued that there is no interesting unexplored edge to traverse, in
which case the explorer teleports to a new location to continue the survey.

In the following sections, we revise the computation of PageRank based on power
iteration, introducing the notation we use and highlighting memory management
via sparse matrix representations. We then extend PageRank with fatigue and pro-
pose a computation approach for Fatigued PageRank.

b.3.2 From PageRank to Fatigued PageRank

The original PageRank corresponds to the stationary distribution of a Markov chain
that models the transition probabilities between nodes in a web graph. Transitions
can either happen through navigation (i.e., following a hyperlink) or through tele-
portation (i.e., randomly jumping to a web page). Fatigued PageRank considers
similar navigation and teleportation behaviors, but introduces the concept of visita-
tion fatigue. While in PageRank the user could only get bored and jump to another
page, in Fatigued PageRank the user will also avoid recently visited pages (i.e., in
the process of information seeking, the user will eventually get tired of revisiting
a page and avoid it for a while). This means that memory is required to store fa-
tigue information per node, eventually violating the Markov property (future states
now depend on the current state and the fatigue state). In order to ensure that the
Markov property is not violated, we approximate the probability of a node being fa-
tigued based on its indegree — the higher the number of incoming connections, the
higher the probability that a node gets fatigued, and thus the lower the probability
the node is visited due to fatigue.

b.3.2.1 A revision on PageRank computation using power iteration

In order to describe Fatigued PageRank, we first illustrate the computation of
PageRank based on power iteration, highlighting some simple techniques to mini-
mize memory usage. Let us first assume a directed graph G = (V ,E) represented
by its adjacency matrix A, where each row i illustrates outgoing links from node
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i to a node j. Based on A, we need to obtain a left stochastic matrix S represent-
ing the outgoing transition probabilities (each column j represents the probability
of transitioning from node j to a node i). As shown in Equation B.1, this can be
partly done by normalizing each column, based on the sum of its elements. How-
ever, we must use a different strategy for dealing with columns that are all zeros
(representing sink nodes, without outgoing edges), since we cannot divide by zero.
In Equation B.1, we simply maintain the zero-sum columns, which means that H
still isn’t stochastic (not all columns sum to one).

Hij =

0 if
∑
k(A

T )kj = 0
(AT )ij∑
k(A

T )kj
otherwise

(B.1)

In order to obtain a stochastic matrix, despite possible sinks, we calculate matrix S
from matrix H as described in Equation B.2.

S = H+
1

|V |
aeT (B.2)

This is done by first obtaining a binary vector a that acts as a mask, where ones
identify zero-sum columns. Using this mask, we then replace zero-sum columns by
a uniform vector with the probability 1

|V |
of randomly jumping to any node. The

term 1
|V |
aeT is essentially a square matrix that repeats 1

|V |
over all lines of zero-sum

columns — it’s as if sinks are now linked to all nodes in the graph. Finally, using
Jelinek-Mercer smoothing (linear interpolation), we combine S with a teleportation
term, obtaining the Markov matrix M that is used in the power iteration to compute
the PageRank vector r. Equation B.3 illustrates the computation of PageRank based
on a damping factor α, which is usually set to 0.85, the number of vertices |V |

and the column-vector e of size |V | and all ones. Power iteration is then initiated
with any stochastic vector rt, which is iteratively multiplied by M, resulting in
a normalized vector, until convergence — i.e., until rt+1 ≈ rt, as determined by
the L2-norm of the difference between rt+1 and rt and an ε convergence constant,
frequently set to 0.001 or less.

rt+1 =
Mrt

‖Mrt‖1
= Mrt

M =
1−α

|V |
eeT +αS

(B.3)

While PageRank can be computed using power iteration, as described in Equa-
tion B.3, it is easy, even for only a slightly large graph, to run out of memory during
PageRank computation. This is because M is dense and, for dense matrices, space
complexity is O(|V |2). So, for instance for a graph with 1 million nodes and assum-
ing entries of 8 bytes, we would need 7.28 TiB of memory only to store M, not even
accounting for the overhead of the data structure. One way to mitigate this problem
is to ensure that we always work with sparse matrices, that can be represented by
row, column and value, only for non-zero entries. In this case, space complexity
drops to O(|E|), which for sparse graphs is usually a lot lower than the number of
edges in a complete graph, i.e., |E| � |V |2. This means that a graph with 10 mil-
lion edges, assuming that the row, column and value each require 8 bytes to store,
would only need 229 MiB of memory to be stored. Since matrix H is sparse, we can
simply allocate space for H using a sparse matrix representation, for the zero-sum
mask vector a, for the vector e of ones, and for the PageRank vector r, and we
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can then compute matrix M on-the-fly during power iteration cycles as shown in
Equation B.4.

rt+1 =

(
αH+ (αa+ (1−α)e)

(
1

|V |
eT
))

rt (B.4)

b.3.2.2 Fatigued PageRank computation using power iteration

Like PageRank, Fatigued PageRank also considers the idea of teleportation as a way
to avoid sinks or cycles, leaving the corresponding term of the equation unchanged.
Unlike PageRank, the navigation term is not only based on the outgoing transitions
H, but also on a fatigue-derived factor. In particular, we approximate the proba-
bility of fatigue of a node based on its indegree vector k−. We then normalize k−

based on the maximum possible indegree |V |− 1 (ignoring loops), while using ad-
ditive smoothing in order to avoid completely removing transitions to nodes with a
maximum probability of fatigue. We use a low impact smoothing constant β = 0.1,
mainly just to avoid zeros — a zero would completely block a transition, while a
small probability will provide a chance for the transition to have an effect during
power iteration. Finally, we combine H with the complement of the normalized and
smoothed indegree, after renormalizing the vector to ensure the it remains stochas-
tic. We do this through element-wise multiplication (�) with each column j of H, as
show in Equation B.5.

k∗ = 1−
k− +β

|V |− 1+β

H ′·j =
k∗

‖k∗‖1
�H·j

(B.5)

Essentially, a node becomes less probable to visit, if it has a high probability of
getting fatigued. Fatigued PageRank is then computed based on power iteration, as
defined in Equation B.3, after replacing H with H ′ in the computation of S (Equa-
tions B.2 and B.4).

b.3.2.3 Exemplifying Fatigued PageRank computation

In this section, we illustrate the calculation of Fatigued PageRank, using the toy
example graph in Figure B.2. We prepared a graph with two sources (nodes 1 and
4 only have outgoing links) and a sink (node 5 only has incoming links). Sink
nodes serve to illustrate the need for a teleportation term in PageRank (or Fatigued
PageRank), while source nodes serve to illustrate the effect of minimum fatigue —
as we can see in k∗, both nodes 1 and 4 have maximum probability (k∗1 = k∗4 = 0.26).
We also attempted to include a node with the maximum number of inlinks (i.e.,
|V |− 1 for a graph without loops). However, in order to keep the toy example clean
and to ensure we had at least one sink, we opted to only include node 3 with a high
indegree of |V |− 2. Notice, however, that a node with indegree |V |− 1 would result
in a normalized indegree of one and therefore correspond to a zero entry in k∗ for
β = 0 — that is, without additive smoothing, transitions to nodes with maximum
indegree would be completely blocked (we use β = 0.1).
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1

2

3 4

5

Figure B.2: Toy graph, with one source
(node 4) and one sink (node 5)

A =


0 1 1 0 0

0 0 1 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 0 0



H =


0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.00 0.00 0.00
0.50 1.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00


aT =

[
0 0 0 0 1

]
As we can see, we begin with the adjacency matrix A, which we transform into H

by transposing and normalizing columns that are not all zeros. Zero-sum columns
are then identified by a 1 in the corresponding position of vector a. The correspond-
ing row of A, column of H and value of a are all displayed in bold for a clearer
understanding of such a process. While the zero-sum columns of H could be have
been replaced by the teleportation probability, we avoid doing so to save memory,
taking better advantage of a sparse matrix representation. We instead do all compu-
tations on-the-fly during power iteration, resulting in a low memory footprint, since
H is static and only the PageRank vector must be updated (which can even be done
in-place to further save memory). We can then set the damping factor to α = 0.85,
allocate a vector e of ones, calculate the probability of teleportation 1

|V |
= 0.20 and

calculate PageRank using Equation B.4 by initializing r0 for instance to the uniform
probability 0.20. For large graphs, the computation can even be done using blocks
of rows of H, along with the corresponding elements of a and e (eT remains un-
touched, though). This results in incremental blocks of rt that can be sequentially
concatenated and even processed in parallel.

[k∗]T =
[
0.26 0.20 0.08 0.26 0.20

]

H ′ =


0.00 0.00 0.00 0.00 0.00
0.71 0.00 0.00 0.00 0.00
0.29 1.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00


rT0 =

[
0.20 0.20 0.20 0.20 0.20

]
rT1 =

[
0.03 0.15 0.42 0.03 0.37

]
. . .

rT10 =
[
0.05 0.09 0.23 0.05 0.59

]
For Fatigued PageRank, however, we also need to compute k∗, which will by

multiplied by each column of H to generate H ′ as shown above. Power iteration
will then incrementally update rt until convergence — we show the values for r0,
r1 and r10 to illustrate how conversion happens in only 10 iterations.

b.3.3 Performance as a node ranking metric

In order to assess the quality of Fatigued PageRank as a node ranking metric, we
used an evaluation strategy similar to Dimitrov et al. [157], based on a Wikipedia’s
link graph, annotated with the number of transitions from its clickstream as the
ground truth. This was the main reason for creating the Simple English Wikipe-
dia Link Graph with Clickstream Transitions 2018-12, which we described in Sec-
tion 4.2.1.

We computed the indegree, HITS authority, PageRank and Fatigued PageRank
for the link graph. The top 5 pages according each metric are shown in Table B.3.
As we can see, all rankings are distinct, with United States being the only common
entity across indegree, PageRank and Fatigued PageRank. On the other hand, HITS
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Table B.3: Top 5 nodes according to each node ranking metric for Simple English Wikipedia.

(a) Ranking by indegree and HITS authority.

Indegree HITS Authority

1 United States Lisa Bonet
2 France Road to Paloma
3 International Standard Book Number Ronon Dex
4 Geographic coordinate system Native Hawaiians
5 Americans Aquaman

(b) Ranking by PageRank and Fatigued PageRank.

PageRank Fatigued PageRank

1 United States United States
2 United Kingdom International Standard Book Number
3 India France
4 List of United States cities by population United Kingdom
5 Periodic table City
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Figure B.3: Comparison of node ranking metrics with the number of visits, given by the sum
of incoming transitions from the Wikipedia clickstream dataset.

authority contains a notably different list of entities when compared to the remain-
ing rankings, which is more related to entertainment, namely representing actors,
movies and Hawaii (possible in reference to Jason Momoa, who plays the Ronon Dex
character).

For each metric, we then computed its Pearson and Spearman correlations with
the number of visits (i.e., the sum of incoming transitions). This follows the strat-
egy used by Dimitrov et al. [157] in their study of the Weighted PageRank, however
we used a much smaller Wikipedia graph. We are particularly interested in the
Spearman correlation, which compares rankings, but we also included the Pearson
correlation as a way to characterize behavior. We analyzed the 897,577 Simple En-
glish Wikipedia articles. The best overall results were obtained for PageRank, which
achieved a Spearman correlation of 0.9902, followed by HITS authority with 0.6330,
indegree with 0.3920 and, only then, Fatigued PageRank with 0.1604.

The low results for Fatigued PageRank led us to investigate further, by looking
at the correlation for different ranking cuts of size k, according to each metric,
as illustrated in Figure B.3. In particular, we plotted the correlation coefficients
for k ∈ {10, 25, 100, 250, 500, 1000, 2500, 5000, 10000} using a log-scale. This means
that, for instance for PageRank, we sorted from highest to lowest PageRank and
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Table B.4: Variance of the correlations over all cuts, in ascending order by the variance of
Spearman’s rank correlation.

Metric
Variance

Pearson Spearman

Fatigued PageRank 0.0399 0.0019

PageRank 0.0826 0.0064

HITS (Authority) 0.0421 0.0624

Indegree 0.0631 0.1052

kept the top k values, which we then correlated with the corresponding number
of visits. When looking at Spearman correlation, we found that, for the top 10, we
obtained the best results using HITS authority. We also found that, for the top 10,
the indegree is a good approximation of PageRank, which is consistent with the
literature [407]. As the cut size increases, though, the quality of HITS authority
decreases substantially (it had the lowest coefficient for the top 100), remaining low
but fairly stable until the top 10000. Another interesting characteristic we found
was the high variability of the quality of the indegree as a node ranking metric.

As we can see in the figure, the Spearman correlation for the indegree suddenly
increases at around top 1000, only to sharply drop after that. For that cut, we found
that there were several ties where the indegree for most nodes was around 705,
while the corresponding number of visits was also tied with values around zero
— this was responsible for the sudden boost in correlation. However, when further
ahead the wrongly ranked nodes are added to the top, the correlation sharply drops
to a negative coefficient. This variability shows the “naïveness” of the indegree.

Out of all the metrics, only PageRank and Fatigued PageRank have shown to be
consistently stable for different cut sizes, however Fatigued PageRank appears to be
consistently lower than PageRank. This can be explained by the fact that, inherently,
fatigue will take away from visiting the most popular nodes. We hypothesize that
fatigue introduces diversity and somewhat “redistributes the wealth”, potentially
providing a better way to explore the graph, by reducing the bias of popularity.
This, however, requires further investigation and is out of the scope of this paper.

As shown in Table B.4, we inspected the variance of the overall correlation values,
in order to understand the consistency of each metric for increasing cut sizes. We
found that Fatigued PageRank obtained the lowest variances for the Pearson and
Spearman’s rank correlations, showing robustness to varying the cut size. When
considering Pearson’s correlation, PageRank obtained the highest (worst) variance,
while, for Spearman’s rank correlation, it obtained the second lowest (best) variance.
On the other side, as expected, the indegree had the highest (worst) variance in both
cases, illustrating its lack of robustness.

b.3.4 Performance as a query-independent feature in search

In this section, we evaluate the impact of Fatigued PageRank in retrieval effective-
ness, when combined with BM25, in comparison with other graph-based metrics.
These metrics were computed over the companion link graph built from TREC
Washington Post Corpus, using the inter-document hyperlinks found in HTML an-
chors, as described in Section 4.1.2.1.

We computed the indegree, HITS authority, PageRank and Fatigued PageRank for
the TREC Washington Post Corpus link graph. The top 5 documents (news articles
or blog posts) according to each metric are shown in Table B.5. The behavior is
similar to the rankings for the Simple English Wikipedia (cf. Section B.3.3), where
each metric results in a distinct ranking. The indegree and HITS authority share two
common titles, while the indegree and PageRank, as well as PageRank and Fatigued
PageRank, share one common title. Once again, HITS authority contains a large
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Table B.5: Top 5 nodes according to each node ranking metric for TREC Washington Post
Corpus.

(a) Ranking by indegree and HITS authority.

Indegree HITS Authority

1 Trump recorded having extremely lewd con-
versation about women in 2005

This photo of an officer comforting a baby
went viral. But there’s more to the story.

2 This professor has predicted every presidential
election since 1984. He’s still trying to figure
out 2016.

‘Heartbreaking’ video captures toddler trying
to wake mother after apparent overdose

3 This photo of an officer comforting a baby
went viral. But there’s more to the story.

Ohio city shares shocking photos of adults
who overdosed with a small child in the car

4 Trump is headed for a win, says professor
who has predicted 30 years of presidential out-
comes correctly

The heroin epidemic’s toll: One county, 70
minutes, eight overdoses

5 ‘Heartbreaking’ video captures toddler trying
to wake mother after apparent overdose

At 18 years old, he donated a kidney. Now, he
regrets it.

(b) Ranking by PageRank and Fatigued PageRank.

PageRank Fatigued PageRank

1 Trump recorded having extremely lewd con-
versation about women in 2005

Here’s a guide to the sex allegations that Don-
ald Trump may raise in the presidential de-
bate

2 78 Republican politicians, donors and offi-
cials who are supporting Hillary Clinton

The facts about Hillary Clinton and the Kathy
Shelton rape case

3 An unlikely Bush finally did some damage to
Donald Trump: Billy Bush

Khizr Khan’s loss: A grieving father of a sol-
dier struggles to understand

4 Professor who predicted 30 years of presiden-
tial elections correctly called a Trump win in
September

The father of Muslim soldier killed in action
just delivered a brutal repudiation of Donald
Trump

5 Here’s a guide to the sex allegations that Don-
ald Trump may raise in the presidential de-
bate

Obamas sign book deals with Penguin Ran-
dom House

Table B.6: Retrieval effectiveness of graph-based metrics, as query-independent evidence,
when combined with BM25 using the sigm function.

Model GMAP MAP NDCG@10 P@10

BM25 0.1395 0.2031 0.3528 0.3700

BM25 + Indegree 0.1357 0.1994 0.3537 0.3800

BM25 + HITS Authority 0.1395 0.2031 0.3540 0.3720

BM25 + PageRank 0.1395 0.2031 0.3528 0.3700

BM25 + Fatigued PageRank 0.1395 0.2031 0.3528 0.3700

fraction of potentially-viral titles, showing its ability to rank from an entertainment
point of view — in Wikipedia we had found movies and actors in the top ranks
according to HITS authority.

In search, we can use graph-based features as query-independent evidence (e.g.,
PageRank) that can be combined with other retrieval models (e.g., BM25). This can
be done for instance through a linear combination, as a feature in a learning-to-rank
model, or through a post-processing reranking approach. We adopt a more classi-
cal approach for combining query-dependent and query-independent features, as
described by Craswell et al. [170] and conveniently available in Apache Lucene1

since version 7.4.0. Craswell et al. explored reranking approaches, experimenting

1 https://lucene.apache.org/
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Table B.7: Top 5 most frequent document titles in TREC Washington Post Corpus.

Freq. Title

455 Happy Hour Roundup
353 A 7-year-old told her bus driver she couldn’t wake her parents. Police found them dead at home.
320 How long before the white working class realizes Trump was just scamming them?
310 Five dead teens, a stolen cop car and the ‘most horrific’ crash in decades
252 Trump is headed for a win, says professor who has predicted 30 years of presidential outcomes correctly

with BM25 as the baseline and PageRank as the query-independent graph-based
evidence, while studying statistical dependence. PageRank was converted into a
relevance weight and added to BM25 after applying one of three proposed func-
tions: log, satu or sigm. Blanco and Lioma [15, §5.2.5] have also used this type of
integration for query-independent graph-based features, specifically exploring the
satu function. In this experiment, we use the sigm function, with the parameters that
generated the best MAP in the Craswell et al. experiments (w = 1.8, k = 1, a = 0.6).
This enabled us to evaluate Fatigued PageRank’s impact in retrieval effectiveness,
when compared to alternative metrics.

Table B.6 shows the results for this evaluation, where we used BM25 as the base-
line and computed classic metrics, like MAP, NDCG@10 and P@10, for measuring
effectiveness. We also included GMAP, which is less sensitive to outliers than MAP,
since it uses the geometric mean instead of the arithmetic mean to aggregate the
average precisions — when GMAP is lower than MAP, it usually means that only
a few topics were driving up the score, despite most of them actually having a
lower average precision than MAP would lead us to believe. The results show that
the overall impact of the graph-based metrics is minimal, except for the indegree,
which decreases effectiveness for GMAP and MAP, but increases effectiveness for
NDCG@10 and P@10, which only consider the top 10 results. This is consistent with
the results shown in Figure B.3, where the indegree is shown to be slightly better
than PageRank, but only for the top 10.

The results were quite neutral regarding the overall benefits of graph-based met-
rics to improve retrieval effectiveness over the TREC Washington Post Corpus. We
hypothesize that, despite their unique identifiers and URLs, the high number of
pages with a duplicate title (cf. Table B.7) affected both the text-based relevance
score and the graph-based relevance score. It introduced noise that, by being re-
moved, could have provided a better insight into the effect of the studied query-
independent evidence. This would, however, require a different set of relevance
judgments that are not currently available.
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b.3 fatigued pagerank

summary
Inspired by von Neumann’s last lecture and his motivation for crossover work be-
tween computer science and neuroscience, we have proposed the application of
fatigue to random walks in hypergraphs and for the computation of PageRank. Af-
ter stimulated, a neuron in the brain enters a state of fatigue that lasts a given period
of time. We applied this analogy to nodes and hyperedges where, during a random
walk, a node and/or hyperedge would be fatigued for a given number of cycles
before a random walker could traverse it again.

For the random walk score, we found that fatigue was able to significantly im-
prove retrieval efficiency, at the cost of effectiveness, particularly when compared
to the RWS version without fatigue. While we were unable to surpass the baselines,
we were able to introduce fatigue in hyperedges and achieve a similar performance
to the random walk score without fatigue. Through correlation analysis, we further
investigated the similarities between the rankings obtained from different models.
We specifically compared the TF-IDF baseline with the best RWS with fatigue. We
found that RWS was able to effectively retrieve documents, reaching a comparable
performance to the baselines, but returning a different set of relevant documents,
in a nearly anticorrelated manner. Using a similar strategy, we also compared two
configurations of RWS, with and without fatigue, also finding that they returned
different sets of relevant documents, while showing an overall positive correlation,
except for two topics, where only a few relevant results could be retrieved.

We also applied the idea of fatigue to PageRank, formalizing a novel Fatigued
PageRank metric that follows a random explorer model, being analogous to the
combination of PageRank and Reverse PageRank, or the authority and hub scores
from HITS. We then evaluated our graph-based metric, comparing it with the inde-
gree, HITS authority and PageRank, when computed over the Simple English Wiki-
pedia link graph. Based on Spearman’s rank correlation coefficient, we assessed
the quality of each metric in comparison with the number of user visits. We found
that, while Fatigued PageRank obtained the lowest overall correlation of 0.1604, it
was actually able to outperform the indegree and HITS authority for the top 10,000
nodes, showing a more consistent behavior than both those metrics, with the low-
est variance for the Spearman’s rank correlations of all metrics. Despite having a
lower overall correlation score than PageRank, the fatigued version might work in
favor of bias reduction towards the most popular nodes, ensuring diversity in the
preparation of the ranking.

We also assessed the impact in retrieval effectiveness of Fatigued PageRank when
used as query-independent evidence, in combination with a text-based relevance
score like BM25. We used the sigmoid function proposed by Craswell et al. to trans-
form the graph-based feature into a static relevance weight that could be used as an
additional signal during ranking. Based on the TREC Washington Post Corpus, we
were unable to find significant differences in the retrieval effectiveness, except for
the indegree metric, which decreased GMAP and MAP, but increased NDCG@10

and P@10, over a BM25 baseline. We believe that the existence of duplicate docu-
ments in the collection was detrimental to this experiment, given the positive results
with graph-based metrics found in the literature (e.g., Najork [408, Figure 3]). An-
other possible explanation would be regarding the specificity of the queries used
for evaluation, given that general queries usually benefit from graph-based metrics,
while specific queries do not (cf. Najork [408, Figure 4]).
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overview of entity-oriented search approaches and tasks

C O V E R V I E W O F E N T I T Y- O R I E N T E D
S E A R C H A P P R OA C H E S A N D TA S K S

c.1 classical models

Table C.1: Classical information retrieval models applied to entity-oriented search.

Approach Task(s) Description

Virtual
documents

Ad hoc entity retrieval

Bautin and Skiena [4]. Time-dependent concordances for
entities (i.e., concatenation of sentences containing the entity,
optionally for a given period of time).
Dietz et al. [131]. Knowledge portfolios used to establish
query-specific collections of entities and text passages rele-
vant to the queries. Retrieval based on textual passages or
Wikipedia pages for the entities in the query.

Ad hoc entity retrieval;
Attribute retrieval;
Relation retrieval

Pound at al. [3]. Defined five query categories: entity, type,
attribute, relation and keyword. Index RDF using an in-
verted index, computing IDF per RDF property, as opposed
to the whole collection. Used TF-IDF for ranking.

Combined data

Ad hoc document retrieval;
Ad hoc entity retrieval

Bhagdev et al. [123]. Documents identified by a URI and
indexed using an inverted index. Entities stored in a triple-
store with provenance linking to document URIs. Their hy-
brid search approach consisted of either document retrieval
informed by entities, entity retrieval informed by documents,
or a combination of both.
Bast and Buchhold [74]. Joint index for ontologies and text,
based on context lists and ontology relation lists. Context
lists map words or entities to text postings, by their prefixes,
while ontology relation lists map source entities to target
entities, along with an optional relation score.

Ad hoc document retrieval;
Ad hoc entity retrieval;
Related entity finding

Zhou [130]. Querying by entities: entities as input and doc-
uments or entities as output; entities represented by their
Wikipedia pages. Querying for entities: keywords or entities
as input and entities as output; proposed the CQL language
over a joint index and a contextual index. Querying by enti-
ties and for entities: entities as input and output; proposed
a framework analogous to related entity finding [62, §4.4.3].

Entity list completion

Bron et al. [128]. In order to retrieve related entities, they
proposed three approaches: text-based (using the given tex-
tual description as input), structure-based (using the the
given example entities as input) and a combination of both,
which outperformed one isolated.

– See also: Tonon et al. [409], Xion et al. [257].

Probabilistic
graphical models

Ad hoc entity retrieval

Koumenides and Shadbolt [125]. Bayesian network to estab-
lish dependencies between entities and property instances,
between property instances and property identifiers and, fi-
nally, between terms in the literal space and property identi-
fiers. Entity search carried through Bayesian inference
Raviv et al. [124]. Markov network to model the undirected
dependencies between the query and the entity. Captured
the dependencies between a virtual document (represent-
ing the entity) and the query, between the entity type and
the query target type, and between the entity name and the
query.

Sentence retrieval

Urbain [126]. Markov network to model the undirected de-
pendencies between the query and the sentence. Several
models were tested, with different feature functions: ag-
gregate (entity, sentence terms, document terms), term (sen-
tence term, document term), entity, entity-relation and rela-
tion.

Cluster
hypothesis Ad hoc entity retrieval

Raviv et al. [73]. Verified the cluster hypothesis for entity-
oriented search: closely related entities have a high probabil-
ity of also being relevant to the query. This is important for
instance when implementing graph-based approaches that
rely on distance.
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c.2 learning-to-rank models

Table C.2: Learning to rank models for entity-oriented search.

Approach Task(s) Description

Semantic-driven

Sentence retrieval

Chen et al. [137]. Explored explicit semantic analysis (ESA)
and word2vec skip-gram as query-sentence similarity fea-
tures. Used Metzler-Kanungo features as the baseline and
experimented with linear regression, coordinate ascent and
MART. Combining all features yielded the best results, with
ESA distinguishing itself positively.

Related entity finding

Lin et al. [141]. Retrieved the source entity homepages based
on a given narrative illustrating the relation to a target en-
tity of a given type. Applied entity extraction, obtaining
candidate target entities and computed several source-target
entity-entity features, like frequency, proximity and seman-
tic similarity. Experimented with three SVMs: (i) using de-
fault hyperparameters, (ii) using tuned hyperparameters,
and (iii) using feature selection.

Ad hoc entity retrieval

Schuhmacher et al. [143]. Given a keyword query, ad hoc
entity retrieval was implemented through: (i) document
ranking; (ii) entity linking; and (iii) entity ranking. Fea-
tures included mention frequency, as well as query-mention,
query-entity and entity-entity similarities. A semantic ker-
nel was used for the latter. Learning to rank models slightly
improved individual feature baselines.

Virtual
documents Ad hoc entity retrieval

Chen et al. [144]. Compared a fielded sequential depen-
dence model (FSDM; baseline) with pairwise (RankSVM)
and listwise (coordinate ascent) methods. Features included
a language model, BM25, coordinate match, cosine similar-
ity, SDM and FSDM. Results were consistently better for
learning to rank over several test collections. They also
found related entity names to be a fundamental field, ex-
cept for question answering, highlighting the importance of
training several models per query type.

Representation
learning Ad hoc entity retrieval

Gysel et al. [86]. Tackled the keyword-based entity retrieval
problem by learning a common embedding for words and
entities, called latent semantic entity (LSE). They then used
learning to rank based on the embeddings, but the embed-
dings could just as easily be applied to the vector space
model. Their best feature configuration included LSE, along
two other features.

– – See also: Reinanda et al. [110]
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c.3 graph-based models

Table C.3: Graph-based models for entity-oriented search.

Approach Task(s) Description

Link analysis*

Node importance

Kleinberg [149]. Hypertext Induced Topic Selection (HITS)
provides two scores for a node: hub and authority. The
hub score is higher when a node links to multiple nodes or
to highly authoritative nodes. The authority score is higher
when a node receives multiple links or those links are from
well-renowned hubs. HITS is usually computed for a query-
dependent graph.
Page and Brin [113, 151]. PageRank measures the impor-
tance of a node based on the importance (and number) of
incoming nodes. PageRank is usually computed for a query-
independent graph (e.g., web graph).

Node relatedness

Van and Beigbeder [162]. Explored bibliographic coupling
(shared outgoing links) and co-citation (shared incoming
links) as reranking strategies. In practice, two nodes were
related based on the similarity of their immediate neighbor-
hood.

Node importance;
Node relatedness

Ito et al. [163]. Explored von Neumann kernels as a uni-
fied framework for measuring importance and relatedness.
Also proposed Laplacian kernels and heat kernels as a way to
control the bias between relatedness and importance, and to
tackled limitations of bibliographic coupling and co-citation
approaches.

Node importance;
Graph partitioning

Chung [164]. Proposed the heat kernel PageRank, building
on PageRank’s alternative notation [166, §1.5]. Local appli-
cations can be used to identify node clusters, while global
applications to measure node importance.
Kloster and Gleich [165]. Explored the heat kernel PageRank
as a community detection algorithm, solving the exponential
of the Markov matrix using a Taylor polynomial approxima-
tion.
Yang et al. [169]. Proposed a more efficient approach to com-
puting heat kernel PageRank, based on Monte Carlo random
walks and a reduction of the required number of random
walks.

– See also: Kandola et al. [410].

Text as a graph**

Ad hoc document retrieval

Blanco and Lioma [15]. Document as an undirected graph
of co-occurring words within a sliding window, or with an
added direction based on Jespersen’s rank theory of POS
tags. They experimented with PageRank and indegree over
the two graphs as a TF replacement, combining the score
with global graph-based features (e.g., average degree). Per-
formance was improved over TF-IDF and BM25.
Rousseau and Vazirgiannis [16]. Similar to Blanco and
Lioma [15], they defined a graph-of-word of co-occurring
words, but considered direction and the following terms in-
stead of centering the sliding window on each word. They
found little impact of window size (used N = 4) and used
almost no pivoted document length normalization (b =
0.003).

Ad hoc document retrieval;
Text classification

Dourado et al. [171]. Represented documents as a bag of
textual graphs, weighting unigrams and bigrams by term fre-
quency. A graph dissimilarity function was proposed to clus-
ter subgraphs and obtain a graph-based vocabulary. Assign-
ment to this vocabulary resulted in a matrix (each subgraph
compared to all centroids), which was then collapsed into a
vector to represent the document, as a pooling of graph em-
beddings. The resulting embedding could then be used for
text retrieval and classification.

Knowledge graphs Ad hoc entity retrieval;
Ad hoc document retrieval

Fernández et al. [172]. Given a natural language query,
triples were retrieved and, in turn, used to retrieve and rank
documents, based on a semantic index that combined infor-
mation from a knowledge graph and a corpus.
Balog et al. [175]. Used keyword queries and language mod-
els to retrieve documents and entities from news collections.
They defined both a document-centric and an entity-centric
view on their SaHaRa system, where entities augmented doc-
uments and vice-versa.

(Continued on next page)
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c.3 graph-based models

Table C.3. Graph-based models models for entity-oriented search. (Continued from previous page)

Approach Task(s) Description

Knowledge graphs
(cont.)

Ad hoc entity retrieval

Blanco et al. [176]. Experimented with several ways to trans-
late an RDF graph into a multi-fielded index: horizontal (to-
ken, property, subject), vertical (one field per property), and
reduced-vertical (important, neutral and unimportant group-
ings of properties). Ranking was based on BM25F.
Neumayer et al. [179]. Experimented with two entity mod-
els to translate an RDF graph into a multi-fielded index: un-
structured (one field for all properties) and structured (four
property groups: Name, Attributes, OutRelations, InRelations).
Ranking was based on language models.

Knowledge graph
construction and modeling

Byrne [174]. Used RDF to integrate structured data from
relational databases (each table was considered a class), with
domain thesauri (represented using the SKOS ontology), and
free text (using NER to identify 11 classes of entities, and
relation extraction to identify 7 predicates). She compared
retrieval based on SPARQL and SQL.
Google Knowledge Graph [5]. Announced in 2012 and
partly powered by Freebase. Freebase was then bought and
closed by Google. Public dumps were made available and
migrated to Wikidata.
Microsoft Satori [54]. Announced in 2013 and presented in
KDD 2018 as a tutorial on building knowledge graphs. Fo-
cused on evaluation by correctness, coverage, freshness and
usage.
Microsoft Academic Graph, by Sinha et al. [186]. It contains
80 million indexed papers and six types of entities: #field_of_-
study, #author, #institution, #paper, #venue and #event. Built
to support academic queries, based on feeds from publishers
and event web sites.

Topic modeling

Allahyari [254]. Proposed a method for ontology-based topic
modeling, experimenting with topics as distributions over on-
tology concepts, as well as topics as distributions over Wiki-
pedia categories.

– See also: Gao et al. [185]

Text to entity graph

Ad hoc entity retrieval Bordino et al. [187] Serendipitous search over an entity graph
extracted from Wikipedia and Yahoo! Answers.

Ad hoc document retrieval
Ni et al. [189]. Measuring semantic similarity based on
a concept graph representing a document. Proposed Con-
cept2VecSim and ConceptGraphSim.

Entity graph to
tensor Ad hoc entity search

Zhiltsov and Agichtein [75]. Represented entities as a ten-
sor of adjacency matrices (one per predicate). Using tensor
factorization, they obtained a matrix of latent entity embed-
dings, that they used to compute similarities to the top-3
entities, boosting those entities (consistent with the cluster
hypothesis).

Graph matching

Ad hoc entity retrieval

Zhu et al. [58] and Zhong et al. [57]. Matched a query graph
with an entity graph (conceptual graph; also translatable to
RDF). They computed the semantic similarity based on the
similarity between the nodes and edges of two conceptual
graphs. The user was required to provide a set of entry nodes
as part of the query.
Zhu et al. [199]. Translated a natural language query into a
graph query using named entity recognition along with de-
pendency parsing to extract entities and their relations. The
result was translated into a graph query language for a graph
database.

Ad hoc entity retrieval;
Related entity finding;
Entity list completion

Minkov and Cohen [196]. Generalized multiple personal in-
formation management tasks over an entity graph and based
on keyword queries (e.g., name disambiguation, threading,
grouping e-mail aliases).

Answer tree ranking
Zhong et al. [198]. Combined content-based and structure-
based features to score answer trees that contained query
keywords.

Hypergraph-based* Joint representation

Garshol [203]. Describes topic maps, a hypergraph of top-
ics, their associations and occurrences. It describes it as a
common reference model, able to represent controlled vocab-
ularies, taxonomies, thesauri, faceted classification and on-
tologies.
Yi [204]. Compared thesaurus based information retrieval
with topic maps based information retrieval, finding topic
maps to outperform thesauri.

(Continued on next page)
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Table C.3. Graph-based models models for entity-oriented search. (Continued from previous page)

Approach Task(s) Description

Hypergraph-based*
(cont.)

Ad hoc document retrieval

Bendersky and Croft [14]. Proposed the query hypergraph
to represent higher-order dependencies between concepts
(subsets of query terms) and a document. Ranking is done
using a log-linear combination of factors, based on the factor
graph representation of the hypergraph.

Ad hoc entity retrieval;
Joint representation

Dietz [103]. Proposed ENT Rank for modeling entity-
neighbor-text relations as a hypergraph. She transformed the
hypergraph into an entity co-occurrence multigraph which
was used to determine which features, from text, entites, and
their relations, to combine for learning a function for entity
ranking.

Document representation

Haentjens Dekker and Birnbaum [76]. Text As a Graph
(TAG) is a document representation based on a hypergraph.
It links text, document, annotation and markup nodes. It can
for instance be used to represent a poem line or quatrain as
hyperedges of text, where the quatrains subsume lines.

–

See also: Xiong and Ji [206], Cattuto et al. [207], Bu et al. [83],
McFee and Lanckriet [210], Tan et al. [209], Theodoridis et
al. [211], Bellaachia and Al-Dhelaan [55], Lee-Kwang and
Lee [213], Akram and Dudek [214]

Random walk
based

Ad hoc entity retrieval

Hogan et al. [66]. ReConRank is used to rank nodes in
a query-dependent graph, that jointly represents RDF re-
sources and contexts.
Balmin et al. [65]. ObjectRank is used to rank nodes in a
query-dependent labeled graph. A graph is induced by each
query term and PageRank is used to compute a term-based
score (i.e., personalized by a term) along with a global score
(i.e., without personalization). An authority transfer schema
is used to introduce edge bias.
Chakrabarti [67]. HubRank provides a more efficient alterna-
tive to ObjectRank. It is based on precomputed random walk
fingerprints over a subgraph limited by a set of boundary
nodes (blockers and losers).

Node importance

Espín-Noboa et al. [239]. HopRank models human naviga-
tion on semantic networks, by taking into consideration the
bias of jumping to nodes at particular distances. Node im-
portance is adjusted accordingly.
Nie et al. [235]. PopRank assigns node importance based
on information from an entity graph (object graph) and a
context graph (web graph). It was used in Libra, which is
now Microsoft Academic Search.
Delbru et al. [72]. DING (Dataset rankING) also assigns
node importance based on information from an entity graph
and a context graph (dataset graph based on entity links).

Related entity finding;
Entity list completion

Musto et al. [238]. Proposed a semantics-aware personalized
PageRank for recommendation over a user-item-entity graph,
built by combining a user-item profile with DBpedia triples.
This is similar to the tasks of related entity finding or entity
list completion, if the user is abstracted as an entity.

* General (hyper)graph-based approaches and introductory concepts that can be applied to entity-oriented search (e.g., multiple PageRank adaptations to entity-
oriented search are covered in Section 2.2.8, and the query hypergraph, which defines concepts that can be entities, is covered in Section 2.2.7).

** Despite not leveraging entities, these models are relevant when defining joint graph-based representations for text and entities.
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